The Annals of Statistics
1982, Vol. 10, No. 3, 1012-1016
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Let X be distributed according to a non-central Chi squared distribution
with p degrees of freedom. The non-central Chi squared distribution arises in
various statistical analyses and the estimation of the non-centrality parameter
is of importance in some problems. This paper deals with the admissibility of
certain estimates of the non-centrality parameter. It is shown that (X — p)™,
the positive part of X — p dominates the maximum likelihood estimator with
squared error as the loss function.

1. Introduction and Summary. The non-central Chi squared distribution arises in
various statistical analyses, such as the analysis of variance for tests of homogeneity and
Pearson’s Chi squared test for goodness of fit. For an example in electrical engineering,
Spruill (1979) has shown that the measurement of electrical power in a circuit is related to
the estimation of the non-centrality parameter of a Chi squared distribution. A discussion
of various applications of the distribution is given in Johnson and Kotz (1970, Section
28.9). The Chi squared random variable is linearly related to the gamma random variable.
This paper deals with the problem of estimating the non-centrality parameter of a gamma
distribution with the squared error as loss function.

There is a standard argument for the choice of a quadratic loss in a general estimation
problem. In relation to the Chi squared distribution, often the parameter of direct interest
is an increasing function g (M), say, of the non-centrality parameter A. Let T and T: be two
estimators of A. It is known (see Rao, 1973) that a necessary condition for P{g(\) — &1 <
8(T)<gM) +e}=P{g\) —ea<g(Te) <g(\) + ¢} for all ¢ and e, is that E (T} —
A2 =< E(T: — A\)2 This result gives an added argument for the choice of a quadratic loss.

Let X be distributed according to a noncentral gamma distribution with p degrees of
freedom and noncentrality parameter A. It is known that X — p is a uniformly minimum
variance unbiased estimator (UMVUE) of A, whereas (X — p)* = max(X — p, 0) has
smaller mean squared error (MSE) than the UMVUE. But (X — p)* itself is inadmissible
since it is not an analytic function of X. More generally (X — ¢)* is inadmissible for ¢ > 0.
We note here, without proof, that the class of estimators {(X — ¢)*, ¢ = p} is irreducible
in the sense that there are no two values of ¢ for which one estimator dominates the other.

Perlman and Rasmussen (1975) and Neff and Strawderman (1976) have considered a
class of estimators of the form

(1.1) ‘ x—p+b/ix+c)4

which have been shown to have smaller MSE than the UMVUE for certain values of the
constants in (1.1) for A > 0. The values of the constants should be constrained so that §(x)
= 0. Otherwise, the positive part of §(x) would improve upon 8 (x). Clearly (x — p)* has
smaller MSE than (1.1) in a neighborhood of A = 0, provided & > 0.

In Section 2 we consider the maximum likelihood estimator (MLE) of A. The MLE
cannot be produced in a closed form (see Meyer, 1976). The maximization of the likelihood
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function leads to the solution of an equation involving modified Bessel functions. However
our main result shows that the MLE is dominated by (x — p)*. In the derivation of this
result we have used certain properties of the Bessel function which are given in the
Appendix.

In Section 3 we consider certain admissible and minimax estimators.

2. Maximum likelihood estimator. The noncentral gamma distribution is given by
the density function

— AP—1,-A—x (' (}\x)"
(2.1) A = e b nT(p+r)

= e x/N) P2 (2VAx), x>0,
where I, (x), given by (A.1) in the Appendix, denotes the modified Bessel function. If X has
the distribution (2.1) then 2X is distributed according to the Chi squared distribution with
2p degrees of freedom and non-centrality parameter 2\. We consider the sample size n =
1 and n > 1 separately. The main result is in Theorem 2.1 (for n = 1) which shows that the
MLE is dominated by (x — p)* for p = %.

A. Sample size n = 1. Let A* denote the MLE. The value of A* is obtained by
maximizing (2.1) with respect to A and is given by the solution of the following equation:

x ,
2.2 1=—=I,2VAx)/I,-1 2VAx).

The right side of (2.2) is decreasing in A by Lemma A.2 and tends to x/p as A — 0.
Therefore for x < p, A\* = 0 and for x > p, A* is the unique solution of (2.2).

LEmMMA 2.1. (a) Forx=p =% A* — (x — p) isincreasing in x, and x — p < A\* <
x —p+ %. (b) For large x, \* =x —p + % + O(1/x).

Proor. Proof of (b) follows by using (A.2) in (2.2). Details are not given. Proof of (a):
From (2.2) and Lemma A.3 we have

A=Az L 2VA%) / {L L(2VA%) + Loy (2x/)\_x)}
VAx

(2.3) = VAx I,-1 (2VAx) / { ‘;’\x L1(2VAx) + I, (2«/@)}
- /g-3)
The last equality gives
(2.4) ‘ A =x—p.
Let Z = 2(A*x)'/% and write A for A*. Then
d\ ZdZ
2. +x—
(25) Atx dx 2dx
and from (2.2)
(2.6) ZI, 1(Z) = 2xI,(Z).
Differentiating both sides of (2.6) with respect to x, we get after simplification that
Z dzZ A

2D §a;=k—x+p'
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Hence, from (2.5) and (2.7) we get

(2.8) xg)‘;= A(XTJICTP— 1).
Differentiating (2.8) with respect to x we get
2
2.9) x-:i%);=_{2+()\;xx-fp)z}%+(}\—.:+p)2'
Consider the behavior of A as a function of x. From the first equality in (2.3) we have
Ax L (@VA%)
L,(2V\x)

The above relation shows that A — 0 and A/(x — p) — (p + 1)/p as x — p + 0. Then from
(2.8) we have that d\/dx — (p + 1)/p, as x — p + 0. Let x, denote the smallest value of
x > p for which d\/dx = 0. Then d*\/dx? < 0 for x = xo. On the other hand, from (2.9) it
is seen that d*\/dx® > 0 at x = x,. Therefore d\/dx > 0 for all x > p. Let x° be the smallest
values of x > p for which dA\/dx = 1. For p > %, from (2.8) we find that

(2.10) 1-22A+2x°—2p>0.

Putting dA\/dx = 1 in (2.9), after simplification, we get
2
(2.11) x°(A—x°+p)2%x-)}§ =A—-2"+p)A1—-2A+2x"—-2p)>0
due to (2.4) and (2.10). Since d\/dx — (p + 1)/p as x — p + 0, it follows that d?\/dx? <
0 at x = x° contrary to (2.11). Therefore,

(2.12) %>1 forall x>p>%.

Hence, A* — (x — p)* is increasing in x. Furthermore, using (2.12) in (2.8) we obtain

(2.13) AM<@x—-p)r+% for p>h%
THEOREM 2.1. For p = Y%, A\* is dominated by (x — p)™.

Proor. We have
2.14) MSEQX*) —MSE(x —p)"=E{A* — (x —p) "} (\* + (x —p)* — 2A}
=E(\* — (x—p)JEM* + (x —p)* — 22} > 0.

The first inequality in (2.14) follows from the fact that each of the quantities A* — (x —
p)*and A* + (x + p)* — 2\ is increasing in x. The second inequality follows from (2.4) and
from E {A* + (x — p)* — 2A} > 2E(x — p — A) = 0. This completes the proof of Theorem
2.1.

The Table 1 gives the mean squared errors of A* and (X — p)* for a few values of A and
p. It is seen from the table that (X — p) * has smaller MSE than A*. The relative difference
between the MSE values is less than 5% for moderately large values of p and A.

B. Sample size n > 1. The computation of the MLE is fairly difficult for n > 1. We
give below lower and upper bounds on its value. Let x;, - - - , x, denote the sample values.
The likelihood equation is given by

(2.15) n=7yr, %M (I, @2VAx:) /I (2VAx:)}.
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TABLE 1
Mean squared errors of \* and (X — p)*
A=05 A=1 A=5 A=10
P MSE MSE MSE MSE MSE MSE MSE MSE
M X -p? A X -p? N X-p)* M (X -p)*
0.5 1.79 1.27 2.88 2.25 10.85 10.46 20.76 20.50
1 2.10 1.56 3.18 2.52 11.34 10.91 21.32 21.00
5 4.43 3.81 5.45 4.74 15.03 14.11 25.57 24.90
10 7.20 6.54 8.19 7.45 18.67 17.63 30.47 29.55
20 12.58 11.87 13.55 12.77 25.04 23.93 39.26 38.12

Each term of the summation on the right hand side of (2.15).is monotone decreasing in A
by Lemma A.2, and the maximum value of the sum corresponding to A — 0 is equal to
nx/p, where ¥ = ¥, x;/n denotes the sample mean. Denoting the MLE by A}, we have that
A is uniquely given as a solution of (2.15) for ¥ > p and that A} = 0 for X < p. The lower
and upper bounds for A}, are given by

1 2 p+1 1 :
(2.16) (;2;;1 JZ-) —psA*nsmin{ >~ &= p). (;2,":1 JZ-) }

We omit the proofs. For large sample values, A}, is approximated by (3 Vi /n)% We have
not been able to show that the lower bound in (2.16) can be made sharper to (¥ — p)*, but
we conjecture it to be true.

3. Admissible and minimax estimators. Consider a prior distribution for A given
by

g\ =P\ 'e"T(p), ¢,p,A>0.
Then

- X
8(X)-1+c+(1+c)2

is a Bayes estimator. The MSE and the Bayes risk p (c) of 8 (X) are given by
(3.1) MSE@) = (1+¢) ™ {(p+22+ 2+ ¢c)*(p— )%

plc) =1+ c)“{p + 2—5—+p(2 + c)2} .

As the prior distribution assigns positive probability to every open interval, and as the
Bayes risk is finite, it follows that §(X) is admissible. It is interesting to observe that the
limit of §(X) as ¢ — 0 is X + p which is a Bayes estimator with respect to an improper
prior distribution and is dominated by UMVUE; see deWaal (1974) and Perlman and
Rasmussen (1975). From (3.1) we see that p(c) — o as ¢ — 0. Since §(X) is a proper Bayes
estimator, it follows that all estimators have unbounded maximum risk. Therefore all
estimators are trivially minimax. We show below that (X — p)™* is minimax (nontrivially)
for another loss function.

Let the squared error (SE) loss be changed to (SE)/(A + p/2). Then §(X) is again a
Bayes estimator when the prior distribution of A is given by the density A(A) = {c(2\ +
p)/p2 + ¢)}g(A\). Moreover, the UMVUE has a constant risk, equal to 2. The Bayes risk
of §(X) is now given by p*(c) = {2¢/(2p + pc)}p(c). Because p*(c) — 2 as ¢ — 0, the
UMVUE is minimax. Since (X — p)* dominates the UMVUE, it is also minimax.
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APPENDIX
Let I, (x) denote the modified Bessel function:
I (x°/4)*
A. =(= g e,
(A1) L) <2x) LT+ kF D)

For large values of x, we have, with u = 4p?,

e [ w1l @mDE-9)
(A2) L (%) m){l ot }

Let @,(x) = I,(x)/I,—1(x). The following lemmas can be derived easily from the known
properties of Bessel functions (see Abramowitz and Stegun, 1970).

LEMMA Al. @,(x)<1forp=1andx>0.
LEMMA A2. xQ,(x) is increasing in x and Q,(x)/x is decreasing in x.
LEMMA A3. @Q,(x) > @p+1(x) for all p and x > 0.
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