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TIME SERIES DISCRIMINATION BY HIGHER ORDER CROSSINGS

By BeEnJaAMIN KEDEM AND Eric SLup!
University of Maryland

A new methodology is proposed for discrimination among stationary
time-series. The time series are transformed into binary arrays by clipping
(retaining only the signs of) the jth difference series, j = 0, 1, 2, --.. The
degeneracy of clipped jth differences is studied as j becomes large. A new
goodness of fit statistic is defined as a quadratic form in the counts of axis-
crossings by each of the first & differences of the series. Simulations and the
degeneracy of high-order differences justify fixing % no larger than 10 for many
processes. Empirical simulated distributions (with %z = 9) of the goodness of fit
statistic suggest a gamma approximation for its tail probabilities. Illustrations
are given of discrimination between simple models with the new statistic.

.

1. Introduction. In many areas of application of time series methods, data is gener-
ated in repeated cycles by a machine or organism whose operation is monitored for change
to a “malfunction” mode. Examples include electrocardiographic and EEG series and
engineering tests of devices and mechanical structures under repeated loading. Common
to these diverse areas is the need to develop a broad criterion of goodness of fit for time
series (stochastic processes) applicable not only to strictly and wide-sense stationary
processes but to the nearly-periodic random waveforms arising in engineering contexts.

Nearly all current tests of fit for time series relate to the parametric classes of Auto-
Regressive Moving Average (ARMA) or Gaussian processes, in which, respectively, sums
of squared residuals or residual-correlations (Box and Jenkins, 1970) and likelihood-ratio
statistics (Grenander, 1950; Whittle, 1951) are used. A method of large-sample discrimi-
nation between non-nested Gaussian ARMA models (and between AR and sinusoid-plus-
white noise models) has been worked out by Walker (1967), using the idea of Cox’s (1962)
“tests of separate families.” Successful discrimination among “locally stationary” Gaussian
models for electroencephalograph (EEG) and machine-vibration data has been reported
by W. Gersch and co-workers (1979a, b).

Ad hoc and problem-based methods of discriminating time series almost necessarily do
without parametric assumptions. For example, John, et al (1980) discriminate EEG data
which is patently nonstationary by means of the power contained in specified frequency
bands. In the area of automatic speech recognition, there are widespread methods of
identification (reviewed by Niederjohn and Castelez, 1978) based on the number and
durations of times when the speech-waveform is above a fixed level u. Other applications
of level-crossings analysis are given by Becker (1978) and Schiess (1979). Cramér and
Leadbetter (1963) give theoretical results on level crossings for stationary Gaussian
processes, and Hinich (1967), Brillinger (1968), and Kedem (1979) discuss consistent
parameter estimation from stationary Gaussian data clipped at the mean (i.e., data
recorded only as above or below the known mean).

Each of the methods of discrimination mentioned above employs sample time-averages,
therefore implicitly requiring some assumption of stationarity. All the analysis of the
present paper will also presuppose (strict or wide-sense) stationary second order random
sequences, but since we wish to avoid parametric assumptions, we restrict ourselves to
discriminating via counts of features in the time domain.
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Our procedures concern level crossings of (higher-order) differences of a time series,
and are most naturally expressed through the following representation of random se-
quences, which also serves to establish our notation.

Let Z = {Z,}7~_ be a (stationary) discrete-time process. We denote by V the backward-
difference operator acting on the entire sequence Z, yielding ¢th coordinate (VZ), = Z;, —
Z,y; similarly (V*Z), = (V(VZ)), = Z, — 2Z,_, + Z,s, etc. The clipping operator U is defined
by

_J1 if zZ,=o,
(UZ)‘_{O if Z,<0.

Then X, = X,(Z) = (X", X{?, ...)" for t = 0, £1, £2, - .. is the series of binary vectors in
{0, 1}7, the binary differential representation of Z, defined for j = 1 by

1 if (V/7'Z),=0,

;j)E(UVj_IZ)tE{o if (V/7'Z), <0

We further define, for £ = 1 and large N, the truncated arra}‘r
Xy =XV ({Z}) = (X, .-, X{P): 1= t= N}

This is the form in which we encode and discriminate among series {Z,} and on which our
goodness of fit statistic will be based. The special statistics D,y =Y [X{) #X{], the
number of axis-crossings of V/~'Z, as ¢ runs from 1 to N, will be called the higher-order
crossings (of order j = 1) of the series {Z,}.

There are applications of time series (especially in the social sciences) where the
qualitative information contained in a truncated binary-differential representation is the
most one should hope to forecast. In such instances, the truncated binary-differential
representation corresponding to a fitted ARIMA model can be considered as a model for
X% itself, giving a less detailed but more robust description. Prediction and modeling of
X% remain topics for further research. The present paper is concerned only with discrim-
ination via higher-order crossings.

In Section 2 below, we show that the degeneracy resulting from repeated differencing
of wide-sense stationary sequences has important special consequences for strictly station-
ary second-order sequences. Then Section 3 justifies and illustrates the use of a particular
goodness of fit test statistic ¢® constructed from counts of higher-order crossings. For
further details on implementing one- and two-sample tests of fit with y? and for compar-
isons under ARMA models with other tests of fit, see Kedem and Slud (1981).

The apparent restriction of our methods to stationary time series is partially removed
in Slud (1981), which extends all the results of the present work to a class of non-stationary
process which includes the (nearly) periodic waveforms with stationary noise. Other
extensions of higher-order crossings methods, to the discrimination of planar textures,
have been explored in a report of Kedem (1981).

2. The higher-order crossings theorem. Suppose that Z = {Z,}i~_. (¢ integer-
valued) is a zero-mean, real-valued wide-sense stationary process. Our general reference
for this paragraph is Doob (1953). It is well known that the covariance function r(k) of Z
corresponds to a uniquely defined spectral distribution function F on (—, 7] so that

E(ZyZy) =r(k) = J’ ™ dF(\).

This implies the existence of a complex-valued process £(A\) with orthogonal increments on
(—m, 7] such that Z, = [7,, " d£(\) in the mean-square sense, where dF(\) = E|d¢(\) >
Again, for j = 1, we define the series X' = {X{’’} by X’ = UV’/~'Z; but now define
YD = (YY) = V/'Z and YV = (T} = 'Y, where ¢; > 0 is chosen so that
Var ¥{) = 1. We normalize Y’ because the clipped sequence X'/’ does not depend on the
amplitudes of V/7'Z; hence X’ = UY ), Since V” is a linear filter, we can express
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Y}j—fl) = f (1 — e—zk)jez}\t dg(}\)

and

¢y = Var(Y'") = f |1—e % dF ).

We further define F, () to be the spectral distribution function of { Y{’*" }, corresponding
to the symmetric measure »; on (—, 7]. Thus

dF;(\) = v(d\) = |1 — e ¥ dF (\) / f [1— e "|¥ dF (7).

In the frequency domain, the operators V/ are high-pass filters pushing spectral mass
toward the higher frequencies. That repeated application of such filters leads to oscillatory
degeneracy appears to be well known (cf. Grenander and Rosenblatt, 1957, Section 3.3;
Anderson, 1971, Section 7.5.5). In this section, we obtain more precise information on this
degeneracy for strictly stationary processes. The following proposition summarizes the
asymptotics for large j of the spectral effect of V/ operating on wide-sense stationary Z.

PROPOSITION 2.1. Let o € [0, 7] be max(support(F')) = largest point of increase of F
in [0, ]. Then asj— ®, vj—>, %8_, + %8, if a < m, and v;j—,, 8, if « = m, where §, denotes
point mass at u.

PROOF OF PROPOSITION. By assumption, F' has point of increase only in [—a, a].
Moreover |1 — e | = 2(1 — cos M) is strictly increasing in [0, 7]. Also recall that »; is a
symmetric measure on (—, 7].

Now for A € [—a + & a — €], where ¢ > 0, we have by monotonicity

[1—e > < p(e) = 2{1 — cos(a — ¢)} < 2(1 — cos ).

Obviously |1 — e™|* = p(e) for A € [—a, —a + €) U (a — ¢, a]. But dF(}) is 0 off [—a, a,
hence

a—

y([—a+ea—el) = f [1- e dF(\) / f [1— e ™% dF(\).

—a

Also for all e € (0, «)
(—ate)— «
f dF(\) + J dF(A\) = o(e) > 0.
—a (a—e)+
Therefore

[—a+(/2)]— a
vi([—a + ¢ a— e]) < p’(e) {r(0) — o(e)}/{J’ + j [1—e ™% dF()\)}
—a I

a—(e/2)]+

- p’(e) {r(0) — a(e)}

()

exponentially as j — o, for all ¢ > 0, because p(e/2) > p(e). It follows that

-0

vi([—a, —a +€) U (@ —¢ a]) = 1, J— .

Since », is symmetric on (—, 7), we conclude as j — ©, y; —,, ¥%0_, + %0, if @ < 7, ¥; —>u
8, if a = 7. Moreover, it follows from the definition of weak convergence that
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P T 1 . )
Cov(YP, Yy = J’ e™y;(d\) — 3 (€™ + e™™) = cos(ma) as j— oo,

In the special case a = 7 we have
2.1) Cov(Y", Y)) = (-1)™,  j— oo, o
From (2.1) follows, uniformly for all integers ¢,
(2.2) E|YY) — (D)"Y P—>2-2(-1)""=0, j— .
At this point we encounter a technical problem which must be disposed of. We are
interested in the behavior of {X{/'} for large values of j and strictly stationary Z. In order

to avoid difficulties associated with positive probability for the event [Y{/’ = 0], we appeal
to the following lemma, which may be of independent interest.

LEMMA 2.2. IfZ =({Z}:_« is a strictly stationary sequence such that
P(Z,=Z,Vt) =0, then lim sup,..P({w:(V"Z)o(w) =0}) =0.

Proor. We suppose for some sequence n; tending to o that for j = 1, P(VVZ), =
0) = § >0. By Fatou’s Lemma P((V“Z), = 0 for infinitely many j) = §. By Birkhoff’s
Ergodic Theorem, as N — o,

N'card{l1=k=<N:(V¥Z),=0 for infinitely many j=1}

converges with probability 1 to a random variable A with expectation =§. On the set {w:
A(w) > 0}, for sufficiently large i the sequence {(V*Z).(w)}#:1 is overdetermined by the
value (V*Z)o(w) and the relations (V*%Z); = 0 which occur for j =i, t = 1. Hence A(w) >0
implies V"Z,(w) =0 for some m = 1 and all ¢ = 1. By assumption, the latter event has
probability 0, since stationarity implies a.s. that for positive ¢, Z, cannot be polynomial of
degree at least 1. Therefore there can be no {n;} and 8 > 0 as above, and the lemma is
proved. [0

Whenever Z is wide-sense stationary with mean 0, has spectral df F for which = is a
point of increase, and satisfies lim sup,_.»P(V"Zo = 0) = 0, (2.2) implies that

PXin# ()X + %{1 = (-1)™}] >0 as j— oo,
uniformly in ¢ Similarly we have for each fixed m = 1,
(2.3) lim.P[X{{, = (-1)’X + %{1 — (=1)°} for ¢=1,.-.,m]=1.
We retain the same assumptions on Z throughout the next paragraph.

Recalling the notation Djv = Yii' I[X{{) # X{”'], and observing thatX{" # Xi{} im-
plies X4V = X{{) for j = 1, t any integer, we remark that surely

(24) 0= Dij <=N-1 and Dj+1,1v > Dj,zv — 1.

It then follows from wide-sense stationarity for {Z;} by (2.3) with m = 1 that E(D;~/N —
1) — 1 uniformly in N as j — . If we define C,, = lim supn_,.D,n/N for n = 1, and make
the crucial observation by (2.4) that C,.; = C, a.s. while 0 = C, < 1, then we can conclude
with probability 1, lim,.C, = C < 1 exists. By the Bounded Convergence Theorem E(C)
= lims--E(C,). By Fatou’s Lemma E(C,) = lim supy—«E(D,n/N), and the uniform
convergence of E(D,n/N — 1) to 1 as n — o implies lim supy_oE(D,n/N) - 1 as n —
o, and E(C) = 1. Therefore C = 1 a.s. We have proved:

THEOREM 2.3. If {Z}%-. is wide-sense stationary with mean 0; if 7 is a point of
increase for its spectral distribution function F; and if also

lim sup,_.»P{(V"Z), = 0} =0 for all integers t;
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then

(a) Corr(X{”, X{%) > (—1)*asn— o
(b) D; =lim supy_.N' YN, I[X) % X1 is almost surely increasing to 1 as j — .

Of course, when {Z,} is strictly stationary, Lemma 2.2 can replace the assumption on
P{(V"Z), = 0}, and Birkhoff’s Ergodic Theorem 1mplles limp_.D;n/N = D; exists almost
surely. If Z and hence X'/’ are ergodic, then D; = P(X!{} # X{”) as.

HIGHER-ORDER CROSSINGS THEOREM. LetZ = {Z,}%_. be strictly stationary, with
finite variance, and P(Z, = Zy, Vt) = 0. Suppose that = is a point of increase for the
spectral distribution function F on (—u, 7). Then

(i) the 0 — 1 valued processes X™ = {X{"}%_., converge in distribution as n — o to the
process a = {a;} -« defined by

_ |1 withprob. % :
0 with prob. %

and P(apvi=1—apforallk =0, £1, ...) = 1;

1 with prob. Y

os m) . —_ .o P .
(i) (Xi":m=nn+1n+2, . }—”{0 with prob. %

as n — « for each integer k, wherel =(1,1, --.) and 0 = (0, 0, ---);
(iii) limj_.limy_.N"'D;nx = 1 with probability 1.

ProoF. By Lemma 2.2 and Theorem 2.3, part (iii) and (2.3) have already been proved
for the case EZ, = 0, and are not changed in replacing Z, by Z, — EZ,. To prove weak-
convergence statements, we recall that the natural product topology on € = {0, 1} is
generated from neighborhoods Vu(y) = (x € Q:x. =y, if | k| = M }, for y € Q. We define
two special points « and a’ in Q by

. {1 if ¢ isodd,  , _ {1 if ¢ iseven
710 if t iseven, 710 if t isodd

Denoting by @, the law of {X{”}%_.. on {0, 1}, we translate (2.3) to mean for all M,
Q-(Vu(a) U Vy(a')) = P{X™ € Vula) U Vyla)} — 1, n— o,

Therefore any weak limit measure for {@,.}n-1 must be supported on {a, a’} in . That is,
each weakly convergent subsequence @, has limit of the form Rg= -8, + (1 — ) 0x,
for some B € [0, 1].

Since X™ is stationary, the laws @, are all invariant under the left sequence-shift.
Therefore all the Rz which appear as limits of @,, are also stationary. But the sequence-
shift carries o into &’ and &’ into a, implying that the only shift-invariant R; is Ry/2. Since
{0, 1} with the product topology is compact, every subsequence of {@,}7-1 contains a
weakly convergent subsequence which must converge to Ry = (1/2)8, + (1/2)8.. Hence
@r —>wR1/2 as n — «, proving part (i).

Finally, to prove (ii) we recall that X{?) # X{® implies X{t{” = X{7i. Then for fixed
even m, (X{, X, .-+, X&) =(1,0,1,0,1,---) implies X2, m,,", cee, XUER) =
(L,1,.--,1) and (X, .-+, X{) = (0, 1,0, 1, -, 0) implies X%, - - "+'")) ©, o,
.« +, 0). Therefore part (ii) follows from (2.3) and part (i), and the proof is complete. [0

3. The goodness of fit statistic. = Throughout this section we assume the random
sequence {Z;} is strictly stationary and satisfies the hypotheses of the Higher Order
Crossings Theorem. In addition, for asymptotic normality of our higher-order crossings
counts, we require that {Z;} be ¢-mixing as in the hypothesis of Billingsley’s (1968)
Theorem 20.1.

By the theorems of Section 2, essentially all the predictive or discriminatory power in
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{X{":1 =t =N, j=1) for large N is already contained inX ¥ for moderately large fixed
k. Simulation results based on work with both linear and nonlinear process models
corroborate our theorem and suggest that D; = limn_...D;n/N is already above .9 when j
is as large as 10 for a wide variety of examples. For this reason, we restrict attention in our
statistical applications to X% for £ < 10.

We recall from Section 2, formula (2.4), that Dj.,~ = D;n~ — 1 surely. Now fixing % once
and for all, we define A;n for 1 =j < k by

Dl,N if j=].
Aj,N= ‘Dj,N—Dj_l,N if j=2, ~--,k—1
N-—-1=Dpn if j=k.

These A are asymptotically non-negative random variables, since

p(Xm #~ X(l)) if ] =1
Ajn/N = { PXH # X)) — PXE" # XY if 2<j<k-1
P(x(k—l) X(k—l)) lf ] k.

Let mjn~ = EAjn. By non-constancy and ergodicity of {Z;}, miy > 0 if EZ, = 0. Forj = 2,
m;n = 0 would mean that the series {(W2Z),}, could change sign at ¢ iff it had a local
extremum at ¢ — 1, i.e, X}’ = X" for all £. This behavior is not excluded in principle
even for j = 2, but is so distinctive as to render unnecessary a goodness of fit test between
a model with m;x apprommately 0 for large N and data with A;jx > 0. From now on, we
assume mjy >0forj=1, ---, k.

For each (ay, -+, az), Blllmgsley’s (1968, page 174) ¢-mixing Central Limit Theorem
with & = Y%, o[ X} # X{] implies N2 ¥%_; a{(D;~ — ED;n) converges in distribution
as N —» o to a (possibly degenerate) normal variable. Hence N~ “%(A,n — man,

., Apn — myn) is asymptotically multivariate-normal. We can now analogize A;jny with
the frequencies in a multinomial experiment to construct the goodness of fit statistic
Vi = Y% (Ajn — mjn)*/mn. The mjy will be provided from extensive data (or model
assumptions) about a null-hypothetical signature, and the Ay will typically derive from a
newly collected series. When mjy and Ajn arise from the same #(Z) satisfying the
assumptions of this section, the quadratic form 4 is asymptotically for large N distributed
as Y21 Am% where the 7, are independent standard normal variables, and the non-negative
constants \; depend on #(Z). Of course many other goodness of fit statistics can be
constructed as quadratic forms in D,y — ED;, but y4% is simple and avoids variance-
covariance computations.

The empirical distribution of y% has been simulated using the IMSL Box-Mueller
Gaussian random-number generator with N = 1000, 2 = 9 for many underlying processes
{Z,}—mainly ARMA processes, but also functions of ARMA processes and some unusual
processes like those of Table 3.2, which follows. The shape of histograms for ¢# is always
vaguely like a noncentral x% with average values of Y40 (2 = 9) in the range 10-15 and
sample variance from roughly 40 to 54. For example, for the sixth, tenth, and twelfth
processes of Table 3.1 below, the respective simulated sample mean and variance pairs for
Y200 were (13.09, 52.78), (13.16, 43.25), and (13.78, 44.29). The object of our simulations has
been to obtain reliable critical values of y?, and indeed almost all our simulations with
many processes Z indicate a 5% critical value (for 2 = 9) of 27-30, and a critical value 31-
32 at level a between .01 and .025. Since the shape of empirical distributions for Y% in
simulations looks so consistently like a weighted or non-central x? we can hope also to use
a naive method of fitting to estimate probabilities. Following Bartlett (1978), we use the
first two moments in fitting a modified Chi squared distribution to y4. Let

an = E(W}), by = % Var(y&).
Then the statistic
anV/bn

has mean a%/by and variance 2a%/by. One approximates the distribution of axyi/bn by
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TABLE 3.1
An approximation of G(c) = limy_..P(Y% > ¢), ¢ = 30, 32, for k = 9, obtained from 100
observations of Y. U are iid N(0, 1)

f= ak/bn G(30) G(32)

Z,=U, 7.604 0.025 0.017
Z,=U, + 04U, 7.961 0.020 0.012
Z,=U,— 07U, 7.672 0.036 0.017
Z,=025Z_; + U, 9.144 0.025 0.015
Z,=08Z_, + U, 9.337 0.030 0.020
Z, = —0.36Z,_, + U, 6.490 0.028 0.020
= —0.72Z,, + U, 9.622 0.033 0.022
Z,=2U, + 85U._, 8.875 0.027 0.018
Z, = sin(U, + 85U,_,) 8.867 0.016 0.010
Z,= 09U, + 08U, — 62U, > — 9.3U,_3 + 04U, 8.009 0.020 0.013
Z,= 08U, — 09U,_, + 0.3U,_» + 0.1U,_3 — 0.5U,_,4 7535 - 0.040 0.025
Z,= 21U, + 38U, + 4.1U,_5 — 0.6U,_3 — 9.9U,_, 8.570 0.023 0.015
Z, = 20U, — 5U,_, + 30U,z — 8Us_s + T5U,—4 5.863 0.045 0.035

a Chi squared distribution with a%/by degrees of freedom. Using this method, in Table 3.1
we list approximations to the asymptotic tail probabilities of Y4 for various processes. For
a given process, the mean and variance of y$o0 were obtained by simulating the process
one hundred times, where for each simulation, tl/?ooo was obtained from nine classes. That
is
%000 — ZQ=1 (Aj,IOOO —7)17',1000)2 )
m,1000

The rule of thumb with 2 = 9 appears to be that the distribution of Y% is approximately
I"(4.0, 0.29); for further discussion of this and other approximations, see Kedem and Slud
(1981). Serious departures from this rough approximation occur for ARMA as well as
nonlinear processes (e.g. the eighth process in Table 3.1 and the three processes in Table
3.2) but seem to have more to do with the abruptness of changes along sample paths than
with linear or nonlinear structure per se.

A detailed exposition of the application of ¢* to discriminate ARMA models from
unspecified alternatives is given in Kedem and Slud (1981). In particular, the effect on y?
of estimating model parameters is recognized and discussed in simple examples. As another
example of the application of y? for discrimination, we consider the Bernoulli( p) point-
processes {Z;} with adjoined normal variates (cf. Grenander, 1959), defined as follows. Let
{en}n-—» be a Bernoulli sequence of Binomial (1, p) random variables, and {T:}&
= {n € Z:e, = 1}. If (M}}i-— is an iid. sequence of standard normal variables,
independent of {e,.}, put Z, = M; whenever T}, < t < Th+1.

As in previous simulations, for p = .25, .5, and .75 we obtained one hundred binary
arrays X {$. In Table 3.2 we exhibit typical higher-order crossing numbers D 1000 for one
such array for each p.

The histograms for 4o as well as the approximate gamma tail probabilities indicate 32
as an appropriate critical value for a between .01 and .025 for the three values of p. Now
we compute Y2y in order to illustrate discrimination among the parameter values p = .25,
.5, and .75. In each case the mean-values m;y (which should really be known exactly) were
estimated as sample averages.

We first compute Y3 with % fixed at 9 to check whether the first column in Table 3.2
indeed arises from the process with p = .25:

_ (125-123.66) N (95-101.7)* = (156-156.41)° + (224-222.54)°

Yiow =525 1017 156.41 " o205t 163

and the null hypothesis E(A;n) = m;x is accepted as it should be. On the other hand, if we
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TABLE 3.2
Higher order crossings for three Bernoulli(p) processes with adjoined normal variates. (Second
column for each p are sample averages of 100 D, n values.)

p =025 p = 0.50 p =075
D 1000 125  123.76 258 2484 329 3255
Do 1000 220 2254 419 4164 476 4920
D 1000 376 3818 593  592.2 590  600.2
D100 503 5127 725 7150 663 6729
Ds.1000 599  602.7 773 7702 687  700.0
Dy 1000 677  678.7 805  806.5 715 7196
D100 733 7314 821 8266 722 7319
Dy 1000 775 7765 828 8413 732 7442
(Ave(y?), Var(y?)) (10.1, 45.4) (12.7, 47.6) (13.0, 47.2)

7 45 6.8 7.2

(G(30), G(32)) (.014, .010) (.022,".015) (.023, .015)

compute Y& = Y91 (A;n — 1n)?/ritn for the Ay in the second column of Table 3.2 while
m;n correspond to p = 0.25, we find Yfpo = 146 + 34.6 + ... + 12> 32. For A;n chosen
from the third column of Table 3.2, with the same m; as before, Y200 = 341 + 20.2 + .. -
+ 8.88 > 32. Of course, discrimination among the three columns of Table 3.2 is easy, and
the behavior of our statistic Y% is agreeably decisive.
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