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OPTIMAL ROBUST DESIGNS: LINEAR REGRESSION IN R* '

By L. PESOTCHINSKY

University of California, Santa Barbara

The model E(y|x) = 6o+ Y%, 6,x; + ¢ (x) is considered, where  (x) is an
unknown contamination with | ¢/(x) | bounded by given ¢ (x). Optimal designs
are studied in terms of least squares estimation and a family of minimax
criteria. In particular, analogs of D-, A- and E-optimal designs are studied in
the general case of an arbitrary k. Some commonly used integer designs are
considered and their efficiencies with respect to optimal designs are deter-
mined. In particular, it is shown that star-point designs or regular replicas of
2* factorials are very efficient under the appropriate choice of levels of factors.

1. Introduction. Consider the regression model given by
Y(xl) = 2f=0 0]f/(xz) + &, l = 17 2) cee,n,

where the errors, {¢;}, are uncorrelated random variables with mean 0 and variance ¢ x;
€ % C R and functions f; are linearly independent. The coefficients, {6,}, are unknown
and the regression problem is to make inference about {6;} in some “optimal” way. In
particular, an optimal estimator of {6;} has to be chosen and in connection with this
estimator the design problem is to choose the experimental points, X;’s in an optimal way.

If we choose, say, the least squares method of estimation, then a variety of optimality
criteria could be considered in the associated design problem, and the most reasonable of
them depend on functionals of M (£), where M (§) is the information matrix of the design
¢, defined in full below. An impressive list of papers by Kiefer and others refer to the
problem of choice of the criterion and to the construction and study of various properties
of optimal designs. The most relevant aspect of these studies for us is the robustness of the
optimal designs under variations of criterion; see Box and Draper (1959) and Kiefer (1975).
In particular, it was shown (Galil and Kiefer, 1977a, b; Pesotchinsky, 1978) that for the
same regression equation the performance of optimal designs usually depends on choice of
experimental region rather than on choice of criterion.

Unfortunately, as was noticed by Box and Draper (1959), the strict formulation of the
regression function becomes dangerous in the situations when the “true” regression
function f(x) is only approximated by Y, 6;f;j(x), thereby introducing a bias term which
may be considerable. The corresponding model can be given now by

(1.1) Y(x) = Yo ifi(x:) + ¢(xi) + &,

where {Y(x) is an unknown contamination function from some class % on %. For more
general model formulations see Kiefer (1973), Huber (1975) or Sacks and Ylvisaker (1978).
Now, the least squares estimators, which disregard the presence of y/(x), are no longer
optimal among linear estimators for {6,}, and therefore the search for new estimators is of
special interest. In connection with the latter problem we refer to the papers by Sacks and
Ylvisaker (1978) and by Marcus and Sacks (1978). In the latter paper, one-dimensional
regression

E(y|x) =ax + b+ {(x)
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is considered for a class of functions y (x) bounded by given function @(x) : | {(x) | = @(x),
and for the problem of minimizing the weighted mean square error

supy E{(é — a)® + A%(b — b)%).

If A = 1 then the criterion above is an analogue of A-optimality, and for a convex ¢ (x)
the best linear estimator and the optimal design found in the paper do not differ too much
from the least squares estimator and corresponding design. In other cases the results were
close to those with least squares and from that point of view it is plausible to consider
systematic use of least squares, especially because the best linear estimator depends on
¢(x) and hence has to be defined separately in each problem. In the related direction,
Huber (1975) considers the design problem in which

supy {f E(f(x) — é — bx)? dx}
is to be minimized. Here f belongs to a class of functions which can be “reasonably”
approximated by a linear function ax + b, where 4, b are least squares estimates, and the
optimal design from a class of symmetric designs is found.

In connection with these and some other papers, it is natural to look at an evident
generalization of the problem. Firstly, it is interesting to consider a general regression
function or at least a k-dimensional linear regression. Secondly, in the direction of Kiefer
(1975) and others, we may introduce a family of optimality criteria and study both the
robustness under the contamination of the model and variation of criterion.

In this paper we consider k-dimensional linear regression and for the construction of
optimality criteria we use ®@,-family introduced by Kiefer (1974, 1975).

We .confine ourselves to the use of the standard least squares estimates both because
these estimates do not depend on the type of deviation from the model (i.e., on the
specification of a class of Y’s), and because in the case of small deviations, the performance
of least squares is nearly the same as of the best linear estimators, as was shown by Marcus
and Sacks (1978).

The formulation of the problem is given in Section 2 along with the required notation.
We define a family of minimax criteria which is based on the ®,-family and on a natural
analogue of the covariance matrix of least squares estimates.

In Section 3, D-, A- and E-optimal continuous minimax designs are found for a broad
class of problems (depending on the values of ¢ (1), 6% and n), and the latter two are shown
to be unique. These designs are defined by uniform measures over spheres of radii
determined by criteria; in particular, all the optimal minimax designs do not coincide if ¢
> 0. The case of k£ = 1 is the only exclusion; here we have uniqueness in all senses. The
optimal design is the same one over points —z, z found by Marcus and Sacks (1978) for
their criterion. (The choice of z depends on ¢, o?and n.)

Examples and integer designs are discussed in Section 4.

2. Preliminaries. We consider the setup given by (1.1), where fo(x;) = 1, f;(x:) = xij,
x; = (xa, + -+, Xix) € Z, and the experimental region 4 will be specified later. We assume
also that |{/(x) | < ep(x), where ¢ > 0 and the function ¢ is a convex function of | x||* =
(xf + .-+ + x%). If a design matrix is X = {x;;}i=1,n,j=0,x Where x;0 = 1, then least squares
estimates (L.S.E.) of 8’ = (6o, 6., - - - , 8) for nonsingular information matrix M = X'X are
b=M'X'Y
and the covariance matrix of L.S.E. is D = ¢2M ™. If contamination y (x) is present, then
we define the mean squared error (M.S.E.) matrix.
(2.1) D) =E@-00-0)=cM"+M WM,

where ' = (X721 $(X:), Ne1 $(X:)%Xi, + + + , Ne1 ¥(X:)xiz) and M Yy’ M ' is the bias term.
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Introducing the concept of “continuous design” ¢, which is an arbitrary probability
measure on Z (Federov, 1972; Kiefer, 1974), we can consider the information matrix M (§)
“normalized to one observation,” M = nM (£); and, normalized in the same manner, the
vector ¥ (§¢) with the components

1
E:(y(x)} = ~ YLy, E{yx)x} = % Yy )xi, j=1,2, .-,k

so that ¥’ = n(E:{y(x)}, E:{¢y(X)x1}, +++, E{¥(X)x}) = ny’(£), where E; denotes
expectation over % with £ (In our original setting we could define ¢ by £(x) = »(x)/n,
where »(x) is the number of x;’s which equal x. Such a ¢ is usually called “integer design.”)
Then we can write instead of (2.1)

2
(2.1) D(&¥) =gn-M‘1($) + MUY (HMT(E)

and the matrix D(¢{, §) can serve as a natural analogue-of the covariance matrix
(6%/n) M71(£) in the noncontaminated case.

Of course, we can assign weights to both “variance” and “bias” terms in D (¢, ¥) in
accordance with our attitude towards the model and need of safeguarding against danger-
ous deviations, but it follows from the results below that this can be done simply by
appropriate choice of ¢ in | {(x) | < ep(x).

The family of criteria considered is produced by optimality functionals ®@, (£, ) derived
from the M.S.E. matrix D (¢, ¢), which is nonsingular if M(£) is nonsingular. If A¢(£, ¢) <
Mg ¥) = . = M€, ¥) denote the eigenvalues of D (£, ¥), then the functionals @, (£, ) are
defined as follows:

k+1 E+1
Do (4, ¥) = limyo+ By (£, ¥) = {det D(&, $)}/**,
@w(g’ ‘P) = linlp—mo (I)p(ﬁ, \I/) = maX()SjSk{Aj(g, \P)} = Amax{D(gy ‘P)}'

@y, @, and P, are the familiar D-, A- and E-optimality criteria. Since the contamination
Y(x) is unknown, it is natural to apply a minimax approach and to define a ®,-optimal
design £, (p) as one that minimizes

1/p 1/p
mp(§,¢)=[ ! tr{DP<s,¢>}] ={——1—z,';oxf<g,¢>} , 0<p<w,

(2.2) maxy: |y |sew-« P (& ¥).

The approach to optimality criteria in this work differs from that of, say, Box and
Draper (1959) or Huber (1975): we are interested in the best (in some sense) estimates for
the coefficients {6;} rather than in the best approximation of the response surface by
functions of class { f'(x)8}. This may seem odd at first glance; indeed, if E { y|x} = f'(x)8
+ Y(x), where Y (x) is a contamination, why do we prefer better estimates 6 of 6 and not,
say, such estimates § which provide for a better fit to the response y? The following
examples show that the estimation of the coefficients is often a more important problem
than the estimation of the response function.

Consider the method of the steepest descent where we approximate a response function
y in a neighborhood of a point x, by a linear function 6, + Y%, ;x; in order to find the
directions and rates which define the next experimental region. In this case, the setting
given by (1.1) is evidently more appropriate than the one which does not include a
contamination term. At the same time the estimation of the response function does not
constitute the goal of the experiment.

A similar situation corresponds to the problem of estimating a response function and its
slope in a fixed point x,. We may consider in the neighborhood of x, a model

y(x) = y(x0) + ¥ (x0)(x — x0) + ¥ (x — x0) + &(x)

with the contamination term bounded by y” (x0) (x — x0)%/2.
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In the following we denote o2/n by p and E {x;x;} by m;;(£) = m;, with mo; = E;{x:},
so that M(§) = {mi;}; ;7. We denote E;{¢(x)x;} by 7:(§) = m and = = {m},_5;. The
notion “symmetric design” is used for any first order symmetric design; the latter is defined
as one for which m;; = 0if i # j, 0 < i, j < k, and m;; = const = m for all 1 = i < k. Obviously
we can assume that ¢ = 1, because otherwise we would denote a%/(¢’n) by p. without
altering the optimal designs.

3. Optimal (continuous) designs. In the beginning we limit our consideration to
the class = (m) of all symmetric designs ¢ with fixed E; {x?} = m; it will be shown later that
optimal minimax designs for our criteria are very often symmetric. In this case M ~'(¢) is
diagonal with mp =1and m;=m™,i=1,2, ---, k, and the structure of “bias” matrix
MO (&)Y (§) M (§) is simple. That is, if we consider the functions 1, m ™"/*x;, i =
1,k, as an orthogonal normalized basis in linear space L. spanned by the vectors 1, xi,
eoo, Xk (L2 C La2(§)), then

Ef{¢(x)} + Y. m ™% E{y(x)m ™%} = mo + X b mim 'xi = {1

is a projection of ¢ into L, and hence

@D Iell? = 3+ m™' Sk 72,
At the same time the quantity
3.2) A=md+m YL, ?

is the only positive eigenvalue of M ~"¥¥’ M ! and therefore minimization of the maximum
“bias” is closely related to the minimization over designs from = (m) of the maximum of
[| ¥z ||. The relations (3.1) and (3.2) provide for an estimate of A, with m > 1:
(E)* =N =gl + m™ Ty 72(1 — m)

=l el? = E: (¥’ (%)) = E:{9’(x)).

It is easy to notice that (3.3) gives a sharp estimate for the max,Ay, which corresponds
to Y(x) = p(x) = const. The latter condition means that || x || = const and since E;{x?} =
m we immediately have || x|| = vmk. This implies that a design which yields equalities in
(3.3) is supported by the points of sphere Sk of radius R =vVmk . However, for m <1, (3.3)
does not give a sharp upper bound on A; the corresponding result is given in the second
part of the following theorem.

THEOREM 3.1 For any £ € Z (m) and for ¢ convex in || x|?

(3.3)

(3.4) mix;max, || "2 = ¢%( /_km),
and
35) mingmaxy\, = arm™'9*(Vkm), m= a,
’ q)?( 'km), m> a,
where
4 - [} 2
E[(k - 2)] kodd,

2k — 602, _ 1)2 k-3 ¢
2 (k—-1) [(———2 )']
ar = E—2 4

2k—2

= (5]

[ k-1

The equalities are attained in (3.4) and in (3.5) for m > a; by ¥(x) = ¢(x) with such a
symmetric £ € = (m) that£{S —=}=1and in (3.5) for m < a; by y(x) = ¢(x) sgn(x;) with
£ being continuous uniform measure overS .

k even.
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Proor. First, (3.4) follows immediately from the inequalities
(Ey(0))’ =1yl = E(¥*(0)} < Ee{p°(x)}
because then max, ||y ]2 = (E¢{¢(x)})* and
E{p(x)} = (VE||x|) = ¢(Vkm)
due to the fact that ¢ is convex in || x ||>. With ¢ symmetric over sphere S /;, both upper
and lower bounds for max, ||y || coincide with p*(Vmk ).
Result (3.5) requires more elaborate treatment. Firstly we will prove (3.5) for £ =1, 2

and then sketch an inductional proof for 2 > 2.
For k = 1 we can show, using the convexity of ¢, that

Betoto) 1) = Be(lsD B o) 501 | = Bl e (o),
o ||
where £* (x) = £(x)_——E¢{|x|} . Hence
m
(36) Eu(o() | 2]} = Eel | 2] o (Ee | x]) —Eg{lxl}qo(m)

and the right-hand side in (3.6) decreases with E¢{|x|} due to the fact that ¢ is convex
and @ (0) = 0. Therefore the minimum corresponds to the maximal value of E¢{ | x| } which

is VE;{x*} = vm. Thus with ¥ (x) = ¢(x) sgn(x)
3.7) mingmax, E {((x)x} = minE, (¢ (x) | x|} = Vm ¢ (Vm)

and the lower bound is attained by the design £ supported by points +vm with equal
weights. Also, with ¢/(x) = @ (x)

(3.8) mingmax, E¢ (¢ ()} = mine B¢ (p (x)} = mingg (VE; (£}) = ¢(Vm).
At the same time
mingmaxyAy (§) < maxyAy (%)
(3.9) = max 4 {[¥ (—Vm) + $(Vm) P + m [ ¥ (Vm) — ¢ (—=Vm)]’)
¢*(Vm), m>1, Y(—Vm) =¢(¥m) = ¢(Vm)
= { m7eX(Vm), m=1, —y(-Vm)=y(Vm)=p(Vm).

From (3.7) through (3.9) we conclude that (3.5) holds for £ = 1 with a; = 1.

For k = 2, we use polar coordinates (R, «) and denote by #(a) a marginal distribution
of « associated with a design measure ¢. Without loss of generality, we assume that p.d.f.
f(a) exists for #(«) and for the beginning we assume also that £ is supported only by the
points of the circle Sg; that is £(x = (x1, %) :[| x| =v2m =R) = 1.

We define now f* (a), a “symmetric version” of f(a), by

F=1 [g;=_2 {f(f,} + a) + f(%” B “)”

and we can notice that
(3.10) Ej |sin a| = E+ | cos a| = V2 {Ey|sina| + Ef|cos a|}.

For any 6, the functions 1, V2 sin(a — 0), N cos(a — @) form a basis in L., and therefore
for a function y» = ¢ (R)R sgn(sin(a — §)) we have

l¥sll?, = 2{Es|sin(a — 8) | }’*(R)R®.



516 L. PESOTCHINSKY

Also, using basis 1, v2 sin a, V2 cos «, We may write

I ¥sllZ, = 2[{E/- (sin a)¢s}* + {Ef-(cos a)yi)?]
so that
max[{E/-(sin a)¢}* + {Ef-(cos a)¥}?]
= maxy[ (Ey-(sin a)yy)” + (Ef+(cos a)¥s)*] = maxy(E;+ | sina — 0)| )’p*(R) R
Below we establish a lower bound on
maxgEy | sin(a — 8)|.
Due to the construction of f*, we can write f* (a) as a Fourier series

1 1

(3.11) (@) ==+ - %5 dapcos(2pa),
T kg

where

d. =7—le cos(2pa)f* (a) da.

We define function G (@) by
7+6 7
(3.12) G@) = f sin(a — 8)f* (a) da = —;-j |sin(a — 8) | f*(a) da.
(] —x

Now we use (3.11) and (3.12) to derive that

60 =2 -2 25 0 2L,
= % Yi-1 dzpcos(2p 8) + Y, db%@

=2f*(0)—%—{G(0)—7—17}.

It follows from (3.13) that
G”(0) + G(0) = 2f*(6)

and therefore

fG"(G)d0+f G(0)d0=G’(ﬂ)—G’(O)+f G@)do=1
0 o

0

so that [§ G(8) = 1. This implies maxo=¢=,G (4) 2% and

(3.14) maxsEs {|sin(a — 0) |} = %
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It is clear that the equality in (3.14) holds only for /* (a) uniform on a circle. Thus for
a uniform &, on a circle of radius R =v2m

mingmax,m; = m; (&) =§tp(\/§_n;) vom

with, say, the “least favorable function” ¥(x) = ¢ (R) sgn(sin a). Since the projection of a
Y onto the linear space spanned by sin « and cos « can be written as

asin a + b cos a = Va® + b’sin (@ + w),
we can easily see that

. 8
(3.15) mingmax, (7% + 73) = i o%(V2m)m

with the equality attained by £ uniform on Sg. The same also holds for a design supported
not only by points of Sg. To show that we use the convexity of ¢ (R) in R? and write that

Eq{R|sina|p(R)} =E[E{|sina| x|l =R}R<p(R)]

== ER¢(R>>—¢(J“)J“ —fqo(x/*)f

which establishes the lower bound on #? + 7} for an arbitrary symmetric f. The equality
above holds only for R = vom and £ uniform on Sg.

To accomplish the proof of (3.5) for 2 = 2, we have to establish the bounds on A, = 7}
+ m (73 + 7d).
It is clear that

8«p<J_)}

(3.16) max,\, = max{max,7j, max{m~(z} + 73)}} = max{ 2(v2m),

We can also show that the equality in (3.16) is attained by a uniform on S ;- design.
We omit the proofs of the following two lemmas. The first of them uses standard variation
arguments, and the second is more or less a corollary of the first.

LEMMA 3.1. Let £ be a uniform measure on a circle of radius v2m and let us fix mo
= Eyp = EY and denote 7 (1 — w0/ (v2m)) by B. Then

maxy.gy—n{ |m|} = 77" 2sm( )q)(«/_)«/_

The maximum in the above equality is yielded by a function

—sgn B for ‘”_'BSaSW_’-'B,
¢<a>={ 2 2

sgn B otherwise.

LEmMMA 3.2. Under the conditions of Lemma 3.1

2
maxy (7§ + m™%x}) = max,gq)2(\/2_m) {(1 - é )2 8sm—(,8/2)}

wm

¢*(V2m), if m=8/7’
¢2(V2m), if m> 8/



518 L. PESOTCHINSKY

Thus the proof of (3.5) for £ = 2 is accomplished and a; = 8/7°.
For k& > 2 the proof can be carried out by induction. In k-dimensional polar coordinates
we can write that

X, = Rsinag—;, xr—1 = R cos ap—1sin ag—2, +-+, X1 = R cosar—1C08ap—z -+ COSay,

where —7/2 = a; = 7/2for i = 2, k — 1 and —7 < a; < 7; the uniform density on a sphere
in R* is proportional to

cos*2ay_1c08" Pap_s -+ - COS az.

Let us assume as before without loss of generality that a design ¢ is supported only by
the points of sphere Sg, R = vkm, and that the density f. of &« = (a1, -+, az-1) is
symmetric in the same sense as f* (a) in (3.11). Then we can write

fila) = fP(er) -+« fE D (a-1) .
and from symmetry of a design ¢ € = (m)
(3.17) E¢(x}) = E¢(x}) = R°E, (sin’a—,) = R’%k™", i=1,2, ...,k
Since R is fixed and fis symmetric, we have that in £ — 1 dimensions
maxy By (X)xe-1 = @(R)E¢ (| x2-1|) = ¢ (R)RE,_,(|sin az—2]).

Due to the induction hypothesis for the diménsion k-1
/2

(3.18) Efk—l( | sin ap—2 | ) = J’ | sin ap—2 l COSk—aotk_z
—n/2

doy_2
c(k—3)’

where

/2
c(k—3) = f cos*3a da.

—m/2
We can use this now to find
max, EYy(X)x;, i=1,2, ...,k

Indeed, since the design is symmetric, we may consider only one value for i. If we take
i =k — 1, we have (using symmetry of f) that

max,Ey(X)xz-1 = ¢ (R)R maxg,Ey, (| sin az—2cos az-1|)
= @(R)R maxs;, {Efa, (| cos ar1|)Ey_,(]|sin ar—2|)}.

Taking into account (3.18), we need to find maxEyq,_ )(|cos az-1|). It remains to show
that the lower bound for this maximum is yielded by f(az—1) = cos*2az—1/c(k — 2) in
order to have the proof almost completed. To do this, we reformulate the problem,
rewriting (3.17),

to minimize [7/%; cos a f(a) da under the conditions
/2 k _ 1 /2
(3.19) f cos’a f(a) da = P f(a) =0 and fla) da = 1.

—m/2 —m/2

Omitting the justification, we may consider only densities of the form
fla) = (T %o ejcos”a)’.

Using notation [™2, cos™a d a = c(m), we reformulate (3.19) as
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e Jjtm+2
to minimize Ym0 €j€mC —

(3.20)

. - +m+ 4 k-1 - i+ m
given Y Fm—o ejemc(j 3 ) == 3 Fm=0 €j€mC <]_2__) =1

The latter problem can be solved with the help of a modification of the Kuhn-Tucker
theorem (Pshenichnyi, 1971, Chapter II). The solution is

er2={c(k—2))""% and e=0 for j#k—2.
Thus under the restrictions of (3.19)

. clk—1)
mmef(COS ak—l) = -c—(—k'_—2) N

where the equality holds for f(«) = {c(k — 2)}'cos*2a, and *

f m-—1 2
) (M= 2
———m'—, m odd,

c(m) = 3

mm!

We find now that on a unit sphere mingEy, (| x;|) = 2(k — 1){c(k — 2)}~! and the equality
holds only for a uniform on a sphere f;. Next we find that

m even.

/2

2
maxyr = q)z(R)RZ{J' | sin ax—1] (cos ar—1)*? —d—kak;; }
a2 c(k—2)

= 4k(k — 1) *c(k — 2)} *m ¢*(VEm),

so that a; = 4k (k — 1)"*{c(k-— 2)} 7% and
[ E[(k - 2P

T E odd,
22-6(p, — 1)2| [——= )1
(3.21) ( ) [( 2 ) ]
%=1 E—2\.T
2k—2
=l ()]
k =D y k even.

We can see from (3.21) that a, decreases with 2 from a; = 8/n? = 8106 to a» =
limk_m ap = 2/’ﬂ = .6366.
The last part of-the proof is similar to that for the case of £ = 2.0

Theorem 3.1 enables us to find optimal symmetric minimax designs for any of the ®@,-
family criterion. We present below the results on A-, D- and E-optimality.

LEMMA 3.3. Any symmetric design & € E(m) supported only by the points of sphere Sk
of radius R = ¥mk is D-optimal in =(m) in the sense of the minimax criterion (2.2) if
@ (x) is convex in || x|

The result follows from (3.4) because

P\ 1o [ k 2
det D(& ¢) = - p+ﬂ§+;2i=1ﬂ'1 = ™ (o + [y |-
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Let mo denote a value m such that
(ma'p)*{p + ¢*(Vmok)} = minmso(m™p)* {p + ¢*(Vmk)},

and let R, denote the value of Vimok for mo < +. Also let B denote a set of support of a
first order symmetric design over sphere Sr. E.g., Br is any set of points from Sg such that
for some measure £ over B, E¢(x?) = k'R? and E;(x;x;) = 0 for all { 5 j. It is clear now
that if an experimental region % contains a set Bg,, then the symmetric D-optimal design
over % is one supported by Bg,. The following theorem presents the result on the overall
D-optimality of such a design.

THEOREM 3.2. Consider the setup defined in Section 2 with ¢ (x) convex in || x ||>. Then

(i) if mo < +o and there exists such a set Br, which is contained in region %, then the
symmetric D-optimal design from E(mo) supported byBr, is D-optimal in the class = of
all designs over %; .

(ii) if & is compact and symmetric (namely, invariant under the permutations and
changes of signs of the coordinates) and d; = max.ey || x| = R < Ro, or if me = o, then
there is at least one symmetric D,bptimal design in = (R%/k) which is D-optimal over &
in the class =,

(iii) the reverse is also true. If either & is symmetric compact or & D Bg,, then the D-
optimal designs over & are symmetric.

Proor. For an arbitrary design ¢ with nonsingular information matrix M (£), introduce
an orthogonal matrix U such that U"M(¢)U = A, where A is a diagonal matrix of
eigenvalues of M (¢) and let us denote Ux by z and E {{/(z)z;} by »; where the expectation
is taken with respect to the design measure ¢’ (z) = ¢£(U"x). It is convenient here to use the
notation x = (1, x,, - - -, xz), so that the value of | x||?is 1 + Y%, 27 and the function ¢ (x)

becomes a function of || x ||> — 1. Then, since |z | = || x||, we have ¢ (z) = ¢ (x) and
max,det D(£ ¢) = det D(, ¢)
(3.22) =det(U[pA™' + A'UTE (xp) {E (xp) }TUA']U")

= det[pA™! + A\'E (zp) {E (zp) ) 'A']
= p*(p + Yo ¥IAT) /TT}=0 A

In the same way as in (3.1), we notice that Y%, 1?A;' =| g1, ||, Where L(z) is the
linear space spanned by the orthonormal set of vectors z)Ao /% - - -, 2:A;/? (the latter are
orthonormal because EZZ™ = )\), and since L;(z) = L,, where L, is spanned by the vectors
1, x1, - - -, Xz, We can see that

| pr,@ I?= (E:(@)}* = (T ma)'?),

where m; = E;(x?). Also

(3.23) S Mo i =det M(§) < [T ma < (7 YEmy)*.
Therefore, if we denote by m the value ™' Y2, m;, then
(3.24) maxydet D (¢, ¢) = p*{p + ¢*(Vmk)}m™

and the equality in (3.24) holds if and only if \; = m;; for all i = 1, 2, . - -, &, that is, if the
design ¢ is symmetric. The right hand side of (3.24) is exactly max,det D (&, ¥), where &
is D-optimal in = (m). Therefore, if £ is nonsymmetric, it can be “improved” in the sense of
the minimax D-optimality criterion (2.2), which implies statement (3) of the theorem. At
the same time, the minimum of the function in the right-hand side of (3.24) is attained by
m = m, and this function decreases with m < m, and increases with m > mo (if mo <
+o0), which implies statements (1) and (2). 0
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Unlike the D-optimal design, A- and E-optimal symmetric designs are unique and
correspond to the uniform continuous measures on appropriate spheres. To prove that, we
have to determine

min,[max {p + ¢? (VEm), % + %(pz(\/km)}]
for the E-optimality and
min,[e + % + max({g? (Vkm), i’”—f ¢*(VEm)}]

for the A-optimality.
Let us fix the value of 2 and denote by m; that value of m which yields the minimum
of the function

(3.25) Em™ + axm 9> (Vkm),
and by m.. that value of m which yields the minimum of
(3.26) m'p + axm ¢ (VEm).
Let p be the solution of the equation
3.27) p + ¢*(VEm) = mp + aym "> (VEkm)

and let ».. = min(y«, M=) and »; = min(ax, m;). Clearly, v =l and »y < a, < 1.
The following Lemma is similar to Lemmas 3.1 and 3.2, and its proof is omitted.

LEMMA 34. Let ¢ be convex in | x||*>. Then in a class of all symmetric designs, the
E-optimal design is uniform on a sphere of radiusR.. = Vv.k and the A-optimal design
is uniform on a sphere of radiusR, = vv.k.

Theorem 3.3 below does not give a general solution, but, as we will see later, it solves
the problem in a wide range of important cases. Proof of the theorem is omitted because
of similarity to the proof of Theorem 3.2.

THEOREM 3.3. Let ¢ be convex in | x||* and let x be such an experimental region that
the sphere of radius R = vm.k (or R = Vmk) is contained in x. Then, if m; < a(m. =
), the A-optimal (E-optimal) design over x is a symmetric one (uniform on Sg).

The above theorem does not establish the overall optimality of symmetric designs.
However, the conditions m; < @ or m. =< i should be the most common ones. To show
this, we consider functions ¢(||x||) = [| X ||, @ = 2, and the A-optimality criterion (for the
E-optimality, the results are very similar). We find that

m;=Fk7! ———pk .
! ar(a — 1)

and the inequality m; < a, is equivalent to
(3.28) o<k 7'af (a—1).

The right-hand side in (3.28) increases with % and & and it is not smaller than one for
all %, a. Therefore, the symmetric designs may not be optimal in a general class only if p
is sufficiently “large.” But p = ¢°/ne® and |(x) | < ep (]| x||) with ¢(1) = 1, so “large” p’s
correspond to the contaminations of far smaller order than the random error. In this latter
case the minimization of the variance part of the MSE may be of prime interest, and this
is done by the standard least squares optimal design. In addition, p decreases with n so

that for “large” n, the optimal designs are symmetric ones.
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4. Integer designs and examples. The uniformity of the symmetric A- and E-
optimal designs found above suggests that the integer optimal symmetric designs are also
uniform on some spheres. This fact has been established for the dimension % = 2, in which
case the optimal measures for an n-trial design are given by 7 uniformly distributed points
on a circle. With the n fixed, all the results of Section 3 hold with a value a. () substituting

for a», where
( 8n-1 T 37 T
?[ 5 1—2cos;+(cos%)/<cos%)}
2 2
asz(n) =< + (cos l) /(sin z) ], n odd,
2n n

-2
8( . =m
—lsin—) , neven.
n n
“

In both cases az(n) — 8/7” as n — . It is easy to verify that the sequences a(2p + 1) and
az(2p) decrease with p and that

a2(2p) > a2(2p — 1) > a2(2p + 2) > a2 (2p + 1).
Therefore
max, az(n) = ax(4) =1

and for any n, .8106 = 8/7” < az(n) = 1. We also expect that similar results hold for any
dimension % and that values a, (n) exhibit the same cyclic pattern depending on n(mod &)
as in the case of £ = 2. However, from a practical point of view, an experiment over n
uniform points on a k-dimensional sphere is hardly feasible and in the examples below we
show that some standard designs preserve sufficient efficiency with respect to optimal
designs.

EXAMPLE 1. % = 1. In this case for m < 1 the symmetric design £, supported by points
+Vm(&a(Vm) = &, (—vVm) = %) is ®,-optimal in the sense of criterion (2.2) for all p = 0
in the class of all designs with E¢{x?} = m. If {1 (x) = p(x)sgn x, then (&, Y1) is a saddle
point for all p = 0 in a game with loss function ®, (£, ¥). (For p = 0 we could, of course,
take ¢(x) instead of y;(x).) This fact immediately follows from Theorem 3.1 because for
any design £ with E;{x?} = m the minimal eigenvalue is not smaller than 0 = Amin{ D (&,
Y1)} and the maximum over ¢ of the maximal eigenvalue is not smaller than m™'p +
m™p?( VM) = Amax {D(én, ¥1)} and we can easily show that for any  and p = 0,

M{DEm )} + M (D (m, ¥)} < 0" + (m7'p + m™'@* (Vm) P = tr {D (&n, ¥1) .

The minimum of tr{D(£., ¥1)}” is attained for all p > 0 as soon as m ™ (p + @*(vm )) is
minimal (of course, this provides also for the minimum of det D(¢,, 1)) that is, with m
= m,. If m; = 1, then the corresponding design is overall optimal for all p = 0.

As an example, we consider the case ¢(x) = x% « > 1. Then the minimum of max,
tr{D(én, ¥)}? is yielded by m; = {p/(a — 1)}** with p < a — 1, so that m; < 1.

In this case for all p the ®,-optimal design is supported by points + {p/(a — 1)} /> if
p < a — 1, which agrees with the result of Marcus and Sacks (1978) for their criterion.

ExAMPLE 2. We consider a linear model on a square x = [—1, 1]? with the contami-
nation bounded by @(x) = (xf + x3) = || x||%. Let us fix n and assume for simplicity that
o = ¢ (that is, contamination is comparable with the experimental error) so that p = 1/n.
We find then using notation of Section 3 that

Me = (2Vnaz(n))™', mi = (V2nax(n))™?, my = o,
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TABLE 1
Efficiencies of minimax optimal designs. Linear regression, k = 2, second order contamination
n=4 “large” n*
q 0 1 P 91 o 1 o

P P

0 1.000 492 343 0 1.000 0(1/nvn)  0(1/nVn)

1 .883 1.000 943 1 .893 1.000 943

© .802 947 1.000 © .820 943 1.000

* Here eg,, is defined as lim, . e,,,(n).

Since 8/7% < ay(n) < 1, we can notice that m; < azx(n) for all n and that m. < y«. The latter
value does not have to be found; we verify that p + 4m2 < (p + 4ax(n)m2)mz'. Therefore
A- and E-optimal designs are uniform distributions of 7 points over spheres of, respectively,
radii R, = (2/nax(n))"* and R, = (nax(n))~"/* and both spheres are contained in x. It
follows now from Theorems 3.2 and 3.3 that these designs are A- and E-optimal over x and
that the D-optimal design for n = 4¢, ¢ = 1, 2, ..., is also unique and supported by the
vertices of the square. However, for n # 4, the structure of the D-optimal design is not
clear. ,

Below we compare the results for n = 4, when a3(4) = 1, p=Ym =1/ 2v2 ) me=Y%
and (for the D-optimal design) 7o = v2 , with the results for a “large n,” so that p = 1/n,
ax(n) = 8/7% my = w/4vVn , me = 7/4v2n and 1o = V2 .

We determine the efficiency e, of a ®,-optimal design with respect to ®,-optimal one
as the ratio

e = max@y(, ¢)
7 maxy®@, (&, )

and present the results in Table 1.

From Table 1 we can easily see that A- and E-optimal designs are nearly robust with
respect to changes of criterion, unlike D-optimal design with the efficiencies rapidly
diminishing. The same kind of statement would also hold if ¢ 5 €, but changes in ¢ would
qualitatively change the situation, e.g., if ¢ is of a third order, then all m’s,i =0, 1, o, are
of the same order n'/® and the limits of e40(q = 1, ©) are bounded away from zero.

ExampPLE 3. We compare below the performance of some common types of integer
designs with the continuous optimal ones for % > 2.

We consider symmetric star-point designs over 2% star points (with 2 — 1 zero
coordinates) on a sphere and regular replicas of 2* factorial designs. From the condition
Ex? = m we obtain that in the first case the only nonzero coordinate is+ Vmk , and in the
second case the levels of factors are +vm . It is easy to show that in both cases

_ [m T ¥(VEm), m < 1
max,Ay = {qu(Jan), m=1,

so that at least for small values of p, for which the optimal designs are symmetric,
A-optimal design corresponds to r; which minimizes

+@+¢2(Vkm)
Pt

and E-optimal design corresponds to 1., which minimizes

p/m + @*(Vkm)/m.
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The respective values of m;, i = 1, 0, and m for continuous designs can be obtained from
(3.24), (3.25).

Suppose that contamination is of order ¢ Then, with ¢(x) = || x|/, we obtain for the
integer and E-optimal continuous designs, repsectively,

4.1) Mo =k o/t — 1)}, and m.=k {p/ar(t — 1)}

This enables us to derive that efficiency of integer designs with respect to the optimal
continuous one is equal to (@)’ = (mingaz)"? = (2/m)"* = .7979. The result shows that
star-point designs and regular replicas of factorial designs are very efficient with respect to
E-optimal designs, provided the levels of the factors correspond to the optimal value 7i...
The same is true also for A-optimal designs.

ExXAMPLE 4. We are interested now in construction of integer designs for the experi-
mental regions which are either non-spherical or do not satisfy the condition of Theorem
3.3. E. g., suppose that x is a cube, x = [—b, b]* and we search for a design with high E-
efficiency. Assume also that 7., > b?, with 1., as in Example 3, so that the cube is contained
in a sphere S of radius B = Vri.k . Consider now a sphere Sk of radius bv% . It is easy
to see that if 4> < u. then the E-optimal for this sphere design is uniform one over Sz and
maximal eigenvalue is 5% + axb ¢?(vk ). This value is to be compared with 5% +
b‘z(pz(b\/k_ ), which corresponds to a regular replica of 2* factorial with levels +b. The
efficiency ratio e is now

p+ag’®VR) _ | ¢*6VE)(1 - )
o+ @*(bVk) o+ @*(bVEk)
and for @(x) = || x||* we obtain from (4.1)
\ (VR ) < (Vifiak)' = p/(t — 1),

sothat‘
p(t - 1)_1(1 - ak) 1—a 1- 2/77
=1- ——=1- >1-—2",
P+ (-1
For t = 2 we have
1-2
e=1- 2/”_.8183

which demonstrates the lower bound on the efficiency of our integer design with respect
to the E-optimal one. The same result is also true for the A-efficiency, and the case of
D-criterion is covered by Theorem 3.1.
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