The Annals of Statistics
1982, Vol. 10, No. 2, 485-501

APPLICATIONS OF ANOVA TYPE DECOMPOSITIONS FOR
COMPARISONS OF CONDITIONAL VARIANCE STATISTICS
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Variance and bias comparisons are set forth for a sequence of nonlinear
statistics based on independent random variables including jackknife and U-
statistics of various orders. The analysis relies heavily on an orthogonal
decomposition first introduced by Hoeffding in 1948. This ANOVA type
decomposition is refined for purposes of discerning highg,r order convexity
properties for an array of conditional variance coefficients. There is also some
discussion of two-sample statistics.

1. Introduction, statements of results, and interpretations. Let X;, X5, ---,
X.(n = p + k) be iid. real random variables. Many natural statistics based on such
observations derive from a symmetric function ¢ (x1, xs, - - -, x,) (i.e., @ is invariant under
all permutations of its arguments) including the U-statistics of Hoeffding and the class of
Von Mises’ statistics. Assume henceforth that E[{@(Xy, - -, X;)}?] < . In the course of
studies on jackknifing and bootstrapping methodologies, Efron and Stein (1981) (for rn =
p + 1) compared the variance of ¢ (Xi, Xs, - - -, X,,) with the corresponding expected sample
jackknife variance. They discovered the pervasive inequality

(1.1) Var{p(Xi, - -+, X)) < E{T2 (9: — 9)*)},

where ¢; = @(Xi, -+, Xi1, Xiv1, +++, Xpr1) and ¢ = 1/(p + 1) 21 ¢; with equality in
force when ¢ (x3, + -+, x,) is linear.

The above inequality was the initial impetus for our present study.

The proof of Efron and Stein uses propitiously an ANOVA-type orthogonal decompo-
sition, introduced by Hoeffding (1948, 1961), in studies pertaining to central limit theorems
for U-statistics; see Serfling (1980, Chapters 5-7) for an excellent coverage of these
developments and further references, and Rubin and Vitale (1980).

This orthogonal representation is of the form

(1.2a) @(Xi, «-+, Xp) = Ho + 321 Hi(X)) + Yicj Ho(Xi, X)) + Y icjcr Ha(Xi, X, Xi) + -+,

where H, is constant and H,, H\(X;), H:(X;, X;), - -+, H(X;, Xi,, --+,X;), -+ are all
mutually orthogonal with respect to the product measure induced by (Xj, .- -, X,,). In the
nonsymmetric case when X; are independent but not necessarily identically distributed
and ¢ is not necessarily symmetric, the corresponding representation takes the form

(1.2b) @(Xy, +-+, Xp) = Ho + Y5 Hi(X) + Yicj Hij(Xi, X)) + Y icjer Hip( X, X5y Xp) + -+

so that there occur generally p one-variable functions H;(X;), p(p — 1)/2 functions
H;(X;, X;), etc. In the symmetric i.i.d. case there occur in (1.2) at most p + 1 distinct
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functions, while in the nonsymmetric case there appear up to 27 distinct functions. Hajek
(1968) applied the orthogonal decomposition for a variety of cases based on nonsymmetric
statistics ¢ (X), generally of linear rank forms and some classes of Von Mises statistics
depending on the empirical distribution functions. The central limit theorem analysis in
most cases falls back on the Hajek projection construction highlighting the one-variable
term Y%, H;(X;). When Y%, H;(X;) = 0 the limit theorems focus on the second order
terms Y.<, H;;(X;, X;) when present, and involve suitable mixtures of Chi squared random
variables.

The orthogonal decomposition (1.2) is fundamental for our purposes as well. We will
therefore review its structure (Sections 2 and 3) in a generalized format. In dealing with
random functions of the form S(Xj, ..., X,; Y3, ---, Y,) involving two separate groups of
iid. random variables (as occurs, for example, in the classical Wilcoxon two-sample
statistics) we will require direct product versions of the orthogonal decomposition.

In order to provide perspective to our later presentation, we next give a direct proof of
(1.1). Expansion of the right-hand sum in (1.1), under the condition that the X; are i.i.d.
and ¢ is symmetric, reduces the inequality (1.1) to the convexity relationship ¢, — ¢o < pc,
— PCp_1, OF Cp—1 < (1/p)co + (p — 1)/pc,, where by definition

(1.3) e =EH{E@Xy, -, X)X, -+, X)), r=0,1,2, ---,p.
Starting from the identity
Cr+1 — Cr=E([E{(P(X1, "’;XP)IXM "‘,Xr+l1} - E{(p(Xlg "';XJ)IAXM trcy Xr}]z);

and now applying Schwarz’ inequality with respect to integration on X, relying on the
symmetry and i.i.d. assumptions, yields that ¢,.«1 — ¢, = ¢, — ¢,—1 foreachr=1,2, ---, p.
Thus, {c,} forms a convex sequence and (1.1) follows.

Actually, the sequence {c,} enjoys the following higher order convexity endowment
proved in Section 2:

(1.4) Ake, = Yk, (f) (=1)**¢,0; =0, r=0,1,.-.,p— k.
Here, A'c, = c,+1 — ¢, determines the first order difference as indicated and A*c, = A(A*¢,)
computes the %Zth successive difference operation. Although ¢, is defined only for r =0, 1,
-++, p, with the aid of the ANOVA decomposition formula (see (2.16)) there exists a
natural extension defined for all integers r =0, 1, 2, - - . coincident to ¢, whenr =0, 1, 2,
- - -, p and satisfying (1.4) for all r. With this extension {c¢,}§ forms an absolutely monotone
sequence (cf. Widder, 1946, Chapter IV).

In our elaboration of the ANOVA-type orthogonal decomposition for general X;, - - -,
X, independent but not identically distributed, we consider the generalized conditional
variance functional

(1.5) C, = E{[E{p(X)|X,}T")

defined for each 9 = (1, -+, 1,), 7 = 0 or 1, where the inner expectation is taken with
respect to the components corresponding to 7; = 0 conditioned on the variables X,
corresponding to 7; = 1 and the outer expectation is evaluated over the random variables
with ; = 1.

In the symmetric case, i.e., {X;} iid., C, reduces to ¢, (for Zn; = r) as defined in (1.3).
In Section 2 we establish the basic property that C, presents an additive nonnegative set
function defined effectively over a Boolean algebra of sets. In fact (Theorem 2.1), the
representation C, = X,.<,a. holds, where the summation is over vectors € = (e, - - -, &), &
= 0 or 1 satisfying &; < m;, i =1, -- -, p and a. = 0 for every &. Thus C, is represented (up
to a constant) as a multivariate distribution function. It will be shown that the inclusion-
exclusion identity applied to this distribution encompasses the absolute monotonicity of
(1.4). These results rely decisively on the ANOVA decomposition and some direct product
extensions.
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Extending the Efron-Stein jackknife inequality, Bhargava (1980) ascertained the analog
of (1.1) corresponding to the procedure of removing groups of %, rather than one, of the
observations. We will refer to this construction as the kth-order jackknife variance
estimator for the statistic ¢(Xi, -+, X,). More specifically, consider a sample Xj, ---,
X,.(n = p + k, p fixed) of ii.d. real random variables and form

1

pH =—— 12 Xi;”')Xi ’

(L6) P e e )
p

where 2 is the set of all (p ; k) choices of p distinct indices from (1, ---, n}. Fori =
(i1, *++, Ip) € 9, we denote

Xi = (Xip M) Xi )

P ~

In this notation (1.6) becomes

_ 1
¢* = —— Vico p(X).
(17 (p + k)
b
The kth-order jackknife variance estimator based on ¢ is defined as
1
VP (@) = ————Tico [p(X) — ¢¥T%.
(1.8) ? <p+k_1>§leg[tp o]
p

The normalization <p +§ - 1) maintains the equation

E{V(’”(L)} = Var{L(X, ---, Xp)}’

for linear functions such as L(x) = g(x;, +--, %) = Y21 w(x;), so that V*(L) is an
unbiased estimator in this case.
Bhargava (1980) proved

(1.9) Var{p (X3, +++, X,)} = E{V®(p)}.

In this context, we will establish the finer relationship described in the following theorem.

THEOREM A. Let Xy, --+, X,, n = p + k, be iid. random variables and ¢(x1, - - -, xp)
a real symmetric function of p variables. Let V*)(¢p) be the kth-order jackknife variance
estimator defined in (1.8). V® (@) is unbiased for a linear projection statistic of the form
o(x) =7 wx,). Let

(1.10) b®(p) = E{V®(p)} — Var{p(Xy, --+, X;)}

be the bias of the kth-order jackknife variance estimator of ¢. There exists a positive
continuous decreasing function g(£) defined for ¢ = 0 such that

(].].].) b(k}((p) = J e_k‘gg(ﬁ) d‘f, k= 1, 2’ 3’ crc
0

Thus, the bias of the kth-order jackknife variance estimate of ¢ is a completely monotone
sequence in k. In particular, E {V*)(p)} is decreasing convexly at an algebraic rate to
Var ¢ (Xi, .-+, X,) as k increases to .

It is worth emphasizing the fact that the bias sequence %’ is decreasing, convex, with
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negative third order divided differences, etc.; in fact, they form a moment sequence such
that

1 1
¥ (p) = f u*g (- log u) @. = j u*h(u) du,
0 u o

where A (u) is positive and integrable. Moreover, 5*’(p) can be embedded as part of a
continuous completely monotone function 8 (¢) = [§ e~*g(£) d£. On the other hand, the
conditional variance sequence {c;} of (1.3) is increasing convex, with positive third order
difference; in fact, generating an absolutely monotone sequence which cannot, in general,
be embedded as part of an absolutely monotone function. The intrinsic regularity properties
of {b*(p)} contrast with those of {cx} reflecting the differences between completely
monotone sequences and absolutely monotone sequences; consult Widder (1946) for more
discussion of this topic.

Theorem A applies when X; are ii.d. vector valued, such that ¢(x;, :--, X,) is a
symmetric function of p vector-variables. For example, X;, i =1, - « », p can be independent
bivariate observations and p(Xj, ---, X,) can be taken to be the correlation coefficient
based on the p pairs.

The orderings on b*’(¢p) of Theorem A involves a single function of p arguments, while
the sample size {X;, ---, X, 4} increases as k increases.

We consider next successive jackknife variance estimates for a sequence of statistics
based on the symmetric functions ¢,(x,), @2(x1, X2), +++, @p(x1, X2, ++-, x,) defined as
follows:

‘pr(xly M) xr) = E{(pp(xh ey Xry Xr+1, ct Xp}},

(1.12)
r=1,2""’p—1) Pp = @,

where the expectation is taken with respect to (X,+1, - -+, X,). Clearly @, (x1, -+, x,) =
E{@r+1(x1, + -+, %, X,41)}. In this setting, ¢, performs like a marginal function induced by
Pr+1.

In the following variance comparisons, the total sample size n = % + r is held constant
so that k& varies along with r. The expected kth-order jackknife variance estimator for the
rth statistic ¢, is (cf. (1.8))

V(k)(q)r) = Zie@r {‘pr(xl) - tﬁr}z, r=1,.. 2y 2 k=n-— r,

(1.13)

where

_ 1
Pr=—-— Zie% - (X)),

n
r
and 2 consists of all r-tuples of indices of the formi= (i1, ---, i), 1<i, < ... <i.<n.
The elementary ¢th degree symmetric function of p variables

@p(X1, =+, Xp) = Sy (X1, + -+, %) = Vi=in<...<ivmp ([[0=1 %;)

under the operation (1.12) passes into @.(x1, -+ -, %) = S;(x1, - -+, %) provided EX; = 0.
When EX; = a; @p(x1, ++ -, Xp) = S; (%1, + -+, Xp) entails @p1(x1, +++, Xp—1) = S (X1, +++,
Xp-1) + aSea(x1, <+ o, Xp-1).

The following theorem provides comparisons between the kth-order expected jackknife
variance estimators for the succession of statistics (1.12) with fixed sample size.
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THEOREM B. Let Xi, - -+, X, be a sample of ii.d. random variables and consider the
sequence of symmetric functions ¢, (x1, -+ -, x,), defined in (1.12). Define the bias of the
kth-order jackknife variance estimate based on ¢: to be

(1.14) B® = E{V®(¢,)} — Var{e, (X1, -+, X})}, r=1,---,pk=n—r.
Then
(1.15) B®=B*", r=1,...,p— 1

In heuristic terms, the above inequality asserts that the jackknife bias grows as more of
the variables of the proposed statistics “interact.” .

It is important to emphasize that the variance inequalities of (1.15) refer to r and &k =
n — r varying involving a constant sample size n = r + k, whereas in the comparisons of
Theorem A, p is held fixed and the order of jackknifing % increases together with the
sample size n = p + k.

Consider next a two-sample statistic ¢ (x1, « -« +, Xp; ¥1, * -+, ¥¢) invariant with respect to
permutations of the x’s and y’s separately Let Xy, -+, X,and Y1, +++ , Yn,n>p,m>q
be two independent samples, each consisting of i.i.d. random varlables We construct the
jackknife estimate based on ¢ (x; y) of order n — p in the x’s and m — g in the y’s analogous
to (1.8) and inquire as to the validity of Theorem A in this two-sample context. Perhaps
surprising is that the universal inequality parallel to (1.9) does rot Hold. It will be shown
that the analog of inequality (1.9) carries over to the two-sample case only under the
testriction p/n = g/m, i.e., when the proportion of the number of the x and y variables in
the function @ to the corresponding sample sizes coincide. For the case p/n = g/m, we

prescribe
-1
p n\fm
K=K y s Tty = 1-=
wanm={(1-2)C)())
and determine

(1.16) V((p) = ,I»(Ei1<“'<ip»il<---<fq{‘P(Xiv oo, Xip; Yj,, ey qu) - ‘5}2,
where

_ 1
P = Dy <ipir<-o<ig PXKiy o0 0, Xipy Vs o0y Y;,).
n\fm :
())
Consider the class of linear symmetric functions L, (X, y) = a Y5-1 u(x:) + B X1 v(¥;).

It is elementary to check that E{V(L,z)} = Var(L,z) independently of « and 8 if and
only if p/n = q/m. '

THEOREM C. Ifp/n = q/m, then for any symmetric function @(x1, « -+, Xp; Y1, * ** Yq)
(1.17) E{V(9)} = Var{ep(X, Y)}.
For p/n # q/m with any prescribed normalizing constant there exists no inequality of

the form (1.17) valid for all two-sample statistics.

Another class of two-sample extensions of (1.1), where the sequences of random variables
{X:}¢*" and {Y;}{*! are each i.i.d, and the X’s and Y’s are mutually independent, is based
on the additive jackknife estimator for the variance of (X1, -« +, Xp; Y1, « - -, Y,) of the
form

+1 2
q ((px, y, J‘u,y) )

1 _
(1.18) JO = pE) T (@5, — Pur)’
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where
i3 = 0(X1, o, Xic1, Xivry oo 0y Xpu1s Y, ooy Yim1 Y, oo 0, Y1),

(1.19)

kot —_ 1 p+l1 — — 1 q+1

A X @i, Pay = 751 5 915,
A two-sample additive kth-order jackknife estimator J%, involving the factors (1.8)
separately with respect to the X’s and Y’s averaged over the variables of the other set can
be formed paraphrasing (1.18).

THEOREM C’. Let ¢(x, y), {X:}¥*? and {Y;}%*? be as in Theorem C, but with no
restrictions on k, p, and q. Then the two-sample jackknife estimator J¥, satisfies

(1.20) Var{p(Xi, «++, Xp; Y1, +++, Y)} = E{J% ).

(1) (]
y oo X ))

Theorems C and C’ can be extended to functions of multiple samples ¢ (x
where x’ has p; components with corresponding sample size n;, j =1, - - -, A.

The representation (1.11) of Theorem A can be extended to the multiple sample case
when p; = ... =p, and n; = - - . = n,. In this case, a representation of the bias analogous
to (1.11) holds with 2 = n; — p; and an appropriate function g.

In Section 4 we describe the ANOVA decomposition in the two-sample case, and some

corresponding results for conditional variance teims. For example, consider
Crs = E{[E{(p(Xh c Xp, Yly ct Yq) |le c Xry Yly MY K}]Z}

The approach taken in the one-sample case leads here to a variety of inequalities. We
feature the following multidimensional convexity-type inequality ¢,+1,s+1 + Crs = Crse1 +

cr+1,s-
The U-statistics of Hoeffding are constructed as symmetrized expressions of the form

(1.21) Q(x1, 0, Xn) = (g) i (%, ooy ),

where ¢ is a symmetric real-valued function of g variables, and the sum extends over all g-
tuples, i = (i1, - -+, i), 1 = i1 < .-+ < iy < n. In the course of establishing asymptotic limit
theorems for the statistics

Zn=(P(X1,"’an), n=q’q+ly"')
Hoeffding (1948) achieved the ordering
(1.22) nVarZ,=(n+ 1) Var Z,.,.

His proof uses the property (assuming for convenience ¢, = 0) that ¢, /r (¢, defined in (1.3))
is decreasing as r increases which is in turn a direct consequence of the property that c-
describes a convex sequence. By exploiting more fully the higher order convexity endow-
ments in (1.4), we derive a hierarchy of variance inequalities.

THEOREM D. For ¢ as defined in (1.21) we have
(1.23) (—1)’A’{ (';) Var Z,,} =0, n>0, r>0.

where A’ is the rth difference operator defined following (1.4) applied with respect to n.

Inequality (1.22) is the special case of (1.23) with r = 1.
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It should be noted that the bulk of studies on U-statistics pertains to asymptotics (e.g.,
central limit theorems, law of the iterated logarithm) as sample size grows to infinity. The
present paper concentrates on exact variance comparisons for varying sample sizes.

We conclude this introduction by indicating the organization of the remainder of the
paper. Section 2 presents the details of the ANOVA-orthogonal decomposition in a general
setting for ¢(Xj, - - -, X,,) where X; are independent, not necessarily identically distributed,
and ¢ is a general function of p variables. The proof of (1.4) and ramifications are presented
in Section 2. Several examples are examined and interpreted in this setting (Section 3). In
Section 4, we single out the corresponding ANOVA-orthogonal decomposition for the case
of p(Xi, -+ +, Xp; Y1, + -+, Y,) where {X;} and {Y;} are separately i.i.d. Section 5 is devoted
to the proofs of Theorems A through D.

2. Generalized ANOVA-type orthogonal decomposition. For purposes of the
analysis of Theorems A through D, stated in Section 1, we redenve (1.2) in a more
convenient format. In our approach the construction of the H-component functions appear
as Fourier transforms with respect to a suitable direct-product discrete group.

Let e = (g1, - « , &,) be a p-vector with ¢ = 0 or 1. Similarly, 8 = (81, - - -, 8,) is a p-vector
having 8; = 0 or 1. We use the special symbols 1 = (1, ---, 1) and 0 = (0, ---, 0). The
ordering 8 < e signifies that 8; < &; for all i. The number of nonzero components of the
vector ¢ is denoted by |e| = Y 5-; &.

We will use the traditional inner product notation (8, &) = },%-; 8;¢:. For each & we define

(2.1) Ae) = (Ai(e), -+-, As(e)), s=]e],

to be the set of indices of unit components of €; e.g., A(0, 1, 1, 0) = (2, 3). We designate X
= (XA‘(E), LA X)\“(e})'
We adopt the convention and notation

(2.2) XKo=&+, %) Xo= {Xi when §; =0

x; when §; =1

that is, Xa. is the random variable X; when §; = 0, while Xa.. is the deterministic variable x;
for §; = 1. Then

(2.3) E{pXs)} = E{9Xs,, Xsp, -+, X5,))

is the expectation taken with respect to those components having index values 0, whereas
the remaining components take prescribed values. Specifically, if | §| = s, E{pX;)} isa
function of X\ = (x)\‘(s), o x)\“(s))

For any given & with | e| = r, we define

(2'4) He(xi\(r)) = He(x)\l(e)) M) x)\r(e}) = (_1)'5' 28:858 (_1)(8’8)E {(P(Xs)}>

where the sum extends over all § satisfying 8 < e. Obviously, Hy = E{p(Xi, -+, X,)}.

It is illuminating to exhibit some concrete cases of (2.4). Indeed, let ;) = (0, -+, 0, 1, 0,
..., 0) with a single unit value in coordinate i and zeros otherwise. Analogously we define
e =(0,---,0,1,0,--+,0,1,0, - - -, 0), the € vector with two unit components in places
i and j. From the definition (2.4), we have

(25a)  H.,(x) = E{pXi, -+, Xie1, %, Xiv1, -+, %)} — E{o(Xi, - -+, X))}
and
Heo (%, %) = E{@(X1, ++, Xict, %y Xevr, =+, Xi1, %, Kpvts o+, X))
(2.5b) — E{pX1, + s Xi1, %i, Xin1, +++, Xp)}
—E{pXy, -+, Xi-1, %, Xje1, ++, Xp))
+ E{pXy, -+, Xp)).
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We claim the following orthogonality relations.

PROPOSITION 2.1.
(2.6) E{H.X\o)H:(X)\z)} =0 provided € # €.

ProoF. Consider first e = (1, &2, €3, * + -, &) = (1, &?) where ® = (es, - - -, &,). From the
definition (2.4), we have (r = | e])

E{H.(X1, X0 *++ Zn0)} = (D! Tsces-050) (=)0 E{p(Xy, Xoo)}
2.7)

+ (=D Fszes-1,62) (—1)°(—=1)E" eI E {p(X;, Xs2)} = 0,

where the equality to zero results since the second sum terms are, respectively, negatives
of the terms of the first sum. In (2.7) we assumed A;(e) = 1 and computed the expectation
of H, with respect to X;. Clearly, the expectation of H, with respect to any of the variables
X\ 0, Xay0, *+ +» Xa 0 vanishes by the same argument.

In order to prove the orthogonality property, we may assume without loss of generality,
since € # £, that e = (1, ¢®) while € = (0, £?). Taking expectations in (2.6) with respect to
X, first, the expectation vanishes since H; is constant with respect to X; and (2.7) shows
that the expectation of H, with respect to X; vanishes.

Now completing the expectations with respect to the remaining variables yields

E{H.(X\o)H:Xa)} = 0.

We next validate the representation formula (1.2) in its general setting, that is, when ¢
is not necessarily symmetric and the X; are independent but not necessarily identically
distributed.

ProrosITION 2.2. Let X1, ---, X, be independent random variables and let p(x) =
@(x1, + -+, X,) be a function satisfying E{p*(X)} <. Then the following representation
holds

(2.8) X1, ++ oy %) =Y Ho(r9) = T (1)1 Tpee (-1) *E{p(X5)).

Proor. Take 8, for definiteness, to be 8 = (1, .+, 1, 0, --., 0) with % initial unit
components, 2 < p and all zero components subsequently. We collect all the terms from
the double sum (2.8) involving E {(p(f(.;)} for this 8. These include all € of the form (1, 1,
coo, 1, €k41, c ooy &), Ek+1, ***, & independently 0 and 1; this € is associated with the sign
whose exponent is | &| + (8, €) = 2k + Y% 441 &. The coefficient of E{p(X;)} is then

PR AT
Z(Ek-b-]»"',fp) (_1) = 0.

Accordingly, there remains a single term in the double sum of (2.8)corresponding to 6 =
1, ---, 1), namely E{(p(f(,s)} = @(x1, + ++, Xp) and (2.8) is proved.

An important formula which plays a vital role in our later analyses involves the following
array of conditional variance coefficients.

DEFINITION. For any prescribed 9 = (1, « -+, mp), ;: =0 or 1,
(2.9) C, = E{[E{e(X) | Xam}]1%,

where the inner expectation applies to the variables of indices where 7; = 0 and the second
expectation extends over the conditional variables corresponding to the indices where 7;
=1.

For example, in the case n = (1, ---, 1, 0, . .., 0) with % initial unit values followed by
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zeros, we have

2
Cn= f {J‘P(xl, ceey Xiy Xkt1, 0y Xp) AF 1 (Kpar) oo dF}'(xP)}

(2.10)
dF (x1) -+« dF(xp).

THEOREM 2.1. For any %, we have under the conditions of Proposition 2.2 that
(2.11) C,=Y.<, a. where a. = E[{H X\v))?]

The above sum runs over all € satisfying e < 1).

Proor. To ease the exposition of the proof we take n = (1, ---, 1, 0, -, 0) with
an initial segment of % ones. Now substitute for ¢(X) its orthogonal representation (2.8)
@(x1, +++, %) = Y H.(2a»), and consider the expectation with respect to Xz+1, « -+, Xp:

(212) E{(P(i,,)} = E{(P(xl’ ey Xky Xk+1y M) XP)}

If &; = 1 for some i = k& + 1, then the variable X; will appear in H, and in this case, by (2.7),
E{H,} vanishes. Accordingly, the expectation in (2.12) reduces to

(213)  E{pX,)} = (x1, +++, x) = E{p(x1, + -+, n, Xew1, ++, Xp)} = Y=y H. ®n)-

Consider now C, = E[{¢(X1, X3, - -+, X1)}?]. Using the orthogonality relationship con-
firmed in Proposition 2.1 leads to the formula (2.11) for the specified 9. An analogous
argument applies to any 5. The proof of Theorem 2.1 is complete.

The equation (2.13) can be construed as the inverse Fourier transform of (2.4).

The following corollary specializes (2.11) to the symmetric case, i.e., for @(x1, -« -, xp)
symmetric and {X;} iid. In this case, each H.(X\¢)), |€| = r, reduces to a common
symmetric function of r variables which we write as H,(x))). Moreover, because the X;
are i.i.d.,

(2.14) E[{H,(X\e)}’] = ar
independent of &, provided |e| = r. If | 5| = ¢, the number of those & obeying & < 5, with

|e|=ris
COROLLARY 2.1. For ¢(x1, -+, x,) symmetric and {X;} ii.d., we have for |q| = ¢,
(215) C" —eT 25;0 <1t'> @, t= 0’ ]" oD

where c; is defined in (1.3).

With the aid of this formula, there exists a natural extension of ¢;, t =0, 1, .-+, p
defined for all integers, viz.,

(216) Ct = Zf=0 (lt/) a, t= 0) 1’ 2’ e
where (5) =0forv>t.

The relation in (2.15) can be inverted to the expression a, = Y% (—1)“"* (;) ci; see

Hoeffding (1948, Lemma 5.1).

By (2.11) we can view C, as the distribution function P(Y < u) where the random vector
Y is defined by P(Y = ¢) = a.. It is convenient to introduce the lattice notation ' \/ * and
7' A 9? for the p-tuples of components with values max(n}, 17) and min(y}, #2), i =
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1, .. ., p, respectively. For intersections of events we have the equality
(2172) {(Y=93n{Y=9}n...n{Y=9*} ={Y=9'An*A ... Ap®}.

However, with respect to unions of events, the containing relation (which usually is strict)
prevails:

217b) (Y= u{Y=q9Q U .- U{Y=9"YCc{Y=9'vaiv- - v}
The inclusion-exclusion identity (Feller, 1950, Chapter 4.1) and (2.17) imply that

(2.18) Cﬂ’V"'\/'l" - Zi C,,‘ + Zi<j C,,l/\,,/ — e+ (_l)kC,,’/\.../\q" =0.

Other set theoretic relationships lead to further inequalities satisfied by C,. For example,
by using the extension of the inclusion-exclusion identity to the probability that exactly m
among the % events {Y < 5} occur (Feller, 1950, Chapter 4.3) we obtain for

N = Visi<.. <in<k (')]i' A eee A aqim)’

using the notation (Aj—; 4”) = 9" A ... A 9", that

m+1
Ch— Yi<..<in Crmigm + < m ) Vi< ing Cornsstqm

- (m,:; 2) Zi.<...<imz C(/\,',"_’Fw,'”) +o.ee x (2) Cn‘/\---/\n" =0.
In the symmetric case, we apply (2.18) with the choice of #° having unit values in its
first » + & components except for a zero in the r + ith place (i = 1, ---, k), and zeros
elsewhere to obtain the inequality (1.4). This proves that ¢,, t =0, 1, 2, - - - constitutes an
absolutely monotone sequence as asserted in the introduction.
The inequalities (1.4) can also be deduced directly from formula (2.16) using elementary
manipulations with generating functions to get

2.19) A’c,=2y( ¢ )ay.

v—r

The quantity is nonnegative since a, = E[{H, (X)}?] is plainly nonnegative.
For later purposes, it is worth recording that for a U-statistic of order m,

(2.20) U(Xl, XZ, ceey Xn) = 2i1<...<i,,. ‘P(AXip Xip M) le)

based on n random variables X;, X;, -« -, X,, we have H, (X)) = O for all ¢ having |e| >
m. In this case

(2.21) ct= Y=o (It,)ay, t=0,1,2,---,n.

The terms of the ANOVA expansion can also be characterized as projections in the
context of an L*norm best approximation procedure. To this end, let ¢(x1, ---, x,) be
such that Var{g(Xi, -+, X,)} < . We pose the following problem. Determine functions
u;i*(x;) attaining

(2.22) minu.E[{(p(Xl, v, Xp) — Zi ul(xx)}z]

where the sum extends overi= (i;, -+, i), 1<i < .-+ <i.<p. It can be shown that the
minimum is attained when Y} u:*(Xi) = Yuj=r He(Xn)-

Note that the right hand side consists of the terms of the decomposition (2.8) depending
on at most r variables.

3. Some concrete examples of the ANOVA decomposition. In this section we
determine explicitly the components of the ANOVA orthogonal decomposition for several
classes of functions.
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ExampLE 1. Elementary symmetric polynomials. The elementary symmetric poly-
nomial of degree r has the form

(3.1a) (P(x) = Pp(x1, +++, %) = lei|<<u<z}sn (H:=1 xi,,)-
We deal first with
(3.1b) @(x) = Pp(x) = [T’ x:.

Let X;, X;, -+, X, be independent random variables with E{X;} = w;, and Var X; = o?.
Take e = (1, ---, 1,0, --., 0) with % initial unit components. Then the span of § < ¢
consists of all vectors such as (81, 82, -+, 8,0, .-+, 0) having §; =0 or 1.

Abiding by the convention (2.2), we obtain for an admissible &,

. 8,
-~ _ X\’
E{p(Xs)} = [TF1 c2ui™%) TTrobsr po = [[%=1 o [[51 <;) .
Therefore, in the case at hand, by the definition (2.4), we have fore = (1, ---, 1,0, ---,0)
with |e| = &,

8,
Hf(x)‘(‘)) = (_l)k H;'l=1 Moy {Z(&l,n-,&k) (_1)|5| H§=l (“%) }

)

T

= (=1 T o {Hf’=1 (1 - I%)} =TTkt o [T%=1 (20 — ).

Generally,
(3.2) H. (X)) = [T72% e [T (one — pae)s

for the notation, see (2.1), and note that A,(1 — ) traverses the set of zero indices in ¢.
In particular, we record

(3.3a) E[{H(X») )1 ==Y pfa-o [Tih o0,
where o7} is the variance of X;. When the X; are i.i.d., then for |e| = r,
(3.3b) E[{H (X, -+, X)Y¥]1=p*""6¥, r=0,1,:--,n.

We deal next with the rth (r < n) elementary symmetric function P.(x), see (3.1). To
use the result of the calculation (3.2), we introduce the extra variables Z,., - - -, Z, such
that

(3.4) XX X,=X-X5 --- X Zpi1 oo Zp

as the special case of the nth degree polynomial P,(x) where X;, i = 1, 2, ... r are
distributed following F;(x) while Z;, j = r + 1, ..., n are degenerate random variables
concentrating at 1.

Consider any ¢ = (e, ---, €). When ¢ = 1 for some j > r, we obtain
Vi< (—1)®? E{P,(X;5)} = 0 because Z; is degenerate and then the two terms corresponding
to (81, -+, 8i-1, 0, 8j+1, +--, 8,) and (81, -+, 8j-1, 1, 8js1, +++, 8,) add to zero for any
specification of (81, -« -, 8i_1, 8j+1, *++, 8,). Thus for the function (3.4), the only possible
nonzero components in its ANOVA orthogonal representation consist of the H, for & of the
forme= (ey, +++, &, 0,0, - -+, 0). The calculation hereafter reduces to that of the Example
(3.1b) for the product function X;X; - - - X, of r factors rather than n. It follows for £ < (1,
1,...,1,0, -..,0) = ¢ the latter vector with r ones, that

H.(x\0) = [T72 myeo [T21 (a0 — r0)-
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The construction of H. is additive for sums of functions so that for P,(x), we arrive at
the formula '

(3.5) HP)Xz0) = Swnzem=r [17=4 YA (=) M4 e — pr), el =T
Moreover, we find that
(3.6) HP(x\9) =0 for |e|>r.

In the i.i.d. case with £ < r, then

H{ (21, %, -, ) = (: _ :).‘Lr—k Il (i — )

and a straightforward calculation yields
2
(3.7 ar=E[{HF Xy, -+, X2) Y] = (': B ,’:) pErRg*,

ExaMPLE 2. Sample variance. We record the familiar second order U-statistic
example of the sample variance for ready reference; e.g., see Efron and Stein (1981) and
Serfling (1980, page 173). Consider S(Xi, X, ---, X») = n' Y&, (X; — X)
X=n"Yr, X, Here

n-—1 n-—1

(3.8) H, = o, Hi(X;) = 2 (X — £)? — 0%,

Hy(Xo, X)) = = — (%1 = £)(% — ),

with ¢ = E{X}, 62 = Var X;. The coefficients a; = E{H?} are

(3.9) ao=(n 1) o’ a1=(n—4-1-)—(7“—o“), az=—470“, vt = E{(X - ¢§)Y).
n n n

4. The ANOVA-type decomposition for multi-sets of sample statistics. In
dealing with mixed functionals like the two-sample Wilcoxon statistic and others, we will
need to ascertain the associated ANOVA orthogonal representation. To this end, consider
a function of the form ¢(xi, « -, Xp; y1, « * +, ¥q) distinguishing two groups of variables. Let
€= (e, -++, &) be a p-tuple as before with each ¢, = 0 or 1 and 8 = (B, -+, B¢) an
independent g-tuple with 8; = 0 or 1. Adapting the constructions of (2.4), we define

H, 3(Xr0, Yap) = (—D)IEHE Yo e (1) 304 @B Blo(X;, T.)),

where the expectations involve conditioning on the components of X and Y, corresponding
to the unit values of 8 and «, respectively. Paraphrasing the analysis of Section 2, we
achieve the representation formula

o(x,y) = Ze,ﬁ H, s(Xz)» Yag)

such that H, g and H:% are mutually orthogonal if either e # & and/or 8 # B. For any
n=1(q, -, M) and § = (&, &, -+ -, &) paralleling (2.9), we consider the generalized
conditional variance coefficients,

Che= E[{E(p(X, Y)|XM1.), Yx(g))}?']-
The following result obtains (cf: Theorem 2.1):

THEOREM 4.1. IfX,, ---, X, and Y., -+, Y, are all independent and E{¢’X, Y)}
<0, then the quantities C, ¢ provide an additive set function defined on the direct product
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of the Boolean algebras spanned by 7 and . More explicitly, we have
(41) Cn,£ = Zesn,ﬁs& E[{HE,B(X)\(E)) Yt\(ﬁ))}z]’
the summation encompassing all € and B obeying the indicated constraints.
In the case that X; are i.i.d., and Y, separately i.i.d., X’s and Y’s independent, and ¢

symmetric under permutations of the p x’s and the g y’s separately, then C,,; depends only
on|n|,|&|. With |n| =r, | §| = s, reduces to the expression

(42) Cr,s = Zv,y (;) (:) [

with a,, = E[{H, Xy, -+, X,, Y3, -+, Y)Y ] = 0.
In particular, ¢, is absolutely monotone in each variable r and s separately. Moreover,
¢r,s determines an additive set function with respect to the pair of variables, in the manner

(4.3) Cre1,541 F Crs = Crev1 + Cr41,s  for all integer r and s.
We display these formulas for the case of the two-sample Wilcoxon statistic
(X1 - Xp; Yy - Y) =#{X: < Y,}.
Let X; follow the density f(x) and Y, that of g(y). A direct computation produces

Hoo = pq f fE{1 - G(£)} d§,
Hio(x:) = q[1 = G(x:) = f {1 - G&)} dé],
Hou(y) = pl F(y) - f {1 - G(£)} dE],

Hia(x, 5) = I(x: <)) — {1 = G(x:)} — F(y) +J fE{1 - GE) d¢},

where I is the indicator function taking the value 1 if x; < y;. Obviously, H,,s = 0 for r = 2
ors=2.

5. Proofs of Theorems A Through D. Statements of Theorems A through D are
given in Section 1.

ProoF oF THEOREM A. For easy reference, we recall the notation. Let ¢(x1, - - -, x,)
be a symmetric function of p variables and {X), - .., X} be i.i.d. random variables with n
= p + k, k > 0. The associated kth-order jackknife variance is defined in (1.8) and its
expected value is

1
p+k—-1
p
Clearly, for any i = (i, i3, « + +, ip),

(5.2) E{{o(X)T} = cp,

+k

6.1) E{(V®(p)} = p

I:Eie.@ E{pXy)*) - <p ) dijea E {tp(Xi)tP(Xs)}]-

with ¢, as defined in (1.3). Using elementary combinatorics, we obtain for each fixed i,

3 _ D k _
E{o(X) Syeo 9(X)) = ( )(p l.) .

i —_
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p+k P k
(31 ()6t
cp— .
p+k—-1 p+k-1
Ce) )
Substituting for ¢, from (2.15), relying on the orthogonal ANOVA decomposition of
@(x1, + -+, X,), we obtain for the bias

b®(@) = E{V®(¢)} — Var ¢

independent of i. Therefore,

(5.3) E{V®(g)} =

_p+k - — C Co
Tk Cp <p+k—l) p-\'-
p
22 (1))
=£2,,<p)ay+ao— ?
E =\ <p+k—1)
' P

ze(?)z(220)(," )
)

The inner final sum is a convolution which can be summed (generating functions here
facilitate the calculation) to give

p—v+k
p—v
b"”(tp)=2y(1:)ay —:—_——p+k—l + ao
)

p p (p—1)(p—2)--- (p—v+1)
T | F T + ao.
Direct verification yields that the coefficients of ap and a, vanish; indeed, the normalizations

were set such that V *(¢) is unbiased for ¢ linear.
We observe thatfor2=v=<p

(5.5) = (—%) = f e, (8) d¢,
0

where f,(£) is a convolution of » — 1 exponential densities with scale parameters p — 1,
p—2, ..-,p— v+ 1. Integration by parts reveals that

10 (P=1(p=2) - (D—v+1)
k (p+k—1(p+k—2)---(p+k—r+1)

where F,(£§) is the cumulative of £,(£). Since the a, are nonnegative (see (2.11)), it follows
that

14

“F(()ere-

(5.4)

= f e_kg{l - Fv(g)} dg’

(5.6) bP(p) = j e *g(¢) d¢,
0
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where g(§) =) 7 (1; ) a,{1 — F,(£)} for £ > 0 is plainly a decreasing positive continuous

function. The claim associated with (1.11) of Theorem A ensues immediately from the
representation (5.6). The proof of Theorem A is complete.

Proor oF THEOREM B. Recall the expression (1.14)
B® = E{V#®} — Var g,

where k£ + r = n is held fixed. Here we examine B'® as a function of r. Following (5.4),
inserting 2 = n — r, we have that

N N o) et

Consider the coefficient of a, in the difference of the biases, that is
Coeff. a, of (B%71" — B®)
_(r+l){ r+1 (r+0)r(r—=1) - (r—v+2) }

(5.7) vy Nnor=1 —r=Dn-Dn-=2 ---(n=r+1D

_(r r rr=1)(r-=-2).--(r—v+1)
vlln—-r (m-rn-1)(n-2)..-(n—v+1)
which we now prove is nonnegative for 1 < » < r < n. The nonnegativity of (5.7) reduces
to

(r+1)(r+1) r
(r+1—v)(n—r—1)_n—r
rr=1) --- (r—v+2) (r+1)? n—-v+1)
n—1(n-2) .- (n—v+l){(n—r—1)(r+l—v)_ n—r }

or
(5.8) {(nr+1)+vwr(n—r—-1)}{(n-)(n—-2) -.- (n—r+1)}
—{rr=1)(r—=2) --- (r—v+2}{r+1D¥n-r)
—(n—v+1l)(n—-r—-1)(r+1-v)}=0

We view the left hand expression in (5.8) as a polynomial inequality in the variable n
over the range n = r + 1. Substituting n — r — 1 = x or n = x + r + 1, it is manifest since
v < r that the resulting polynomial P(x) has all positive coefficients of x*, i = 2 and P(0)
= 0. Evaluating P (1), apart from a positive factor, we obtain 2(r + )2+ (r+1)(r—-2)@3»
— 1)— »(v — 1)(» — 2) which is positive for integer », 1 < v < r. It follows that P(x) is
positive for all integer x > 0, and the proof of Theorem B is complete.

We next discuss briefly an example of a class of statistics for which the inequality (1.15)
of Theorem B is reversed, in order to emphasize the dependence of these variance
comparisons on the structure of the class.

Consider the class of statistics

1 =
‘Pp(Xb "')Xp)=;)_25)=l (Xi_X)Z’ p=273 M

The sequence {y;,} is obviously not constructed as a sequence of marginal functions of the
type (1.12). Parallel to (1.14), for a sample Xj, - -+, X, we define
BY = E(VW(,)} — Vary,, 2sp<nmp+k=n

The variance orderings are now the reverse of those in Theorem B.
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PRrOPOSITION 5.1.  For the sequence y,, as displayed above
(5.9) B =B%", 2=<p=n-1.
Proor. First recall from (3.9) the calculation a; = (4/p*) o* where ¢ = Var X;, while

a, = 0 for » > 2. From the calculation preceding (5.5), and its subsequent discussion, we see
that only a, appears in the expression of B}, Specifically,

- () 2525}

B = p+1\ 40* [p+1 1___P
» 2 )+ =1\ prE=1/

Direct calculation reveals that (5.9) is equivalent to (p — 1)/p* = p/(p + 1) which is valid
for p = 2.

ProoF oF THEOREM C. Consider the function (X, y) = @(x1, +++, Xp; ¥1, - =+, ¥g). We
assume @ to be symmetric with respect to permutations of the x’s and y’s separately. Let
Xy, -, X,and Yy, - -+, Yu(n > p, m > q) be two independent samples, each consisting of
ii.d. random variables. We define the jackknife variance estimate as displayed in (1.16)

-1
where K = { (1 - —f-:—) (Z) ('3)} is a normalizing constant that guarantees unbiasedness

for all symmetric linear functions of the form a ¥ %-; u(x;) + B8 Y %1 v(y;) provided p/n =
g/m. If p/n # q/m it can be shown by direct computation that a normalization which
guarantees unbiasedness for all a, 8 does not exist. Henceforth, we restrict attention to the
case p/n=gq/m.

We now proceed to study the expected jackknife variance of V(g). Calculations
analogous to (5.3) produce

E[V(®)] = K (Z) ('Z){c ) (;)('3) Z"v/’(’?) (Z :li’)(g‘ )(73 -] ) c""}

and Var ¢(X, Y) = ¢y — coo Where c;; is defined in (4.2).

We substitute c¢; = Y, (:’ ({L a,, from (4.2) into the expression for E{V(p)} —
Var ¢(X, Y) and examine the resulting coefficients of a,,. With some circumspect
manipulations of the binomial factors, we find them to be always nonnegative provided p/
n = g/m. The details are a bit arduous but straightforward.

Proor oF THEOREM C’. We will discuss only the proof for the jackknife estimator of
order one. A direct calculation establishes the equation

E{J:(&Dy} = Var ¢(X,Y) = (p + q ~ 1)¢pg — PCp-1,4 — qCp,g-1 + Coo.

Substituting cp,q = Y., (ﬁ ) (3) a,,, the right hand side reduces to ¥, (u + v — 1)

<‘Z ) (Z) a,, + aw, which is nonnegative because a,,, = 0. The proof for the case £ > 1 is
analogous, but more tedious.

ProoF oF THEOREM D. We deal here with a U-statistic of order ¢ for ¥ a symmetric
-1
function of g variables of the form ¢(X;, X, + -+, X,,) = (g) i (X, Xi,y -0, X5
i traverses the set of all g-tuples 1 <i; < ... < i, <n. Since Xj, - - -, X,, are i.i.d., we obtain
on the basis of the ANOVA decomposition
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23"=°(i)<q—i)‘ " (3) e (n) ”

V. = Var{ep(X1, X, - -+, Xa)}

)

2
We consider next for r fixed (;L Vea=Ykoa, (q) (n) / (':) For each » > r we find,

v

v r
compared to (5.5), that { (':) = [5 e, (£) d, where f.,(£) is a positive bounded
=r

function. Moreover, for 1 <» =<, (2) / : is a polynomial in n of degree = r — 1. It

follows that A’{ (n)/(n)} =0 for 1 < » < r, while for » > r, (—1)’A’{<n)/(n)} >
r v r v

0, the difference operator taken with respect to n = q. Then, asa, = 0,1 =» =g, we have
(-1)"A" {(’:) V,,} = 0 yielding equality (—1)’A’{ (;‘) V,,} =0 only when g is a U-statistic
of order < r.
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