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ASYMPTOTIC THEORY OF TRIPLE SAMPLING FOR SEQUENTIAL
ESTIMATION OF A MEAN

By PETER HALL

Australian National University

We describe the asymptotic theory of triple sampling as it pertains to the
estimation of a mean. We obtain limit theorems for the case of the normal
distribution. Our results show that triple sampling combines the simplicity of
Stein’s double sampling technique with the efficiency of the fully sequential
Anscombe-Chow-Robbins procedure.

1. Introduction. Stein’s (1945) well known double sampling procedure has an advan-
tage over some other methods of sequential sampling in that it requires only two sampling
operations and can be used to obtain a fixed width confidence interval with a precisely
known coverage probability for a normal mean. However, the inexact procedure of
Anscombe (1953) and Chow and Robbins (1965) is more efficient than Stein’s since it uses
a significantly smaller sample size to achieve a confidence interval with very nearly the
same coverage. If a third stage is appended to Stein’s method it loses its exactness but
becomes strongly competitive with Chow and Robbins’ procedure from the point of view
of efficiency. As the name “triple sampling” implies, the technique involves only three
sampling operations. In many real situations significant savings in time and money may be
achieved by sampling in bulk, and in these circumstances a triple sampling procedure is
more attractive than Anscombe, Chow and Robbins’ “one-by-one” sampling. Our aim in
this paper is to give a rigorous account of the large sample properties of triple sampling.

Let 2 be a population with mean p and finite variance o2 both unknown. Suppose we
wish to find a two-sided confidence interval for y of width 2d and coverage probability very
nearly 1 — «, and we have available a “pilot” sample of size m. Calculate its variance o2,
and let

M = max{[(nm—lom/d)z] + 1’ m}’

where [x] denotes the integer part of x and 7.—: is the a/2 critical point of Student’s ¢
distribution with m — 1 degrees of freedom. Draw a second sample of size M — m, pool it
with the first, and construct the mean Xy of the pooled sample. Stein (1945) suggested
that we employ a confidence interval of width 2d centered on Xs. As d — 0 the coverage
probability approaches 1 — a (Anscombe, 1952), and in the case where £ is normal, the
coverage probability will not be less than 1 — a.

This procedure works very well if the pilot sample size happens to be chosen close to
the “optimal” sample size, no, which would have been used had the population been
normal with known variance o”. However, if m < n, then Stein’s method is likely to lead
to significant oversampling, with the result that if m/no — 0 as d — 0 then E(M) — no—
+ o (Cox, 1952). To overcome this difficulty we propose the following procedure, which is
considerably more robust against the possibility of m being chosen too small.

Fix c in the range 0 < ¢ < 1 and let the second sample be of size M; — m, where

M; = max{[c(n0,/d)?] + 1, m}
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1230 PETER HALL

and 7 is the a/2 critical point of the N(0, 1) distribution. Calculate the variance oﬁql for the
pooled sample of size M;, and let the third sample be of size M, — M;, where

M; = max{[(nor,/d)?] + 1, My}.

Let X, be the mean of the pooled sample of size M;. Then an approximate (1 — a)-level
confidence interval for p is (X, — d, X, + d).

Of course, the performance of the triple sampling technique depends very much on the
accuracy of this approximation. In Section 2 we shall slightly modify the procedure by
adding a small, bounded number of observations to our sample. It follows easily from the
argument given there that if we increase the third sample size to M5 — M, where

M3 = max{[(nom,/d)* + (5 + n° — ¢)/2¢c + €] + 1, M}}

for any e > 0, then the coverage probability for a normal population will be strictly greater
than 1 — « for all sufficiently small d. Since we only need a fixed increase in sample size to
achieve this inequality, our procedure is considerably more economical than Stein’s when
m is small relative to ny.

If we are prepared to accept a coverage probability of 1 — a + o(d?) as d — 0, the
expected cost in extra observations of not knowing o? is only (5> + 1)/2¢. This quantity is
less than 5 if n = 1.96 and ¢ = %.

In practice it seems a safe bet to choose ¢ = %; see Section 3. In theory, the efficiency
of our procedure can be improved if we let ¢ depend on m and increase slowly to 1 as m
— o, In the case of the normal distribution the results of the following sections remain
true if we set ¢ = 1 — Cd"'™* for positive constants C and e. The value of c appearing in the
limit results should then be replaced by 1.

In Section 2 we shall describe the asymptotic theory of triple sampling, and give the
proofs in Section 4. The theory of Anscombe, Chow and Robbins’ procedure has been
presented by Anscombe (1952), and more recently by Woodroofe (1977). The arguments
used by these authors depend on properties of stopping times for sums of independent,
nonnegative random variables, and are very different from our own. In this context we
must mention also the work of Simons (1968) and Starr and Woodroofe (1968, 1969, 1972).
The techniques we have employed are closer to those used by Cox (1952) to analyse Stein’s
double sampling procedure.

The results of a series of Monte Carlo trials are presented in Section 3. These indicate
that the difference between the expected sample size and the optimal sample size remains
fairly static as d decreases, even if m is fixed. The Monte Carlo study also shows that if m
is fixed then as d decreases the coverage probability tends at first to decrease, and then to
increase. This suggests that the value of m is relatively important for large values of d. Our
asymptotic study shows that m is unimportant for small d.

Our application of triple sampling to the construction of fixed width confidence intervals
serves to demonstrate the idea, and of course it has other applications. For example, the
results of Section 2 may be used to treat the problem of sequential point estimation, as in
Woodroofe (1971). However, it does not seem possible to give a global theory for all such
applications, like that given by Cox (1952) for double sampling.

2. Asymptotic theory. We begin with a slight reparametrization of the problem. Let
0<c<1,r=1andA = A(m), m = 1 be constants with the properties

(2.1) A(m) — oo, lim sup,_..m/A(m) < co® and A(m) = 0(m").

Since ¢ is unknown this effectively means that m must be chosen to be a smaller order of
magnitude than A(m), in which case the lim sup in (2.1) will equal zero. Assume that X;,
X,, --- are independent normal N(u, o%) variables, and define N; = [cAo2] + 1, M; =
max(Ni, m), N: = [Ad3r,] + 1 and Mz = max(Nz, M;). The pooled sample size is Ms. It is
readily proved that M./\ — 1 with probability 1, and in L'. Our next result provides a
more detailed account of the asymptotic behaviour of the moments of M,.
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THEOREM 1. If (2.1) holds then

(2.2) EM;) = Ao® + % — 2¢7" + o(1),
(2.3) Var(Ms) = 2¢"Ao” + o(A)
(24) and E|M; — EM,|* = o(\?)

as m— o,

It is very easy to prove a central limit theorem for M,. Indeed, from condition (2.1) it
follows that P(M; = [Aok,] + 1) > 1 and N;/cA — 1in probabiljty as m — o,
A result of Anscombe (1952) now implies that

Ni*(e%, — 1) -4 N(0, 2),
whence (c/NVAH(M, — A) =4 N(O, 2);
see also Bhattacharya and Mallik (1973). If we let ¢ depend on m and converge to 1
sufficiently slowly, specifically if A%(m)[1 — c(m)] — =, then

A VM, — N) =4 N(O, 2).

Suppose ¢ is unknown, and we wish to derive a confidence interval for pu of width 2d

and coverage 1 — a. Let ® and ¢ denote the standard normal distribution and density
functions, and 7 be the solution of 1 — ®(n) = a/2. Let ¢ = ¢(d ) be a sequence of constants

converging to zero, to be determined explicitly very shortly. Carry out the triple sampling
procedure above with an initial sample of size m = m(d ), and

(2.5) A=Ad) = (/d)*(1 + ¢),

obtaining a combined sample of size M. The optimal sample size is approximately Ao?,
and condition (2.1) asks that the ratio of the pilot sample size to the optimal sample size
be less than c. The interval I = (Xy, — d, Xu, + d) is an approximate (1 — a)-level
confidence interval for u (Anscombe, 1952), and we shall apply Theorem 1 to obtain a
measure of the order of this approximation.

Let ¥(x) = 2{1 — ®(x'»}, x > 0, and /= d/o. The exact coverage probability of I is
1 — a(d), where

ald) = E{¥((*M,)} = V(2EM;) + %/ *E(Mz — EM,)? " (¢*EMs) + ri(d),
where |r(d)| = C/°E | M, — EM;|® = o(d?) by Theorem 1. Also,
V(2EM;) = a + (£2EM: — )V (%) + ra(d),
where | r2(d)| = o(d? + | e|). From Theorem 1 we see that
CEM; — v° = v’s + (1 = 4/¢)d*/20” + o(d?)
and W/ E(Mz — EM,)? = v°d?/co® + o(d?),
whence a(d) = a + ¢m){(d/0)*(5 + n* — c)/2nc — en} + o(d® + |¢]).

This expansion suggests setting ¢ = (d/0)%(5 + 7° — ¢)/2n°c in (2.5). Of course o? is
unknown, and the logical alternative is to slightly modify the triple sampling procedure.
Starting with the same initial sample of size m, gather a second sample of size M; — m
where M, = max(m, [c(y/d )?6%] + 1), and a third sample of size M — M; where

(2.6) M = max(M;, [(n/d)%0%, + 5+ 7° — c)/2c] + 1).

The interval (Xu — d, Xy + d) is an approximate (1 — a)-level confidence interval for ,
and minor modifications to the argument above will show that P(| Xy — p| > d) = a +
o(d?). The expected size of the pooled sample is
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EM) = (n/d)?6®>—2c '+ (5+ 71— ¢)/2c + % + o(1)
= (n/d)** + (n* + 1)/2¢c + o(1).

This compares favourably with the expected sample size needed in the Anscombe-Chow-
Robbins sequential procedure to achieve a similar order of accuracy, (Anscombe, 1953).

EMacr) = (n/d)*6* + (n* + 1)/2 + o(1).

3. Monte Carlo trials. We conducted a series of Monte Carlo trials using a wide
range of values of th.: parameters. Varying ¢ from 0.5 to 0.8 led to no detectable change in
coverage probabilities. However, large values of ¢ (0.7 or 0.8) led to a slight increase in
average sample sizes when the optimal sample size, ny, was small to moderate (=200). This
was due to a tendency for N, to exceed n, when ¢ was large and m small. The increase with
¢ = 0.8 was generally less than 5% of the average sample size with ¢ = 0.5.

We shall report in detail on a series of trials with ¢ = 0.5. Set n = 1.96 and m = 10, and
let M, = max(10, [0.5(1.96/d)%s2] + 1) and

3.1) M = max(M;, [(1.96/d)%2 + 8.3416] + k& + 1),

where k& = 0 is an integer. Note that (5 + 5% — ¢)/2c = 8.3416, so that formulae (2.6) and
(3.1) coincide when % = 0. The confidence interval (Xar — d, Xar + d) should cover the
mean with probability about 0.95, the exact coverage probability increasing with k.
Table 1 presents the results of Monte Carlo trials using the standard normal distribution.
For each of 9 values of d in the range 0.1 to 0.4 we conducted 1,000 trials using the

TABLE 1
Results of 1000 Monte Carlo trials with ¢ = 0.5, n = 1.96, m = 10
k=0 k=3
d Ny
M M-no SM P M M-no SM P

04 24 29.3 5.3 11.0 0.950 32.3 8.3 10.9 0.964
0.3 43 46.8 3.8 16.1 0.956 49.1 6.1 16.5 0.949
0.25 61 65.2 4.2 18.8 0.949 68.5 7.5 18.9 0.948
0.225 76 84.3 83 20.4 0.953 82.5 6.5 21.6 0.959
0.2 96 100.4 44 22.4 0.930 103.4 74 23.5 0.942
0.175 125 137.2 12.2 27.5 0.948 133.4 84 27.3 0.955
0.15 171 174.9 3.9 32.8 0.936 184.2 13.2 30.7 0.970
0.125 246 252.9 6.2 39.0 0.959 252.3 6.3 38.5 0.952
0.1 384 389.2 5.2 474 0.958 393.4 94 48.3 0.958

k=5 , k=38

d ny
M M-no SMm P M M-no SMm P

04 24 34.1 10.1 11.1 0.973 37.8 13.8 11.0 0.978
0.3 43 52.0 9.0 15.8 0.958 55.1 12.1 15.9 0.963
0.25 61 70.8 9.8 18.1 0.955 73.4 124 18.8 0.962
0.225 76 88.9 12.9 20.8 0.945 88.1 12.1 21.4 0.952
0.2 96 104.6 8.6 24.1 0.951 108.5 12,5 23.3 0.953
0.175 125 142.3 17.3 27.8 0.949 137.8 12.8 27.6 0.951
0.15 171 180.6 9.6 30.4 0.954 182.5 11.5 31.7 0.954
0.125 246 256.1 10.1 38.4 0.959 258.5 12,5 38.6 0.958
0.1 384 394.9 10.9 47.3 0.954 398.7 14.7 47.7 0.954
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technique described above, and repeated these for different values of k. For each set of
1,000 values of M we computed the mean M and standard deviation sy, as well as the
proportion of times p that the confidence interval covered the origin. The results indicate
that taking 2 = 5 or 8 should lead to a confidence interval with coverage probability very
nearly equal to 0.95.

The value of n, in Table 1 equals the integer nearest to (1.96/d) It is clear that n is
close to the average sample size, M, even when the initial sample size is only one fortieth
of noy. Indeed, the difference M — n, remains fairly constant as n, increases.

4. Proofs. It clearly suffices to consider the case p = 0, and we may also suppose that
o” = 1. Indeed, to obtain the general results of Section 2 from the special case o® = 1, it is
necessary only to replace A by A¢® in (2.1)-(2.4). Thus, we may assume below that our
population is N(0, 1). We shall prove Theorem 1 as a corollary of

THEOREM 2. Under the conditions of Theorem 1,

(4.1) AE(0ir) = A — ¢ ' var(X3) + o(1),
(4.2) E(M;) = E(N;) + o(1),

(4.3) Var(M,) = Var(Nz) + o(1)
and

(4.4) Var(N;) = ¢™'A Var(X3) + o(A).

Interestingly, Theorem 2 remains true under condition (1) and the assumption that
E | X:|" < o; the normality of X; is not necessary. However, we shall not prove it in this
generality.
We first state
LeEMMA 1. For any 8 > 0 there exists £ = £(8) > 0 such that
{lom—11>8} C{|XI" (X7 — 1| >mé} U (| TV X.| > mé}

for all m.

LEMMA 2. With A = cho% — [chok] we have
CAE(03r,| X1, «++, Xm) = A + mch(om — 1)/My + (1 — A)(M: — m)/My(M; — 1)
+ {Am™2 YT X )/ (My — 1) — 1}
+ {(m—1)/(My — 1) — meA(m™ 2 37 X,)* /M, (M, — 1)}

almost surely on the set {M, = N, }.

‘

Proor. This follows after some manipulation of the relation

(M; — DE(63,| X1, +++, Xom)
(4.5)
= (M, — D1 —m/M) + (m — Von + (M — m)(TT X,)*/mM,.
Note that in view of (2.1),
(4.6) {Ni<m} C {chor, <m} C {|on — 1| > 8}

for some & > 0 and all large m.
We are now in a position to prove (4.1). We shall let r,,(8) and r.,(8) denote real
constants indexed by m and é > 0, and with the property
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(4.7) lim supm—w | 7m(8) | = r.(8) = 0 as 8§— 0.

Fix 8§ > 0. Forlarge m, {| M1 — 1 —cA|>cA8) C {(Ni<m} U {|o% — 1| > §/2}, and so in
view of (4.6) and Lemma 1,

An={loZ—1|>8} U {|Mi—1—cA|>cA\8} U {M; % N,}
(4.8)
CYXr XP=1)|>mé) U {|X X,| > mt) =B,

for some ¢ > 0. The set A,, is measurable in the o-field generated by Xj, - - -, X,», and so
from Lemma 2,

CAE(03,I(An)} = AE{IA.)E(6%, | X1, - -+, X))
< cA + meAE {(I(A,) (6% — 1)/My} + E(M7T')
+ {cA/eA(1 = 8) — 1} + {m/cA(1 — 8) — mcA/(cA(1 + 8) + 1)%)
+ meAE {(m™"? 37 X:)* I(Bn)}/(cA(1 — 8))*.

The sum of the last four terms may be made arbitrarily small by choosing 8 small and then
m large, and a reverse inequality may be obtained in a similar way. Therefore

CAE (0%, I(A,)} = cA + meAE (I(A,) (0% — 1)/My) + rin(8),

where r1,,(8) satisfies (4.7). For |05 — 1| =< § < % and large m we have
eA(ok — 1)/M, = (6% — 1){1 — (6% — 1) + R,)}
where | R, | = C{§| 0% — 1| + (cA\)"'}. Consequently
meANE {I(A,) (62 — 1)/My} = —mE(0% — 1)* + ram(8),
where
| r2m(8) | = m{E((| 0% — 1| + | 0% — 1|*)I(An)) + COE | 6% — 1|* + (cA)'E| 0% — 1|)}.

But mE(¢2% — 1) ~ Var X2,

mE{|o% — 1| I(A,)} = m(E| o2 — 1|%)VA(P(Bn))"? = 0(1),

and since {m(oZ —1), m = 1} is uniformly integrable then mE {(¢% — 1)2I(A,.)} = o(1).
Therefore r.,(8) satisfies (4.7), and combining these estimates we deduce that

AE (0%, I(A,)} = A — ¢! Var X2 + ry(8).
We shall complete the proof of (4.1) by showing that with B,, as in (4.8),
AE{0ir,1(B»)} = o(1).

From (4.5) we see that for m = 2, E(oﬁll | X1, +++, Xm) = C{1 + m™ %37 X,)?}; note that
cAo2 < M,. Therefore

AE (03,1(Bn)} = NE (I(Bn)E(0,| X1, - -, Xn)}
= AC{P(Bn) + m™ ¢+ ISP X, |

+m_2J' |37 X;|? dP} = o(1),
IZ72- 1> mE)

as required.

LEMMA 3. There exist positive constants ¢ and v, and integers p = p(m) > (1 + £&)m,
such that for all sufficiently large m,



TRIPLE SAMPLING 1235

{Aok, <choi + 1} C{|IXF (XP—1)|>mé) U (|37 X.| > mé)
U {| Zhet (X7 = 1) | > p€} U (supm, | n7" BT X | > £).
Lemma 3 follows in a fairly straightforward way from Lemma 1, noting that
Aok, < chom + 1} N {|Ni— cA| = cA8} N (X%, = 8}
C{m — DA X2 — eA(1 + 8)8) < cA(1 + 8)cA X7 X7 + cA(l + 8)(m — 1)}
C{TPMP X< eA(1 —28)) U (I XZ> me™'(1 — 58)),

provided m is large.
From Lemmas 1 and 3 we conclude that

(4.9) P(|o% — 1| > 8) + P(Ao}, < cAo% + 1) = o(m "),

Since M, = N, except possibly on the set E = {N; <m} U {Ao%, < cAon + 1}, condition
(4.2) will follow if we prove that

(4.10) J' (m + Aon, + Addr,) dP = o(1),
E
and hence if we show that
4.11) mP(N, < m) + mP(Ao¥, < chok + 1) = o(1)
(4.12) and A j 0% dP = 0o(1).
{Aok,<choh+1}

Condition (4.11) follows from (4.9) using (4.6). To prove (4.12) observe that for any event
Eand m =2,

J’ 0% dP < 2P(E) + 2m_1J' |S7 (X2 —1)| dP,
E E

and so it suffices to show that

R, = (A/m) f Y7 (X7 —1)| dP = 0(1), 1=1,2,3,
El

where Ei = {| Y7 (X7 — 1) | > mé&), E; = {| Yot (X7 — 1)| > pé} and
E;= {30 X.| > mé} U (supssr | 07 X1 X, | > £).

This is easily accomplished using the moment bounds and, in the case of R3, the Cauchy-
Schwartz inequality.
The techniques leading to (4.10) may be used to prove that

(4.13) J’ (m* + Nom + Nods,) dP = o(N).
E

We shall prove shortly that Var(M;) = O()), and from this and (4.13) we deduce (4.3).
It remains to establish (4.4). We first prove

LEMMA 4. Under the conditions of Theorem 1,

E{(M\(M, — 1)7*(3" X,)*} = o(A7Y).

Proor. Expanding and taking first the mean conditional on Xj, - - -, X,, we see that
the left side is dominated by



1236 PETER HALL

CE{MT™(I"X)" + MT°(| 7 X.| + | X1 Xi|®) + M1?}
=SC{AN1 =) TEET X)) + (A1 =8)(E|IT Xi| + E|I7 Xi|*) + (cA(1 —8))7%)

+ C{m“‘j S X,)* dP + m‘3J’ (137 X:| + | X0 X:|?) dP + m_zP(Dm)},
D, D,

where
D= {|Mi—c\|>cA8} C{IIF XZ—1)|>m&) U (|37 X:| > m¢)

for some £ > 0. The proof may now be completed as before.

LEmMMA 5. Under the conditions of Theorem 1,

Var{((M; — 1)"/(I¥" X?)} = E{(M, — 1)""}Var X} + Var{(M; — 1)")
+ E{(M, — 1)*}Var X} + Var{(M; — 1) 37" (X} — 1)}
— m(Var X?)E {(M; — 1)™%)
+2Cov{(M, — )7 I (X7 — 1), (M — 1)7').

The techniques used to derive (4.1) may be employed to prove that E {(M; — 1)™'} ~
(cA)"'and E {(M; — 1)7*} ~ (cA)"% Therefore (4.4) will follow from Lemmas 1 and 3 if we
prove that

(4.14) [Var((M, — 1)7' Y7 (X? — 1)} — m(Var X)E (M, — 1)7%} | = o(A7")
and
(4.15) |Cov{(M; — 1)' Y7 (X2 — 1), (M: — 1)} | = o(A7").
With E,, = {|M; — 1 — ¢\ | > cA8} we deduce that
an=|E{M - 173" (XI - 1}| = |E{(cA(M: — 1)) (A — (My — 1)) I7 (X} — 1)} |

= (eA(1 — 3))_18E| >r X2z - 1)|
+ Cm f 7 (X? = 1)| dP = oA ~2).
E

A similar argument will show that
|E{((M; — 1) 3" (X7 — 1)} | = oA 7).
This proves (4.15), and (4.14) will follow if
(4.16) |[E{(M: — 1)7AXT (X2 - 1))*} — (cN)%m Var(X?) | = o(A7}).

In view of condition (2.1) and the classical subsequence argument, it suffices to consider
the case m/A(m) - ¢where 0 = /< 1. If /= 0 then r > 1, and the left side of (4.16) is
dominated by the sum of the two terms, which is readily seen to be o(A™'); note that
m/A\* = o(A7'). If ¢> 0 then for any & > 0,

E{(M, — 1)%(ZF (X? — 1))?} = (cA(1 — 8))2m Var X2 + 2m"2f |37 (X2 - 1)| dP.

E,

m

The last term is o(m™") = o(A™"), and since a reverse inequality may be established in the
same way then (4.16) is true.

We now derive Theorem 1 from Theorem 2. The result (2.3) follows from (4.3) and
(4.4), and (2.4) may be proved using a similar argument. Condition (2.2) will follow from
(4.1) and (4.2) if we show that U, = Aok, — [Aa%,] is asymptotically uniform on (0, 1).
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We may write 62 = (n — 1)™' ¥17' Y2 n = 2, where the variables Y; = {i(i + 1)} ™2(iXi+1
— Y41 X;) are independent N(0, 1). Let J = [cAo2Z] and V = cAas — J. Conditional on J
=j=m and V = v we have Aok, = (A/j) Y% Y + a, where a = (m — 1)(j + v)/qj.
Therefore with F, and £, denoting the distribution and density functions of a x? variable,

PU,=x|d=j,V=0) =Y (Fimms1(jlk + x — @) /) — Fj_nt1(j(k — @)/A)}
= (Jx/N) Tk fr-mer(j(k — a)/N) + rin(j, v)
where
| 71m | = %(j2/N)? Tk sUPo<y<t | fi-mer(jlk + y — a)N) |.
The function | f;—m+1 | has at most two local maxima on (0, =), and so
[Pim | = (G/N? Tk | Fi-mer(Jlk = @) /) | + (j/N)? sup; | fj-ms1(2) |.

Integration by parts shows that for a piecewise differentiable function g,

k+1 k+1

g(2) dz +f g'(2)(z—k—1¥)dz

k

W(g(k) +glk + 1) =J

k

Consequently
Y f-me1(j(k — a)/\) = f fi-m1(j(z — @)/A) dz + rom
and Yk | fr-me1(J(k — @) /A) | = J | fi=m+1(J(z — @) /N) | dz + rsm,
where [ rem | = (J/N) J | f1-m+1(j(z — a@)/N) | dz =f | f1-m+1(2) | dz,
—0 0
and [ Pom | = f | fZm+1(2) | dz.

Combining these estimates we see that
PUp,=x|J=j,V=0)=x+ rym,

where for j = m,
|Fam | = 2(J/N) r [ fi-m+1(2) | dz + (j/7\)2{ J’m | f/-m+1(2)| dz + sup.| f}—m+1(2)|} .
It follows from elementary calculus that ‘
fo | fr(2)| dz=O(n™"*)  and fn | f7(2)| dz + sup.| f(2)| = O(n™")

as n — o, Therefore uniformly in 0 < v < 1 and j > (1 + &)m we have | rin| = C(j2/A +
J/A?), where C depends only on & > 0. Consequently P(U, < x) = x + rs, where

| rsm | = C{P(J = (1 + )m) + E(JY*/X\ + J/\)}.
The proof is completed by noting that E(J)/A> — 0, and P(J = (1 + &)ym) — 0 if ¢ is

sufficiently small.

Acknowledgments. I am indebted to the referee and the associate editor for com-
ments which led to a considerable improvement in presentation.
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