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ON DISTRIBUTIONS DETERMINED BY RANDOM VARIABLES
DISTRIBUTED OVER THE rn-CUBE

By IaiN D. CURRIE

Heriot-Watt University

The distribution function of a random variable of the form Y /-, a;Y:Y>
... Y, where a; >0and 0 = Y, = 1 is considered. A geometric argument is
used to obtain the distribution function as a repeated integral. The result is
used first to obtain the distribution function of a linear combination of
variables defined over the simplex X; = 0, ¥ /-, X; < 1. As a second application
the distribution of certain quadratic forms over the simplex is obtained. This
result yields as a special case the distribution of the internally studentized
extreme deviate; the cases of normal and exponential samples are considered
in detail and the required distributions obtained.

1. Introduction. Let a; > 0, i = 1, 2, ..., n be real numbers. We consider the
distribution of the random variable

(1.1) gY)=Sr a;Y, Vs .-- Y;

where Y, Y,, --., Y, are distributed over the unit n-cube, 0= Y, <1,i=1,2, --.,n. It
is not assumed that Y;, Y,, ---, Y, are independent or identically distributed. We will
obtain the distribution function of the random variable g(Y) as a repeated integral; a
statement of this theorem is given in Section 2 although we delay a proof until Section 4.
Most of Section 2 is given over to an informal discussion of the geometry of random
variables of the form (1.1) and an interpretation of the theorem and an outline of its proof
are given in geometric terms.

The motivation for studying this random variable is as follows: we show in Section 3
that the solution to the distributional problem posed by (1.1) is equivalent to finding the
distribution of a linear combination of variables defined over the simplex X; = 0, ¥, X;
=< 1. This problem has as a special case the widely studied problem of obtaining the
distribution of a linear combination of the order statistics of a sample from the uniform
distribution, a problem approached from a geometric point of view by Hall (1927) and
later by Dempster and Kleyle (1968) and others. The Laplace transform provides a
particularly effective way of tackling the problem of finding the distribution of a linear
combination of order statistics from the uniform distribution, and recently Margolin (1977)
used this method to obtain the distribution of a linear combination of Dirichlet variables.
Closely related to this result is one first obtained by Fisher (1929), generalized first by
Cochran (1941) and more recently by Lewis and Fieller (1979). Here we are concerned
with the distribution of X,/ ¥ 7, X; based on gamma samples. As well as linear forms, we
may use the result on the distribution of a random variable of the form (1.1) to obtain the
distribution of certain quadratic forms over the simplex. As a special case of this we
consider the distribution of the extreme studentized deviate, a statistic commonly used in
simple data monitoring; with an underlying normal population we have the problem
studied by Pearson and Chandra Sekar (1936), Grubbs (1950) and Borenius (1959), while
with an underlying exponential distribution we require the distribution of the statistic
proposed by Shapiro and Wilk (1972) as a test of exponentiality.
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Fi1G. 1. The surfaceg(y) =c,0<c<1l.

The paper concludes with a proof of the theorem and a few remarks on some of the
geometric aspects of the results obtained in the main part of the paper.

2. The main theorem.

2.1 Geometrical Considerations. Random variables of the form (1.1) are in fact
particularly convenient to deal with when the variables Y, Y;, ---, Y, are defined over
the n-cube. To illustrate the simplicity of the geometry involved consider an example with
n = 3. Let g(Y) =Y +Y,.YV,+Y,Y, Y3, 0=sY: = 1, 1= 1,2,3 and suppose that Y], Yz,
Y have a continuous joint probability density function f(y). In order to compute Pr(g(Y)
=< c) we must consider the surface g(yi, ¥z, y3) = ¢. If 0 < ¢ < 1 this surface is shown in
Figure 1 and the diagram tells us that

(RPN

(2.1) Pr(g(Y:, Y, Y3) >c) = J' J J' f(y1, ¥2, ¥3) dy: dy. dys
0 0 ay(yy,y3)

where

(2.2) ar(yz, ¥3) = ¢/(1 + y2 + y23).

The first critical value of ¢ is ¢ = 1. Notice that g(y) = 1 along the edge y, = 1, y» = 0 and
so the next case to consider is 1 < ¢ < 2 when the surface is shown in Figure 2.
This time we find

1 1 1
(2.3) Pr(g(Y,, Y:, Y3) >c¢) = f J' J f(x1, y2, y3) dyr dy» dys
0 ay(yy) Ja (yy.yy)

where

(2.4) az(ys) = (¢ = 1)/(1 + y3).
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The next critical value of ¢ is ¢ = 2. The form of the function g ensures that as ¢ increases
through the value 2 the surface g(y) = ¢ changes form from that in Figure 2 straight to
that in Figure 3.

The final form for the distribution function of g(Y) is given for 2 < ¢ < 3 by
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1 1 1

(2.5) Pr(g(Y,, Y., Y3) >c¢) = f J J’ (1, y2, ¥3) dyr dyz dy;
ay Jaylyy) Jagtysys)

where

(2.6) az=c— 2.

This example illustrates a common feature of the distribution function of a random
variable of the form g(Y), namely, that it has a different functional form in each of n
intervals. Distributions of this type are not uncommon in statistics but often they are
awkward to deal with. There are two features of the variable g(Y) that make it easy to
study. The functional form of the distribution function is determined by the surface g(y)
= ¢; as ¢ increases this form changes whenever the surface passes through a vertex of the
cube. What is not so obvious is that the functional form should change only n times; this
is a consequence of the ‘nested’ form of g(y) which ensures that the surface g(y) = ¢
coincides with whole faces of the n-cube for certain values of c. This dramatically reduces
the number of cases to be considered. The other feature of the geometry of this problem
worth noting is that the condition a; > 0 ensures that the surface g(y) = ¢ consists of a
single piece inside the cube; this simplifies the regions of integration involved and means
that the upper limits of integration are always unity.

2.2 Statement of the Main Theorem. We will obtain the distribution function of the
random variable g(Y) defined in (1.1) in terms of functions «; = «a;(n; X; Yis1, +++, Yn);
these functions are natural generalizations of those defined in (2.2), (2.4) and (2.6) and
enable the distribution function of g(Y) to be obtained as integrals of the form (2.1), (2.3)
and (2.5).

Let ap = 0 and define

(2.7) AQ) = @i+ Y i @Yie1Yivz Vs 1=0,1,---,n

where we have adopted the convention that Y 7o; with i > n is identically zero. Clearly we
have A(0) = g(y) from (1.1), A(n) = a, and

(2.8) A(l) =a; +yin A + 1), 1=0,1,---,n—1

Thus the functions A (i) enable us to deal conveniently with the nested form of g(y).
Further, define

(2.9) bi= Yj-o @, i=0,1,2---,n
Then, if x = b,-,, define
(2.10) a; = (x — bi1)/A(), =12, .-+, n

Notice that the functional form of «; factorises into a function of x and a function of y.,,
-+, yn; this has important consequences when the evaluation of the integrals is performed
in particular applications. Observe also that we have simplified notation by dropping the
variables on which A (i) and «; depend. Finally, let

(2.11) I.(i) = [biy, bi], 1=12 ---,n

The set of intervals {I,(i)}i<;<. covers the range of g(Y) and these are nonoverlapping
(apart from the end points). We can now state our main result.

THEOREM. If Y,, Y., .---, Y, have a continuous joint probability density function
f(y) =f(y1, 2, -+, yn) and if x € I, (k) then

1 1 1 1 1 1
(2.12) Pr(g(Y)zx)=J f f J f f fly) dy
o Jo 0 a

ap Japy
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The proof of this theorem is in two parts: first, we show how to define the set required in
the integral (2.12); secondly, we show that this set coincides with the required set
{y; g(y) = x}. The proof will be given in Section 4.

We now give a number of simple generalizations of the main theorem.

REMARK 1. The condition that Y, Y5, - - -, Y, have a density function is not necessary.
The result holds for an arbitrary distribution for Y;, Y,, ---, Y,. We have that
P(g(Y) = x) is given simply by adding up all the probability inside and on the boundary
of the region of integration in the theorem. However, the applications given in this paper
all have Y with a continuous probability density function.

REMARK 2. The condition @, >0,i=1, ..., n may be relaxedto a,=0,i=1, ---, n
with no difficulty. If only r of the n coefficients a; are nonzero then the problem is easily
expressed in the standard form for r variables with all a; > 0.

REMARK 3. Although we have stated the main result for a random variable of the
form (1.1) where 0 = Y, < 1,i =1, 2, .-, n the essential assumption is that Y, = 0. For
example, if we have 0 = Y, < §; then the substitution Y} = Y,/§, recovers the problem in
the standard form. If however we have only that Y; = 0 then the geometry simplifies and
it is easily seen that P{ g(Y) = x} is given by the form

[ [ rwras
0 o Ju

whatever the value of x.
3. Applications.

ExaMpPLE 1. We consider the distribution of X = Y-, ¢, X; where X' = (X, X», .-,
X.) is distributed over the simplex X; = 0, ¥7-; X; < 1. We assume without loss of generality

that ¢y > ¢, > ... > ¢, > 0 and transform X — Y as follows:
X] = 1 - Y]
(3.1)
X,=(1“Y1)Y1Y2-~-Y,;1, i=2,--~,n.
The Jacobian of this transformation is y7~'y3 ... y,_, and the joint probability density
function of Y, Y5, ..., Y, is easily found. The region X; = 0, ¥/, X; < 1 transforms into
0=Y.=1i=1,2, ..., n and the random variable X transforms
(3.2) X—- d0—2?=1 d:Y,\ Y, --- Y
where
(3.3) d=c; di=c—cs, =12 .--,n—=1  dy=cn.
Thus
(3.4) PX=x)=P3Y- 1 dY, Y- Yi=dy— x)

and since d; > 0 (2.12) may be applied immediately. In this case we have a, = (¢; — x)/A(i)
where

A(l) = di + Zj"=t+l dei+1 Yi+2 e Yj~

In any particular application we still have the problem of evaluating the n-dimensional
repeated integral in (2.12). This involves firstly the computation of the joint probability
density function of Yy, Y3, -+, Y, and secondly the evaluation of the resulting integral.
This evaluation may well have to be attempted numerically but there do exist a number
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of problems of interest where these integrals may be obtained explicitly. We illustrate the
kind of calculation involved by considering the distribution of the sum in a sample from
the uniform distribution on [0, 1]. This is a well known problem whose solution goes back
to Lagrange. To apply the present method we note that if X;,, X, - - -, X(») are the order
statistics from a sample of size n from the uniform distribution on [0, 1] with X}, = X,
< ... =X, and if we let U, = X,, U: = Xy — Xi-1), 1 =2, 3, ---, n then we have
flur, usy -+, u,) = n! where uy, us, - - -, u, are distributed over the simplex u; =0, Y-, u,
=< 1 asrequired. In terms of u, u, - -+, up,wehave Y- Xi =YL Xy =Y (n—i+ DU
and we may apply the preceding general result with ¢; = n — i + 1. We find from (3.2) and
(3.3) that

27=1X1—>n -Y, -Y Y- =YYy Y,
where f(y1, Y2, -+, yn) =n!y? 'y3 % ... y,_over0<y,<1,i=1, ..., n. Applying the
main result (2.12) as in (3.4) we find when x €E[n — i, n — i+ 1},i=1,2, ..., n that

P(Y7, X, < x) is given by

1 1 1 1 1 1
(35) J' J' e J' J' J’ e J n!y',’~1y§'_2 cee Yoot dyl dy2 e dyn,
o Jo 0 Ja; Ja_, o

where o, = (n — kb + 1 — x)/(1 + Y kst Yee1Yrs2 -+ ¥), J =1, -+, 1. We omit the
evaluation of this integral and remark only that the required result may be obtained by
using a technique similar to that used in Currie (1978, page 40 ff). We also remark that the
more general results of Dempster and Kleyle (1968), Weisberg (1971), and Margolin’s
(1977) result for Dirichlet variables, may all be obtained in a similar fashion, though the
calculations involved are rather formidable.

Closely related to the distribution of the sum in uniform samples is the distribution of
T, =Xun/Xu + .-+ + Xn)). The distribution of T, for an exponential population was
obtained first by Fisher (1929) using an ingenious geometrical argument. Cochran (1941)
extended this result to a gamma population. Recently, Lewis and Fieller (1979) gave a
recursive algorithm that obtains these results in a very neat way. The link between the
distribution of T, and the distribution of the sum in uniform samples was given by Darling
(1952). Using the Laplace transform, he found that the distribution of 7';', based on a
sample from the uniform distribution on [0, a], was the same as 1 + S,_, where S,_; has
the distribution of the sum of the observations in a sample of size n — 1 from the uniform
distribution on [0, 1]. This curious result has an important consequence in the present
context: since we know that S,_, has a distribution of the form (1.1) we can conclude that
T," also has a distribution of this form. The result (2.12) can now be applied to give the
distribution of T;' as a repeated integral. The integrand depends on the sampled popula-
tion. If we supply the integrands appropriate for uniform, exponential or gamma sampling
we obtain the results of Darling, Fisher and Cochran respectively. Again it is only fair to
remark that the integrations required are rather daunting.

ExaMPLE 2. In the previous example we considered linear functions of variables
distributed over the simplex; we turn now to the distribution of certain quadratic forms in
such variables. To be precise, we consider the distribution of the random variable X where

(3.6) X=a+Y5 aX;i—-2¥ aXi+23 Y aXX;
where a; > a; > --- > a,>0and X, =0, YL X; = 1. This quadratic form has particular

statistical interest since it turns out that the studentized extreme deviate, (X — X(1))/s can
be written in this way. We first show that, by using suitable transformations the quadratic
form can be put into the form (1.1) and so the main result can be applied. Secondly, we
show that (X — X,))/s does indeed have a distribution of the type (1.1) by transforming it
into an example of the quadratic form being discussed here. Lastly, we specialize to samples
from (a) normal and (b) exponential populations and give explicit results for the distribution
of (X — X1))/s in both cases.
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We have the following identity for X as given by (3.6):
X=YLb(1-Xi—Xo— .- — X))},
where a; = Y-, b,. We now apply the transformation (3.1) and find
3.7) X=Yr bYiY}... Y}

which has the required form (1.1) and the distribution function is obtained.
As an illustration of this result we consider the distribution of

— H(X - Xm)2
(n—1)S?

where W is based on a random sample X, Xz, ..., X, with X = (Y X,)/n, S* =3 (X, — X)?
and X, = min{X,, X, ..., X,}. This statistic, in the equivalent form R = (X — X.,))/S, is
widely used in detecting various forms of abnormality in the sample: for example, it can be
used in the detection of outliers; in this case the sampled population is assumed to be
normal. This distribution was studied first by Pearson and Chandra Sekar (1936) who
obtained upper tail probabilities. Grubbs (1950) obtained an integral form for the distri-
bution function of the statistic 6, where sin°4, = 1 — W; Grubbs evaluated his integrals
numerically. Borenius (1959) effectively obtained the density function of W. When the
underlying distribution is assumed to be exponential, we have the distributional problem
for W, the test statistic proposed by Shapiro and Wilk (1972) as a test for the exponential
distribution.

To obtain W in the required form (3.6) or (3.7) we proceed as follows. If X1), X, ...,
X are the order statistics let G, = Xy); G: = Xy — X4-1), 1 =2, ..., n. Then W depends
only on G, Gs, ..., G,. Infact W' = (n — 1) Y/Z? where

Z=nX-Xu) =YL qG:
and
Y=nS’=3pqGi + 2 Y% Y %ipiq,G:G,
where p; =1 — 1 and ¢; = n — 1 + 1. Now transform as follows:
U, =YY% q.G;; U U, = q.G,, i1=2,...,n—1.
Then W depends only on U,, ..., U, and we find
38 Wl=m-1Dn-1-2n¥% aU +nY¥:aU?+2n TN, Y%, a,UU,)

where a,= (n —1)/(n—i+1),i=2,...,n—1and N = n — 1. It is a routine calculation
to show that Us, ..., U,-, are distributed over the simplex U, =0, ¥?=) U, =<1 and so the
problem is essentially of the form (3.6). It is worth remarking that the transformation
X — G which gives W in terms of G, ..., G, uses the location invariance of W; the
transformation G — U which gives W in terms of Us, ..., U,-, depends on the scale
invariance of W.

We now have the following integral form for the distribution function of W. For & = 1,
2,...,n—2let

(k+1D(n—-1)"kn—-1

(3.9) I,,(k)=[ n-k-l n-k ]

Then for w € I,(k) we have

1 1 1 1
(3.10) P(WSw)=J' J J'J'
0 0

ay Jag

1
e J f(yZ) “‘»ynfl) dyZ dys e dyn~1

where «), = Yi(w)/A(k) with
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Y(w)? = {(n —2)/n} (™" = 1);
Yr(w)? = Y1 (w)? — (n — 2)(k — 1)/(n — k), k=2...,n—1
and
AR = o(R)* + Tihra dli — D’Yhanyien - ¥i
with
d(k)2=(n—2)(n—1)/{(n —k—1)(n—k)}, k=1,...,n-2.

We remark that (3.10) gives the distribution function of W whatever the underlying
sampled population is. We now specialise to the exponential and normal cases. If X, . . .,
X, is a random sample from the exponential distribution, then we may show that the joint
distribution of Y, ..., Y, is

(3.11) f(y2, ooy ) = (R =2V 8729570 oot yaiy; O=sy=1

In this case the variables Y., ..., Y,_; are independently distributed over the n — 2 cube.
The integral (3.10) may now be evaluated in the same way as the integral (3.5). Details are
contained in Currie (1978, page 40 ff). We report only the final result. In (3.10) we first

replace [, by [ — [¢' and hence obtain (3.10) in terms of 2* integrals of the form
1 U ronny [1 1 fangn a1 1 propay (1 1

jfj jfj f fjf jj fy) dy
(3.12) 0 0 Jo 0 0 Jo 0 0 0 Jo 0 0

« k1+| - k/ e d «— kg — € kl —
where k(i) = Y- k;and ki, ks, ..., k; are any positive integers such that -, #, < k and
ki1 =n — 2 — k(l). We denote the integral (3.12) by
(3.13) Jullr, ke, .o, k) = Ja(k)).
Now define

Te(l) ={krki=(ki, ko, ..., R); = 1,Y -1 ki< k).
Then the integral (3.10) is given by
(3.14) 1+ Z;;l (-1’ Yrero JInk)

with the density function f given by (3.11). The integral (3.12) can be evaluated as a
product of / functions and it is worth noting that this factorisation depends critically on
the factorisation of a; remarked on earlier.

Forn=4,k=1,2,...,n — 3 and x = 0 we define
(3.15) Grolx) =1
tan”Tx
—k+1 .
Grr(x) = j Grr (n—-——- sec H)Sin"“"" 8 db.
R n—k—-1

It is interesting to note that the functions G, .(x) are very similar to the functions f,(r)
used by Borenius (1959) in deriving the density function of W in the normal case. We note

that G, x(x) is essentially a k dimensional integral. For any k7= (ki, ..., k) letk = Y’ &,
and
2(n — kl)l/2 (n—Fk—D!n—Fk - 2)! A
Yn(kl) = * — Y * _ — (n—k—1),,°
I'((n—«—1)/2) (n —x)! {(n = D(n - 2)}

then
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i ,
(3.16) Ju(ky) = ya(ko) g, (w0)" ! ﬁ}(?nﬂUHLhﬁ,(Eig%?f?%ggjif>.
Note that we have adopted the convention that a product IT} with & > [is identically one.
We recall that G,.(x) is effectively a k-dimensional integral. This limits the practical
usefulness of the above result but exact percentage points for W have been found for small
values of n and for part of the range of W for larger values of n. These results are reported
in Table 1. We remark that the original values of Shapiro and Wilk (1972) obtained by
simulation agree with these exact results within the limits of their experimental error.
We now specialise in (3.10) to the case when the underlying sampled population is
normal. We may then show that the joint distribution of Y,, Y3, ..., Y, is

e yg~3yg_4 s Y2
"(I+nn-1) X% bylys -y

withb, ={(n —i)(n—i+ 1)}, N=n—1and
cn =4 n"*(N/m)"*T(N/2)

(3.17) f(y2, ooy yn) =

over theregion0<y,<1,i=2,...,n— 1.
In this integral form, the result is equivalent to that obtained by Grubbs (1950). We can
however evaluate the integral in terms of the function G, .(x) defined in (3.15); for details

TABLE 1
The Percentage Points of W-exponential

n 0.5 1.0 2.5 5.0 10.0 50.0 90.0 95.0 97.5 99.0 99.5
3 2519 2538 .2596 2697 2915 .5714 9709  .9926 9981  .9997 .99993
4 1242 1302 .1433 .1604 .1891 .3768 7514  .8581  .9236  .9680  .9837
5 .0831 0899 1036  .1198 1449 2868 .5564  .6657  .7597  .8534 9024
6 0638 0704 .0831 .0973 1176  .2284 4341 5204 .6054 7081 7743
7 .0628 0588 .0702 .0823 .0992 .1896 .3541 4211 4897  .5806 .6463
8 0455 .0510 .0611 .0716 .0860 .1617 .2960  .3509  .4062  .4815 5392
9 05644 0636 0762 .1408 2528 2983  .3442 4065 .4550

10 0574 0685 .1245 2197 2579 2965  .3488 .3897

11 0624 1115 1935  .2261  .2590 3035  .3382

12 1010 1726 2007 2289 2671 .2969

13 0922 1553 1799 2044 2376 .2634

14 0848 1409  .1626  .1842 2132 .2357

15 0784 1288 1481 1672 .1928 2127

16 1185 1358  .1528 1756 1932

17 1096 1252 1405 .1609  .1766

18 1018 1160  .1299 1483  .1624

19 0950 1079 1205 1372 1500

20 0890 1008  .1124 1276 1392

21 0837  .0946  .1052 1191 1297

22 0890  .0987 .1115 1212

23 0930  .1048 1137

24 0987 1070

25 0933 .1010

26 .0884 10955

27 10906

28 .0860

29 .0819

30 .0781
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of this evaluation see Currie (1978; page 64 ff). We denote the integral (3.12) by J} (k;)
when the density function (3.17) is used. Let

n! I'((n - 1)/2)

= . L /2
(k) = T T —w = D/ "
Then
* - -1 ) Yrarn (W)
(318) J (kl) (Sn(k[) =0 Gnh,((‘)+1vkh‘ <———-————-———¢(K(l T 1) — 1))

where «(0) = 0.

The distribution function of W in the normal case is now given by (3.14) with </, (k;)
replaced by J% (k). It is interesting that the formulae (3.16) and (3.18) for J,(k,) and
J ¥ (k;) each consist of a product of / functions of w, [ — 1 of which are identical. This result
for the distribution function of W is equivalent to the result of Borenius (1959) for the
density function of W.

4. Proof of the theorem. First, we define
(4.1) Sx) ={y ' =(,Y...,0m: )= x,0=y=<11=<i=<n}

and observe that S(x) is the set over which we require to integrate the density f(y) in
order to evaluate the required probability. The set S(x) is given implicitly by the condition
£(y) = x; we show first how to construct a set Sy(x) for x € I,(k) that will turn out to be
S(x). The construction of Sx(x) is aimed at producing the set of points in the region of
integration in the integral (2.12). We choose the coordinates of the points y to be included

in Si(x) in the order y,, then y,_i, ..., and finally y.. We need to check that if y,, v,-,
.., ¥ have been chosen using the construction where j < &, then 0 = o, =< 1.
Suppose that x € I,(k) for some k= 1,2,...,n — 1 where n = 2. Lety, €0, 1], 1 =
k+1,...,n Let ay = ax(n; x; Ye+1, . . ., ¥») be defined as in (2.10). Then
X — bk——l bk b bkul ag
ay = = = = 1.
A(k) A(k) ar + YAk + 1)

Clearly, ax = 0 and so 0 < a < 1 as required. Similarly, if x € I,(n) then 0 < o, = L.
Assume now that y,, Yn-1, ..., Y=~ have been chosen and are such that «, .1 =

LI

p—1-1(N; X Y-ty . .., ¥n) is defined and 0 < a,,—;-1 = 1 for some [ where 0 </l<n-—-3,n=
3. Let y4—1-1 € [an—1-1, 1]. Then we have

-1 Z0=>x— b,_1o=0 by (2.10)
=X — bp3=an-1-2>0 by (2.9)
= a,—1—»>0 by (2.10).
We also have, using (2.10), (2.9) and (2.8) that

X—=bpnya2+ Auis

Ap—j—2 =
QAn—1—2 + yn—l--lA(n - l - ].)
a + on—- Un—i-2
= where a= —0""2 >0
a+ Yn—i-1 A(n - - )
=1 since Yn—i-1 = aps—1 = 0.

And s0 0 < an——2 = 1 as required. In a similar way if «, is defined and 0 = «,, = 1 where n
=2, and if y, € [a,, 1] then 0 < a,-; < 1.

These results enable us to define the sets S,(x) that will turn out to give the required
set S(x).
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DEFINITION. (a) Let x € I,(k), forsome k=1,2,..., n — 1. The set Sy(x) consists of
all the points y’ = (y1, ¥2, . . ., ¥) constructed as follows: for i = k + 1, ..., n choose any
¥i € [0, 1]. Now form « using (2.10). We have just proved that [ax, 1] C [0, 1]. Choose any
Yr € [ar, 1] and form a,—;. Again we know [ax—1, 1] C [0, 1]. We may continue in this
fashion choosing y; € [«;, 1] and forming a;_, in the order j =%k — 1,k — 2, ..., 2. At each
stage we are ensured that [a;-1, 1] C [0, 1] and the choice y;-1 € [a,-1, 1] can be made.
Lastly, choose any y; € [a1, 1].

(b) If x € I.(n) then S, (x) consists of all the points y’ = (yi, ¥2, ..., ¥») constructed as
follows: we know that 0 < a, = 1 and so we may choose any y, € [a,, 1] and form a,-;.
Then [a,-1, 1] C [0, 1] and the construction of S,(x) is completed as in (a).

We can now prove that the set of interest S(x) is given by Si(x) whenever x € I,(k). We
begin by proving the following: if x = b,_; then S(x) C Sk(x). Suppose y € S(x). We must
show that y; € [a;, 1] fori =1, 2, ..., k. We prove this by induction on k.

Case 1. k = 1. If y € S(x) then by definition x < g(y) = y:A(1) and so y, = x/A(l) =
a;. Since we also have y; = 1 we have y; € [a1, 1] as required.

Case 2. We assume the result is true for 2 = m < n. We further assume that x = b,,;

hence x — b1 = a, > 0 and so by induction y; € {a;, 1], i = 1, ..., m. Further
am =<1
yields
X = by

an + y,,,HA(m + 1) -
=X — bm—l —an= ym+1A(m + 1)

x — b
Z—
A(m + 1)

= Ym+1 = Om+1
since we have assumed x — b,, = 0. Since ym+1 = 1 we have yn.1 € [am+1, 1] as required.
Now suppose that x € I,(k). Then x = b,_, and so we have S(x) C Sk(x). Conversely,
suppose that y € Si(x). Then by the construction of Si(x) we have y; € [ai, 1]. Thus by
(2.10) y; = (x — by)/A(1) = y,A(1) = x since b, = 0; and so by (1.1) and (2.7) g(y) = x and
this is the condition (4.1) that y € S(x). Thus Sk(x) C S(x) and so x € I,.(k) implies that
S(x) = Sk(x)
We can now prove the main result. We assume x € I,,(k) and so P(g(Y) = x) is given by

J jf(y)dy=f ff(y)dy
S(x) Sp(x)

By the construction of S,(x) we may replace the multiple integral over Si(x) with the
repeated integral in (2.12) and this proves the result.

5. Discussion. In Section 2.1 we noted the connection between the changing form of
the density function of g(Y) and the geometry of a surface passing through a cube. We
now give a statistical interpretation of this for one of our examples. Pearson and Chandra
Sekar (1936) obtained the upper tail of the probability density function of the extreme
studentized deviate from a normal population as follows: let x;, x3, ..., x, be a series of
observed values of a variable x. Let £ = Y x;/n, s> =¥ (x; — £)*/n and 7; = (x; — %) /s. Let
T <T@ < -+ =< T4 be the ordered values of 11, 2, ..., 7,. Pearson and Chandra Sekar
show that max 7(,—;) < max 7, and they deduce from the general relation nf(r) = Y fi(r)
that, for r > max 7u-1, f(1) = nf(r) where f;(r) represents the (unknown) probability
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density function of 7, and f(7) the (known) probability density function of the unordered
7;. It is simple to verify that the value of max 7(,-1) coincides with the left end of the
interval I,(1) defined in (3.9). This correspondence extends as follows: we may show as in
Currie (1978, page 77 ff) that max r, = {(i — 1)/(n — i + 1)}"%; it is now a simple matter
to verify that this value coincides with the left hand end of the interval I,,(n — i). We do
not have to look far for an explanation of this apparent set of coincidences. From the
relation nf(r) = ¥ fi(r) we have nf(1) = f,(7) for 7 = max 7,1, and nf(r) = f,(1) + foi(7)
for max 7(,-1) = 7 = max 7(,—2. Now f(7) has a single functional form over its entire range,
at least in sampling from a normal population. Hence, for f(7) to maintain its single form,
f»(7) must change form at exactly the point that f,_:(7) becomes nonzero, and an obvious
extension of the argument provides the general explanation.
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