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A NEW CLASS OF MULTIVARIATE TESTS BASED ON THE
UNION-INTERSECTION PRINCIPLE'

By INGRAM OLKIN AND Jack L. ToMsKy

Stanford University and Lockheed Aircraft Corporation

Using Roy’s union-intersection principle, a unified treatment is developed
for the construction of multivariate tests. These include Wilks’ determinantal
criteria, Hotelling-Lawley trace criterion, and Roy’s largest characteristic root
criterion. The key lies in the extension of an index set from vectors to matrices
plus the use of elementary symmetric functions of characteristic roots to test
component hypotheses.

1. Introduction and background preliminaries. In a variety of multivariate
problems, the ultimate step is to choose as a test statistic a particular function of p
statistics. Three functions have emerged as candidates: the product (usually the likelihood
ratio test, Wilks (1932)), the sum or trace criterion (Lawley (1938), Hotelling (1947)), or
the maximum (usually as a result of employing the union-intersection principle, Roy
(1953). Each of these choices is reasonable in certain circumstances. However, the fact
that one has to employ a different procedure to obtain each of these tests suggests that
there may be a single procedure that generates all these tests.

We show how a wide spectrum of test statistics can be obtained via one procedure,
namely, the union-intersection principle. The key idea is encompassed in the followng.
Consider the class of elementary symmetric functions defined on the set {x:x; = ... =
Xp}:

Trn(x) = Trp (21, -+ -, %p) = En(x1, «« -, %)

(1.1)
= Zx,‘<---<x,m Xiy Xiy =0 X, m=k.
That is, Thx(x) = En(x1, ---, x) is the mth elementary symmetric function of the %
largest x’s. Important special cases are
Tip(x) =38 xi, Tpp(x) =[I% xi, Ti1(x) = max(xy, -+, X%,).

In the problems considered the x’s are the characteristic roots of a p X p symmetric
matrix, in which case we use the notation

(1.2) trmA = En(A(A), -, A (A)),

where A (A), - -+, A,(A) are the characteristic roots of A.

The union-intersection principle involves two steps: (i) designation of component
hypotheses, and (ii) choice of tests for testing each of the component hypotheses. It is
exactly the flexibility permitted in (i) and (ii) that yields a wide range of tests.

The actual application of the union-intersection principle to multivariate problems
generally involves the solution of an extremal problem. These extremal problems are
central to obtaining a solution, but are peripheral to the statistical development. For this

Received November, 1979; revised August, 1980.

' Work supported in part by the National Science Foundation Grant GP-32326X and by the
Lockheed Independent Research Program.

AMS 1970 subject classifications. Primary 62H12, 60E15.

Key words and phrases. Union-intersection principle, multivariate tests, characteristic roots,
elementary symmetric functions, multivariate linear hypothesis, sphericity test, testing for the equality
of covariance matrices, monotonicity of power function.

792

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /7
The Annals of Statistics. RINGJY

®
www.jstor.org



NEW CLASS OF MULTIVARIATE TESTS 793

reason these results are given in Section 4 at the end of the paper. This section also
contains notational preliminaries.

Section 2 deals with three standard multivariate (normal) problems (i) the general
linear model, (ii) testing that the covariance matrix is the identity, (iii) testing for the
equality of two covariance matrices. In each case, T, statistics are derived.

We note that the class of tests 7, provides not only a unification to the construction
of tests, but also yields a number of tests previously not considered. However, since no
single member of the class T}, is uniformly better than any other, the deciding factor in
the choice of m and % depends on the alternatives of concern. Thus, it is important to
compare power functions of the alternative statistics. This issue is outside the scope of the
present study.

In Section 3, we show that each of the proposed tests for the general linear model
satisfies a “monotonicity” property in the parameters.

The union-intersection principle was introduced by Roy (1953) as a heuristic method of
test construction that can be described as follows:

Let {wa, wa, a € T'} be a collection of sets in the parameter space. It is assumed that
Ngerw, 1s nonnull and I is an arbitrary index set. Define component hypotheses H, and
alternatives K, as

H,.0€ w, K.:0 € w+.

Suppose that there exists a test of size a, in which one accepts H, over K, for sample
points in the set A, and rejects H, otherwise. For simplicity, we assume that a, = ax is the
same for all component tests.

The union-intersection testing problem is constructed from the component testing
problems. Set

H= nn€;~Ha, K = UqserKa

by which we mean that the null hypothesis H is true if and only if every component null
hypothesis H, is true. Similarly, the alternative hypothesis K is true if and only if at least
one component alternative hypothesis is true. Under the union-intersection principle, H is
accepted over K if and only if each component test accepts H, over the corresponding K.
That is, the acceptance region for a union-intersection test is given by A = n,erA,.

In practice, one starts with a null hypothesis H, an alternative hypothesis K, and a
significance level o. H and K are then represented as an intersection of component null
hypotheses and a union of component alternative hypotheses, respectively. The (common)
size a* of each component test is so determined that the size of A under H is equal to the
preassigned a.

Union-intersection tests are generally dependent upon the selection of the representa-
tion for H and K. In most applications, the index set I" is chosen to consist of all nonzero
p-dimensional vectors. These union-intersection tests are then constructed from well-
known univariate tests.

In the present paper, we extend the index set I" from vectors to £ X p matrices of rank
k = p. The choice of tests of the component hypotheses is based on elementary symmetric
functions.

Before presenting the results, we note some related references. Morrison (1976) provides
a general discussion of the union-intersection principle. Gabriel (1970) shows that if
likelihood ratio tests at a constant level are used for testing the component hypotheses,
then the induced union-intersection test (LR-UI) is contained in the likelihood ratio critical
region for the global test. He also obtains conditions when the LR-UI test is equivalent to
the likelihood test of the overall hypothesis. The use of an index set consisting of matrices
was used by Mudholkar, Davidson, and Subbaiah (1974), and by Khatri (1978) who then
generate certain classes of tests. Although their class of tests is not as broad as the T«
class, these papers do contain some of the flavor of the present work.
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2. Union-Intersection tests for some standard multivariate problems.

2.1 General Remarks. We now obtain union-intersection tests for three standard
problems in multivariate analysis. In the usual application of the union-intersection
principle, the unions and intersections have been performed over univariate tests. This has
led in most cases to a test based on the extreme sample characteristic roots, or as in the
case of the stepdown procedure, on a finite number of independent statistics.

The idea here is to perform the unions and intersections over multivariate tests, of
lower dimensionality %, which are indexed by a £ X p matrix A. A matrix W, is said to be
a likelihood ratio component matrix if the likelihood ratio test for the component hypoth-
esis is equivalent to rejection if | W4 | > c. In general, there are many matrices satisfying
this property.

The test criterion for each component hypothesis is to reject the component hypothesis
H 4 if tr,, W4 > ¢. The null hypothesis H is rejected if at least one H, is rejected. Thus, for
each k, the union-intersection test is based on the maximum of tr,, W, (defined by (1.1 and
(1.2)) with respect to the index matrix A. For m < k, the resulting union-intersection test
generally depends on the rule for selecting Wi.

By denoting this test statistic as T x, where 1 = m < k < p, it can be seen that several
standard multivariate tests are included in this class. For example, T}, coincides with the
likelihood ratio test based on determinants, T, is a Hotelling-Lawley “trace” criterion,
and T\, is the union-intersection test of Roy based on the extreme sample characteristic
roots.

Since we are not directly concerned with distribution problems, the constant ¢ which
appears in the rejection regions is a generic constant and may differ for different statistics.

Two sets of matrices continually arise: C(Z, p), the set of all 2 X p matrices A of rank
k < p, and O(k, p), the set of all 2 X p matrices A satisfying AA" = I,.

2.2 Testing the general linear hypothesis. Let X be a random p X n matrix with
(2.1) EX’' = B6,

where B:n X m is the design matrix of rank r < m < n and #:m X p is a matrix of unknown
parameters. It is assumed that n > p and that the columns of X are independently
distributed and have a multivariate normal distribution with unknown covariance matrix
3.

The hypothesis to be tested is

(2.2) H:LO=0 versus K:L8#0,

where L:g X m, ¢ = m < r, is the “hypothesis” matrix.
The component null and alternative hypotheses are chosen as

Hi:LOA’ =0 versus Ka:LOA #0, A € %k, p).
Partition B, 6, and L:
B = (By, Bp), 0 = (81, 60), L = (L;, Lp),

where Byisn X r,0;isr X p,and L;is ¢ X r.
Next, define the matrices Sy and Si due to hypothesis and to error, respectively,

(2.3) Su= XB1(BiB1)"'Li[ L« BiB)"'L1)L:(B}B) ~'BiX /g,
Se = X[I, — By(BiB)'Bi1X'/(n — 1.

A likelihood ratio component test matrix [see Anderson (1958, page 217)] for testing
H, against K, is

(2.4) A(Sg + SH)A'(ASEA") ' =1, + (ASyA")(ASEA') "= 1, + Q.
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The component hypothesis H, is rejected against K, if
(2.5) trn(Ix + (ASRA')(ASEA’)™) = En(1 + Mi(Q), --+, 1 + \(Q)) >0,

by definition (1.2).
The null hypothesis H is rejected if and only if E,, > ¢ for some A € %(k, p). To find the
maximum of E,,, use Theorem 4.8 with f(x) = 1 + x, xo = 0 and a = ». This maximum is

26) maxackp Em(1 +A(Q), -+, 1 + M(Q))
= En(1 + Ai(SuSzg"), - -+, 1 + M(SuSz")).
The resulting test for H against K is to reject H if
(2.7) Tk = En[1 + Ai(SuSE'), - -+, 1 + M(SuSE) ] > c.

In Section 3.1, we show that each of the tests based on T, satisfy a monotonicity
property; that is, the power function is an increasing function of each characteristic root of
the matrix p'S ~'u, where u = (1, fia, -« -, fr).

Various combinations of m and k yield well-known standard multivariate tests. The
choice m = k = p yields

(2.8) Tpp =115-1 (1 + Ni(SuSE")) = | I, + SuSE'| = | Se + Sul/| Se|,
which is equivalent to the likelihood ratio statistic. The choice m = 1, k = p yields
Tip =351 (1 + Ni(SuSE") = tr(I, + SuSE') = p + tr(SuSE'),
which is equivalent to the Hotelling-Lawley “trace” statistic. The choice m = & = 1 yields
Tii =1+ A\(SuS5'),
which is equivalent to the Roy “maximum root” statistic.
REMARK. The case m = 1 and B’ = (1, .-, 1) yields Hotelling’s 77 statistic. This

model is discussed in Morrison (1976) with the choice A € %(1, p). The extension to the
larger class A € 4(k, p) does not yield a new test.

2.3 Testing that the covariance matrix is the identity matrix. Suppose that S > 0 has
a Wishart distribution, W(Z, p, n) and we wish to test
H:Z=1, versus K:Z#1I,.
Define the component null and alternative hypotheses H4 and K, by
(2.9) H4:AZA' = I, Ki:AZA' # I, A € O(k, p),

A likelihood ratio component test matrix [see Anderson (1958, page 265)] is
(ASA’) 'exp(ASA’), so that the component test for H4 against K is to reject H, if

(2.10) tr,, ((ASA’) 'exp(ASA’)) > c.

The corresponding union-intersection test is to reject H against K if
(2.11) maxXaeok,p trn ((ASA’) 'exp(ASA’)) > c.
By Corollary 4.9, (2.11) is equivalent to

(2.12) T = En(\iheM, -+ - Aiheh), > c,

where A(;; are the characteristic roots of S arranged according to decreasing values of f(\)
= A"'exp(}).
The special choice m = k = p yields

Tpp = [15-1 Aj'e” = (exp tr S)/| S|,



796 1. OLKIN AND J. L. TOMSKY

which is equivalent to the likelihood ratio statistic. A Hotelling-Lawley trace statistic is
given by the choice m = 1, k = p, namely,

Tip=32 1A "eh =tr(S' exp S).
The choice m = & = 1 yields
T1,1 = )\[_11]e>\“],
which is identical to a test based on A, and/or A,. This test differs slightly from Roy’s test,
which is based on “equal tails” for A, and A,.
2.4 Testing for the equality of two covariance matrices. Suppose that S; and S: have
Wishart distributions W (2, p, n,) and W(Z,, p, n.), respectively, and we wish to test
H:Z =3, versus K:Z;#Z,.

Define the component null hypotheses H4 and the component alternative hypotheses K4
by

(2.13) Hyi:AZIA' = AZA, Ki:AZIA # ASAY, A € €(k, p).
A test matrix for the likelihood ratio component test [see Anderson (1958), page 256) ]
is
(ASIA")™ (A(S) + S;) A )" ™ (AS, A7) ™™,
so that the test for H4 against K, is to reject Hy if
(2.14) trm[(ASIA") (A (S) + S:)A' )" T(AS,A') ] > c.
The union-intersection test is to reject H against K if
(2.15) maXxaewkp tn[ (ASIA’)(A(S) + S2)A)"T(AS,A')™™] > c.
which by Corollary 4.10 is equivalent to
(2.16) Trmr=EnAT (@ —App) ™, -, AR (1 — Apg) ™) > ¢,

where A( ;) are characteristic roots of S;(S, + S;) " arranged according to decreasing values
of f(8) =6""(1 — )™
The choice m = k = p yields

Top =10-1 A7 = )2 =[Sy + Se |72/ (| S1 "] S2|™)
which is the likelihood ratio test. The choice m = 1, k = p yields
Tip =301 A1 = N) ™™ = tr[ (I, + S:ST)™" (I, + $1S27)™],
which is similar to a Hotelling-Lawley trace test. The choice m = & = 1 yields
Toi=Api (1= Am) ™,

which is equivalent to a test based on A, and/or A,,.

3. Monotonicity of the power functions of some proposed tests for the general
linear model. In many testing problems in multivariate analysis, tests that are invariant
under a group of transformations depend upon the sample characteristic roots. The power
of such tests is a function of the population characteristic roots, which can be thought of
as noncentrality parameters. A test is said to have the monotonicity property if its power
function is a monotonically increasing function of each population characteristic root. We
now show that the class of tests proposed for the general linear model problem satisfies
the monotonicity property.

The canonical form for the general linear model is given by Roy (1957). Let U be a
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p X q matrix and V be a p X n — r matrix, where p is the number of variates, q is the
degrees of freedom for the hypothesis, and n — r is the degrees of freedom for the error.
The joint density function f(U, V) of U and V is proportional to

(3.1) f(U, V)ocexp[— % {tr VV' + Y4 (wa — 6:)% + YPrwr i + 01 Yieicr ],

where 6, = ... = 6,. The hypothesis to be tested is H:6, = ... = §, = 0, against the
alternative K:6, > 0.

A sufficient condition for a test to satisfy the monotonicity property (for testing H
against K) has been given by Anderson, Das Gupta, and Mudholkar (1964) and is stated
below.

THEOREM 3.1 Foreachi (i =1, ---, q) and for each set of fixed values of u’s (j # i)
and V, suppose there exists an orthogonal transformation: u; - Mu; = (u¥;, -+, u})’
such that the region w;(u;), a section of the acceptance region w in the space of u; for a set
of fixed values of u/’s (j # i) and V, is transformed into the region w}(u}) which has the
following property: any section of wf(uf) for fixed values of u¥; (k # j) is an interval,
symmetric about uj; = 0. Then the power function of the test, having acceptance region
w, monotonically increases in each 0;.

We use Theorem 3.1 to prove that the tests for the general linear model based on the
T« criterion introduced in Section 2.2 satisfy the monotonicity property.

THEOREM 3.2. In testing the general linear hypothesis, the test with acceptance
region

(3.2) Tor=En(1+A, ---,14+A)=c

has a power function monotonically increasing in each 6,. (The \; are the k largest
characteristic roots of UU’(VV')™)

Proor. The idea in this proof is to show that Theorem 3.1 is satisfied for M = I,,. Let
V and all columns of U except u; be fixed. (Without loss of generality, we can assume i =
1)

Next partition U into (u,, U:), where u, is the first column of U. Then

(3.3) L+ UU(VV) '=L+ U, UyVV’') + wsui(VV')"' = G.
Let
(3.4) U= (ur:En(A(G), «++, A(G)) < c; U, and V fixed).

The conditions of Theorem 3.1 are satisfied if we can show that for u; € %, it follows
that au; € % for —1 = a = 1. Let G(a) be formed from G by replacing u;, with au;, that is,

(3.5) G(a) = I, + U Us(VV) ™' + aPuuf(VV') ™!
= (VV' + U:Us + awul ) (VV')

Since G(a) is the product of two positive-definite matrices, the characteristic roots of G(«)
are positive. [See e.g., Bellman (1960, page 134)]. For o> < 1,

(3.6) G~ G(a) = G(1) = G(a) = (1 — aP)wui(VV') "
Since the characteristic roots of G — G(a) are nonnegative for a” < 1, it follows that
0= MN(G(a) = N(G), J=1, .-k

Therefore, since E,. is a nondecreasing function in each of its arguments when they are all
nonnegative,

En(A\i(G(a)), « -+, M(G(@) = En(Ai(G), - -+, A(G)).
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Consequently, au; € % for «® < 1, and thus the region % satisfies Theorem 3.1 as was to
be shown. [0

4. Some results on matrix extremal problems.

4.1 Preliminaries. This section contains results on extremal problems that are needed
in the derivation of the union-intersection tests. Recall that ¢ (k, p) = {A:k X p, rank A
=k}, O(k,p) = {A:k X p,AA’ = I,,}. In particular, O(1, p) is the class of unit vectors and
O(p, p) is the class of orthogonal p X p matrices. Because we deal with real matrices, the
results are stated for real matrices; however, with the obvious changes, the results can be
readily extended to apply to complex matrices.

By A = B (A > B) we mean that for symmetric matrices A and B the difference A —
B is positive semidefinite (positive definite). The characteristic roots of an n X n matrix A
are denoted by A(A), which when real, are ordered by

A(A) = A2 (A) = --- = A (A).
4.2 Extremal properties for a positive semi-definite hermitian matrix. Our starting

point is a result known as the Poincaré Separation Theorem. The special case £ = 1 was
obtained by Cauchy in 1829, in which case the result is also called the interlacing property.

THEOREM 4.1 (Poincaré (1890)). IfS:p X p,S=0, and A € O(k, p) then
4.1) (1) Ai(ASA’) = A(S),
(i) Ap—j+1(ASA’) = \p11(S), j=1, .-, k.

From Theorem 4.1, we deduce the important corollary.

CorOLLARY 4.2. IfS:p X p,S=0, then
(1a) minpe ) A(ASA”) = Ap_p+1(S), (1b) maxop A(ASA’) = Ai(S),
(2a) minop AL(ASA’) = Ax(S), (2b) maxoirp A(ASA’) = Ax(S).
Proor. The choice j=1andj= kin (4.1) yields A, x+1(S) = A (ASA’) = A i(S), A, (S)
= Ax(ASA’) = A\x(8S), for which equality is achieved by the choices A = (I}, 0)"" and A =

(0, I ) I'", respectively, where I is an orthogonal matrix satisfying S = I'D,\I"’, D, = diag(A,,
ceey }\p). O

If we take the sum and the product over j in (4.1) we obtain
S Apye1(S) = TE Xpsji(ASA’) = tr ASA” = T4, M(S),
L= A1 (S) = T1J=1 A1 (ASA’) = |ASA’ | < [] =1 A(S).
Equality is achieved by choosing A as in Corollary 4.2, which yields the following.

COROLLARY 4.3. IfS:p X p, S =0, then
(1a) maxowp tr ASA’ = ¥ }oi A(S), (1b) mino ) tr ASA” = ¥ i Ap;1(S),
(2a) maxowu. |ASA’| =T[5 A(S), (2b) mingup |ASA’| =[]} Ap—j1(S).

Part (1a) follows from von Neumann (1937) and Fan (1951); (1b) is given by Fan (1951);
(2a) and (2b) are due to Fan (1949). The derivations differ from the ones presented here.

DEFINITION. Let A be a p X ¢ matrix and let m < min( p, q). The mth compound of
a matrix A, denoted by A" is a matrix of dimension (%) by (%) obtained by forming all
minors of A of order m and arranging them in lexicographic order.
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Properties concerning the compound are discussed in Aitken (1956) and Karlin (1968).
In particular (4)" = (A")"™, and (A"™)™' = (A™")"™. A central property of compound
matrices is the Binet-Cauchy Theorem.

THEOREM 4.4. (AB)"™ = A™B™,

As a consequence of Theorem 4.4, if A:%k X p is row-orthogonal, i.e., AA’ = I, then
A'™ is row-orthogonal.

A second key property is that if A:p X p has characteristic roots A, ---, A,, then the
characteristic roots of A'™ are the (5) products of the form A; A;, - - - A;,. As a consequence,
an extremal property involving tr A = EX; = E;(Ay, - -+, \,) can be extended to tr A" =
E,.(A1, -+, A\,). The notation tr,, A is generally used for tr A ™.

THEOREM 4.5. IfSisap X p matrix,S =0, then form =1, ---, k,
(1) maxop trm(ASA’) = En(Ai(S), -+, Ae(S)),
(2) mino‘k,,,. tI‘m(ASA/) = Em()\p—k+l(s), MY )\p(S))

ProOF. As a consequence of the Binet-Cauchy Theorem,
trn(ASA’) = tr(ASA")'"™ = tr A"™S'™A"™,
Since A : k X p is row orthogonal, B = A™ : (%) X (%) is row orthogonal. Thus
maxacow,, tr A™S ™A™ < maxgeo(). 1) tr BS™B’
= S AS™) = En(A(S), +++, M(S)),
miNacowpy tr A™S™A™ = mingeo(:) .y tr BS™B’
= 51 At (8™) = Enhy i (S), -, Ap(S)).
The results follows from the fact that equality can be achieved. 0

Berkowitz (1974) obtains a result for elementary symmetric functions of the form
tr,(AUA’ + V), where U:p X p, Vik X k, U=0, V=0and A € O(k, p), namely,

maxop trn(AUA" + V) = En(vy + e, -+, v + 1),
mine ) trm(AUA" + V) = E(v1 + tp—p+1, ++ o, Vi + [p),
where » = A(V') and p = A(U). The case V = 0 reduces to Theorem 4.5.

4.3 Extremal properties for two positive-definite Hermitian matrices. The results
presented thus far concern a single positive semi-definite matrix S. Since some applications
involve two matrices, we require extensions of the previous results. Given two p X p
matrices S, and S, with S; = 0, S, > 0 we need to study the characteristic roots of the
matrix (BS;B')(BS:B’)”", where B € %(k, p).

The matrices S; and S, can be simultaneously diagonalized by a nonsingular p X p
matrix W:

S, = WD,W’, S, = WW',
where D, = diag(f,, ---, 6,), and 6, = A\;(S;S;") are the ordered characteristic roots of
S,S5'. Then '

maxge« i p A((BSIB’)(BS:B’)™' = maxge i, ((BWD, W B'Y(BWW'B’)™")
= maxgeiem N(GDyG')(GG')™!
= maxce«up A((GG) V*GDy G (GG') ™)
= maxueowp NHDyH') = 6.
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The fact that equality can be achieved by B = (I,0) W' yields an equality. This argument
can be extended to provide a number of variations.

THEOREM 4.6. Suppose S, = 0 and S; > 0. For A € %(k, p), k < p, the following
results hold. (The maximizations are over the set %(k, p).)

(1a) A((ASIA)(AS:A) ) = N(S1S2Y), (j=1,---,k)

(1b) A1 ((AS1A)(AS:A) ") = Ay (81871, (J=1,---,k)

(22) mins A ((AS1A")(ASA")7") = Aposi (S1Sz),

(2b) maxa A ((AS1A')(AS:;A)™") = A(S,S3Y),

(32) mina M ((ASIA")(AS:A")") = \,(S,S7Y),

(3b) maxa Ar((ASIA")(AS:A') ") = A(S:S2 ),

(4a) maxs tra((ASIA)(AS:A) ") = E.(A(S183Y), « -+, M(S1S37Y)),

(4b) mina tr,((ASIA)AS:A") ") = En(\p-s1($1S2"), « -+, A, (S1S31)).

In constructing union-intersection tests, we are led to maximizing elementary symmetry

functions with respect to a matrix A. The following theorem is basic in solving this
problem.

THEOREM 4.7. Let f(x) be a nonnegative analytic function of a real variable x over
the interval 0 = x < a. Suppose that for some x, € (0, a), the function f(x) is decreasing
for 0 = x = x and increasing for xo < x < a. Let S = 0 have characteristic roots 6, = 6,
= ... =0, Let 0y, O, - - -, O,y denote the §’s arranged in decreasing order according
to the values of f(0); that is, f(61) = f(62) = -+ - = f(6;,)). Then form=1,2, ..., k,

(4.2) maxow.p Enl f(M(ASA")), - -+, f(A(ASA")] = E.[f(611)), - -+, f(Bx1) ]

Proor. We first show that for any A € O(k, p),
(4.3) En[f(M(ASA), -« -, fA(ASA))] < Enl f(6i1), -+, [(Bir1)].

Consider first £ = 1. For any A € O(1, p), A is a row vector of unit length. The single
characteristic root A\, (ASA’) is equal to the scalar ASA’. By the characterization of §, and
6 as the extreme values of x’Sx when x’x = 1, we have §, < A(ASA’) < 6. Because of the
assumptions on the function f(x), the maximum in every interval occurs at one of its end
points. Thus, f(ASA’) cannot be greater than both f(6,) and f(6,), and hence

(4.4) max.p f(MASA’)) < ().

When k = 1, we must have m = 1 and since E,(x) = x, (4.4) holds for k£ = 1.

Consider now the case for general k. Let 81, 6, - - -, 64 be the k 6’s which have the
largest values of f(8). In terms of the original ordering of 8, these form sequences at either
one or both ends of the #’s. Let us denote these 8’s by {61, « -+, O, Op_psms1, -+, 6,},
admitting the possibility that m = 0 or k. By the characterization of the function f, we
must have 6, < xo < 0,_+m+1, where x, minimizes /. By Theorem 4.1,

(4.5) N(ASAY) = 6, J=1---,m,
Ae—j+1(ASA’) = 0,1, Jj=1 .- k—m
Because of the assumptions on f,
(4.6) FIM(ASAY)) < £(6)), =1, m,
fAr-j+1(ASA")) = f(Op—j11), Jj=1 - k—m.

Now E.(xi, ---, xx) is a nondecreasing function of each argument when all x; = 0.
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Therefore,
4.7 Exl[f(M(ASA)), -, fM(ASA)] < En[f(01), -+, [0n), fOp—rims1), -+, f(0p)]
=E.[f(0), -+, (O]

All that remains to be shown is that this upper bound can be attained. Let S be factored
according to S = I'D¢;I"’, where T is a p X p orthogonal matrix and D;¢; = diag(fy, - - -,
051 Then the upper bound is attained for A = (I, 0)I"". 0

If x0 is equal to O or a then fis monotone. From the discussion leading to Theorem 4.5,
we can generalize Theorem 4.7 to the case of two matrices.

THEOREM 4.8. Let f(x) be a function of a real variable x satisfying the conditions
specified in Theorem 4.7. If S, = 0 and S, > 0, let 6, = 0, = ... = 6, be the ordered
characteristic roots of SiS>"'. Let 611, 02, - - -, 6; ) denote the ordering of the 8’s according
to f(6). That is, f(6i1)) = f(62)) = --- =f(0p)). Then form =1, -+, k,

(4.8) MaXokp) E.[f(M((ASIA)(AS; A7), -+, fA((ASIA')(AS; A) 1))
=E.[f(6), -+, f(O)].
4.4 Matrix functions. Suppose S; is an n X n symmetric matrix that can be factored
according to S = I'D,\I'’, where T is orthogonal and D, = diag(A, ---, A,). If g is an

analytic function such that g();) is defined for each i, then we define g(S) as the symmetric
matrix

g(S)=TD,I,

where Dy = diag[ g(A1), ---, g(An)]

For example, if g(x) = exp(x) and S = I'D,I"’, then exp(S) = I' diag(exp A,, - -+, exp
A)T7. If A is a characteristic root of S, then g(A) is a characteristic root of g(S); the
characteristic vectors of S and g(S) are identical.

COROLLARY 4.9. IfS:p X p,S>0, thenform=1, ...k,
(4.9) MaXacoup trn[(ASA’) 'exp(ASA’)] = E.(87}e’", - .., 85 e"),

where 6, are the characteristic roots of S arranged according to decreasing values of
f(68) = 6 'exp(h).

Proor. If the characteristic roots of ASA’~" are denoted by A = A(ASA’), then the
characteristic roots of (ASA’) 'exp(ASA’) are A 'exp(A). Thus,

tr.[(ASA’) 'exp(ASA’)] = E.(AT'e, - -+, Ai'eM).

Let f(x) = x'e*. Since f'(x) = x *(x — 1)e”, the conditions of Theorem 4.7 on f(x) are
satisfied with @ = o and xo = 1. U

COROLLARY 4.10. IfS,>0and S: >0, then form =1, ..., k,
maxacoukp trm[(ASIA) ™ (A(S) + S2) A" )" ™2 (AS,A') ™)
=E.(0p7 (1 = 0p)™ "™, -+, 0001 — 61y)™™),

where ) ; are the characteristic roots of Si(S: + S:) ™! arranged according to decreasing
values of f(6) =07 ™(1 — )™ ™.

Proor. For any A € O(k, p), we first apply a simultaneous factorization to AS, A’ and
A(S + Sy)A".

(4.10) A(S, + S)A'= WW/, AS A"= WD\W/, AS; A’ = W(I, — D\)W’.
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Here, Wis a k£ X k nonsingular matrix and D, is a diagonal matrix whose diagonal elements
are the k characteristic roots of (AS,A")[A(S, + S,)A’]™!

(4.11) (ASIA")"(A(S1 + S2)A)" " "HAS, A7)
= (WD,W") "™ (WW')" (W (I, — Dy) W)™

We next make use of the fact that the characteristic roots of the product of square
matrices are invariant under commutation; that is, A(UV') = A(VU). Applying this fact
repeatedly, the characteristic roots of (WD, W)™ (WW')"*" [ W(I, — Dy) W’]™™ are the
same as the characteristic roots of Dy™ (I, — D,)~"™. These characteristic roots are equal to
A~™(1 — A)7™. Therefore,

(4.12) tra[(ASIA")"(A(S + S)A’)"(AS,AT) ™
= E,[AT™(1 = X)) e (L = M) 7).
Let f(x) = x ™ (1 — x)™ ™. Since
f(x) =x""*"0A = )" (0, + n)x — m],

the conditions of Theorem 4.8 on f(x) are satisfied with @ = 1 and xo = ni/(n; + n). O
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