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ON THE EXISTENCE AND UNIQUENESS OF THE MAXIMUM
LIKELIHOOD ESTIMATE OF A VECTOR-VALUED PARAMETER IN
FIXED-SIZE SAMPLES'

By Timo MAKELAINEN, KLAUS SCHMIDT AND GEORGE P. H. StyaNn

University of Helsinki, University of Warwick, and McGill University

The maximum likelihood estimate is shown to exist and to be unique if a
twice continuously differentiable likelihood function is constant on the bound-
ary of the parameter space and if the Hessian matrix is negative definite
whenever the gradient vector vanishes. The condition of constancy on the
boundary cannot be completely removed, cf. Tarone and Gruenhage (1975).
The theory is illustrated with several examples.

1. Introduction. In maximum likelihood estimation the solution of the likelihood
equations frequently presents difficulties. In general, one is faced with the problem of
sorting out those stationary values which maximize the likelihood, cf. e.g., Barnett (1966).
If it is not clear that the likelihood function has just a single local maximum some check
on the global form of the likelihood function is desirable, as Cox and Hinkley (1975, pages
308-309) point out. For example the occurrence of several maxima of about the same
magnitude would mean that the likelihood-based confidence regions are formed from
disjoint regions and summarization of data by means of a maximum likelihood estimate
and its asymptotic variance could be very misleading. On the other hand, asymptotic
theory ensures, for a sufficiently regular family of distributions, that a weakly consistent
sequence of solutions to the likelihood equations will be unique from some sample size
onwards. Thus it is of interest to find out, as a partial check on the applicability of
asymptotic maximum likelihood theory or, more generally, as a step in inspecting the
likelihood function, whether the likelihood equations admit a unique solution and whether
such a solution actually maximizes the likelihood.

Huzurbazar (1949), Styan (1969, pages 80-81), Turnbull (1974), and Copas (1975) have
suggested looking at the Hessian matrix of second derivatives of the likelihood function
when the parameters satisfy the likelihood equations. They claimed that if the Hessian
matrix is negative definite at these points then the likelihood equations admit a unique
solution. While this conclusion is correct when there is only one parameter, Tarone and
Gruenhage (1975) noted that with more than one parameter the assertion may not be true,
for the function

g(x,y) = —e™® — e 7sin x,

which is defined on the plane, has a countably infinite number of maxima and no other
critical points. We note, however, that the behaviour of g as x, y — + differs from the
behaviour frequently (though not always) expected of a likelihood function in that there
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is no common limiting value of g for all kinds of approaches to infinity of the arguments.
In contrast, the likelihood functions considered by Styan (1973), Turnbull (1974), and
Copas (1975) approach zero whenever one or more parameters approach either infinity or
zero, the latter limit being appropriate for parameters which are intrinsically positive (see
Section 4 below). Such a function is said to vanish or, more generally, to be constant on
the boundary.

It seems rather rare for the likelihood function of an identifiable parameter to be
periodic, so g might not be considered to be a convincing counter-example; also, g cannot
be related in any obvious way to an actual likelihood function. For a further counter-
example which looks more like a likelihood function see McMillan (1978, pages B-2, 3).

As an example of a likelihood function which is constant on the boundary but has many
stationary points, consider the multivariate ¢-distribution with known degrees of freedom
k and covariance matrix k£I,/(k — 2) but with unknown location vector # € #7; then the
likelihood function of a random sample x;, - - -, X, is proportional to

L(0) = [[i=1 (1 + ||xi — 0]|%/k)~'P*P72
where £ >0 and ||y ||> = 3% y?. Then

p+k n X,‘—o

Vlog L(6) = n I
08 LO) === LT = ok

If || x, — @] is large the jth term will be small. Consequently if the other observations lie
sufficiently far away from x; the behaviour of V log L in a neighbourhood of x; will be
determined by the ith term alone. If all observations lie sufficiently far apart it can be
shown, extending the argument of Barnett (1966), that one can have as many as n local
maxima, each in a neighbourhood of its own observation. The larger the number % of
degrees of freedom, the farther apart must the observations lie, and in the limiting normal
case we will have unimodality. .

Theorem 2.1 of this paper establishes existence and uniqueness of a local (and hence
global) maximum for a twice continuously differentiable likelihood function defined on an
open connected subset of Euclidean space, subject to constancy of the function on the
boundary and negative definiteness of the Hessian at the points where the gradient vector
vanishes. Conversely, we note that the nonexistence of maximum likelihood estimates is
sometimes a consequence of the behaviour of the likelihood function on the boundary of
the parameter space.

Theorem 2.6 deals with a different approach to the uniqueness of local and global
maxima, one utilizing (generalized) concavity. In order to establish the existence of a
maximum the latter approach must, however, be supplemented with additional consider-
ations.

Aspects of both approaches are illustrated with the two-parameter Cauchy distribution
(Section 4.1), a survival model involving double-censoring (Section 4.2), and the estimation
of variances in a multivariate normal distribution with known correlation matrix (Section
4.3).

2. The main results. Let ® be an open subset of #Z”. A sequence §", 8%, ...,in ®
is said to converge to the boundary 90 of @ if for every compact set K C © there exists an
integer ko = 1 such that ¥’ € K for every k = ky. When © = 7 this condition is equivalent
to lims_.« || 8%]| = oo,

A real-valued function f defined on @ is said to be constant on the boundary 3© when
there exists an extended real number ¢ such that for every neighbourhood .4 of ¢ there
exists a compact subset K C © with {#: f(8) € 47} C K. This condition is equivalent to
lims_.. f(8®’) = c for every sequence 8", §®, ... in © converging to 3®. We shall,
therefore, use the notation lime_.;e f(#) = ¢ to express that fis constant (in fact, equal to
the constant ¢) on the boundary.



760 T. MAKELAINEN, K. SCHMIDT AND G. P. H. STYAN

THEOREM 2.1. Let L(8) be a twice continuously differentiable likelthood function
with @ varying in a connected open subset ® C #°”. Suppose that

(1) limy_.;¢ L(8) =0,

and that
(i) the Hessian matrix

oL
H(§) = {W (0)}

of second partial derivatives is negative definite at every point § € © for which the
gradient vector

VL = (3L/36;)

vanishes. Then
(1) there is a unique maximum likelihood estimate 6 €0, and
(2) the likelihood function attains
(a) no other maxima in 0,
(b) no minima or other stationary points in ©,
(¢c) its infimum value 0 on the boundary d© and nowhere else.

Theorem 2.1 is an immediate consequence of the following slightly more general result.

THEOREM 2.2. Let © be a connected open subset of #°, p = 1, and let f be a twice
continuously differentiable real-valued function on ©® with lim,_ e f(x) = 0. Suppose that
the Hessian matrix H = {9°f/3x:9x,;} of second partial derivatives is negative definite at
every point x € O for which the gradient vector Vf = {3f/dx;} vanishes. Then f has a
unique local (and hence global) maximum and no other critical points. Furthermore
f(x) > 0 for every x € ©.

Theorem 2.2 can be shown to be a simple consequence of Morse theory, cf. e.g., Eells
(1967). Since some readers may not be experts in differential topology we shall give a brief
outline of an elementary proof of Theorem 2.2. For more details see Midkeldinen, Schmidt
and Styan (1979) or Barndorff-Nielsen and Blasild (1980). We will assume f and © to be
as in the statement of Theorem 2.2.

LEMMA 23.  Let xo € O be a critical point of f, i.e., Vf(xy) = 0. Then x, is a strict
local maximum. Furthermore there exists an open neighbourhood 4 (x,) of Xo in © such
that

(1) the Hessian matrix H(x) is negative definite for every x € /(X,),

(2) the gradient Vf(x) # 0 for every x € A(X,) with X # X.

Lemma 2.3 is an elementary consequence of Taylor’s formula and the continuity of
H(x). The constancy of fon the boundary of ® implies that we can extend fto a continuous
function f on the one-point compactification & of ®. Using this fact one obtains the
following lemma.

LEMMA 2.4. The function f has a global maximum in ©. Furthermore, f(x) > 0 for
every x € ©. ‘

Proor oF THEOREM 2.2. We choose and fix a point x, € © at which fattains its global
maximum M and set, for every real number a with 0 < a < M, S(a) = {x € 0: a < f(x)
=< M}. In order to prove Theorem 2.2 by contradiction we assume the existence of a point
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X, # X in © at which f attains a local maximum M, < M. For every a with 0 < a < M, and
for 1 = 1, 2, let Si(a) be the connected component of S(a) containing x;. Since we can
connect Xy and x; by a compact path ¢ in ©, and since min,e, f(x) > 0 by Lemma 2.4,
Si(a) = S:(a) for all positive a sufficiently close to zero. Lemma 2.3, on the other hand,
implies that Si(a) n S:(a) # & for a sufficiently close to, but less than, M. We define a,
=inf{a: 0 < a < M, and Si(a) n S:(a) = D}. Using either Theorem 3.1 in Milnor (1963)
or an ad hoc argument involving the gradient flow of f we conclude the existence of a
critical point y of fin U,sq, Si(a) N {x: f(x) = ao}, where the bar denotes closure. It is
obvious that y cannot be a strict local maximum of f, so that we have arrived at a
contradiction to the assertion of Lemma 2.3. The theorem is proved. 0

An essentially nonmathematical proof of Theorem 2.2 may be given as follows: Consider
a function f: ® — # satisfying all the conditions stated in Theorem 2.2, and apply Lemma
2.4 to see that f(x) > 0 for every x € ©. To help our intuition, we replace f by —log f = ¢
and look for a unique minimum of ¥ instead. It may be helpful to the reader to imagine a
country completely surrounded by infinitely high mountains where { describes the altitude
above sea level at any given point on the map. Suppose there are at least two valleys in the
country which are separated by a ridge of mountains (i.e., there are two distinct local
minima). Suppose, furthermore, that there is a very serious flood. As the water rises in
each of the valleys, several lakes will form, whose size will increase all the time. Eventually
at least two of these lakes will merge and this is the crucial moment: the point at which
they merge must be a pass, i.e., a lowest point in the mountain ridge separating two valleys.
But a pass (in a continuously differentiable landscape) is a point at which the gradient of
Y vanishes. Our assumptions on y imply that every such point is, in fact, the bottom of a
valley, and this is where we arrive at our contradiction. The conclusion is that there exists
only one valley, i.e., only one local (and hence global) minimum.

The following corollary to Theorem 2.2 is useful when considering the log-likelihood
function rather than the likelihood function itself.

COROLLARY 2.5. Let © be a connected open subset of #°, p = 1, and let f be a twice
continuously differentiable real-valued function on © with lim,_.,e f(X) = c, where c is
either a real number or —«. Suppose that the Hessian matrix H = {8°f/dx:0x;} of second
partial derivatives is negative definite at every point x € © for which the gradient vector
Vf = {df/dx;} vanishes. Then f has a unique local (and hence global) maximum and no
other critical points. Furthermore, f(x) > ¢ for every x € ©.

Proor. If ¢ € #, replace f by f — ¢, and apply Theorem 2.2. If ¢ = —, f must be
bounded above. Hence there exists a number M € # with f(x) < M for every x € 0.
Theorem 2.2 can then be applied to the function —1/(f(x) — M — 1) to give the desired
result. 0

If the Hessian matrix H(#) in (ii) in Theorem 2.1 is negative definite at every point
6 € O then the condition (i) may be weakened. We note that Theorem 2.1 remains valid
if L is replaced by I = log L and (i) by limg_,46 {(6) = —oo, cf. Corollary 2.5. In Theorem 2.6
we use [ since it is often concave even though L typically is not.

THEOREM 2.6. Let 1(8) be the logarithm of a twice continuously differentiable
likelihood function, with 8 varying in a connected open subset ® C £”. Suppose that

(1) the gradient vector VIl vanishes in at least one point 8 € © and that

(ii) the Hessian matrix H(8) of 1(8) is negative definite at every point € ©.
Then

(a) 1(0) is a strictly concave function of 6,
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(b) there is a unique maximum likelthood estimate deo,and
(c) 1(8) has no other maxima or minima or other stationary points in ©.

In view of the comments just before Theorem 2.6, we note that its condition (ii) implies
condition (ii) of Theorem 2.1. Theorem 2.6 has frequently been used in the statistical
literature [on occasion without condition (i) in which case it is wrong!] but we have not
been able to find it stated explicitly. Its proof is straightforward and will be omitted.

3. Discussion. Condition (i) in Theorem 2.1 seems to be the only general and yet
reasonable simple way of ensuring that the likelihood has at least one extremal value inside
the parameter space, cf. e.g., Anderson (1958, page 47), and condition (ii) will, of course,
guarantee that any such extremal value is, in fact, a local maximum, The advantage of
Theorem 2.1 is that it not only yields a unique global maximum and no other stationary
points inside the parameter space, but that it also excludes any local maxima on the
boundary. In fact the boundary of the parameter space must necessarily be the region of
“minimal likelihood,” which is another useful feature of our approach, cf. (2.c) in Theorem
2.1. The practical consequence of all this is that the likelihood-based confidence regions
will always be connected, and will stay away from the boundary.

Even though the conditions of Theorem 2.1 seem quite natural and are certainly
satisfied by wide classes of likelihood functions, it is important to bear in mind that a
likelihood function L may have all the desirable properties (2.a)-(2.c) of Theorem 2.1
without being constant on the boundary of the parameter space. However, we do not know
of any other result or method in the literature which proves the properties (2.a)-(2.c) for
any equally general class of likelihood functions, and which at the same time stands up to
mathematical scrutiny.

We now turn to some of the most important alternative methods available for proving
uniqueness of the maximum likelihood estimate. In some cases the likelihood equations
“separate” in such a way that one variable may be explicitly expressed in terms of the
other variables. In the case of two parameters the problem can then be solved by
considering the single-parameter likelihood “ridge” obtained by maximization with respect
to the other parameter. This approach has been taken, for example, with the two-parameter
Weibull distribution when either the location or the shape parameter is known, cf. Pike
(1966), Rockette, Antle and Klimko (1974). Here the problem can be solved by inspection
of the appropriate partial derivatives. This method of “separating the variables” can be
extended to higher dimensions in a straightforward manner. Cox (1976) describes a method
of pivotal reduction whenever the likelihood equations can be solved sequentially for the
kth variable in terms of Ox.+1, Ors2, -+, 6,, 1 < k < p, p = 2, and uses it to determine the
nature of the various critical points of the likelihood function. This sequential method can
sometimes offer great computational advantages and can give detailed information about
the shape of the likelihood surface. It is interesting to note that the uniqueness of the
maximum likelihood estimate for the two-parameter Weibull distribution may also be
established using Theorem 2.1, with the added conclusion that the boundary of the
parameter space is a region of “minimal likelihood.” Furthermore, this provides another
example of the situation where the Hessian is not negative definite everywhere.

Another group of conditions frequently imposed on likelihood functions centers on
various notions of concavity. Between the log-concavity of Theorem 2.2 and condition (ii)
of Theorem 2.1 there are various weaker forms of concavity, any one of which could have
been taken as a basic assumption. Thus it is possible to obtain the conclusions of Theorem
2.2 by relaxing the concavity assumption (ii) to the assumption of quasi-concavity, i.e., to
the assumption that all the level sets {#:1(#) = a} be convex, and by assuming that the
Hessian is negative definite at every critical point. In all these cases, however, one has to
impose the condition that the gradient vanish in at least one point of ®, a condition which
often is extremely difficult to check in the absence of constancy on the boundary.
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In some applications we may be able to reparameterize so that the likelihood function
becomes strictly concave throughout the new parameter space. We may then apply
Theorem 2.6. As an example, consider the family of linear models as given by Burridge
(1981). Let

(3.1 Yi=u+ YX; + og; i=1,...,n,

where the error terms ¢; are assumed to be independent and to have a common strictly log-
concave density function. Examples include the standard normal, logistic and extreme
value distributions. Burridge (1981) then makes the reparameterization:

a=p/o, PB=vy/o, ¢=1/o,

and shows that the logarithm of the joint likelihood of (3.1) is strictly concave throughout
the (a, B, ¢)-parameter space. This result is also seen to hold when some of the y; are not
known exactly but are known only to lie between given constants a; and b;.

Even though the notion of constancy on the boundary (combined with a suitable
condition on the Hessian or any more global concavity assumption) appears to have a
wide range of applications and allows one to replace many ad hoc arguments by a single
method, there seem to be few references to this phenomenon in the literature. Wedderburn
(1976), however, formulates this notion explicitly for certain generalized linear models.
From Barndorff-Nielsen (1978), one may conclude that, under suitable conditions, the
likelihood function of a regular exponential family vanishes on the boundary [cf. his
equation (5), page 105, Theorem 7.1, page 103, and Corollary 5.1, page 78; see also
Huzurbazar (1949)].

4. Examples. In this section we present some examples to give an idea of the
techniques and difficulties involved in proving that a likelihood function is constant on the
boundary, and to show how our method can be applied. Further examples are given by
Pukelsheim and Styan (1979), Barndorff-Nielsen and Bleesild (1980), and by Burridge
(1980).

4.1. The two-parameter Cauchy distribution. Given the sample point X = (xi, x2,
-+, x,) of independent observations from the Cauchy distribution with location-scale
parameters («, 8) we consider the version

B

of the likelihood function. This likelihood function has been studied by Copas (1975) with
different methods.

We shall prove that, for a typical sample point, L vanishes on the boundary of the
region ¥ = # X #*. We fix ¢ > 0 arbitrarily, and exhibit a rectangle %" C % outside of
which we have L < e.

It is clear that

2-1
(4.1) L(a, B) = Bi N [1 + (x" _ ") } : areal, B> 0,

limg . SUPaer L(a, B) < limg.o — = 0.

1

B"

Now let 4
d=Y%min{|xi— x|: 1= i<j=<n, x; # %},
ki=#{J: %= x}, and

m=n—max{k:1=<i=<n}.
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Then
: : : 1 s d*\"'
llm/;_.o SUP.e » L(L‘(, B) = hm,;_,o min<;<n ﬁ i1’ 1+ F
, 1 a\"" om—
= llm/;_>0 B—" <1 + ﬁ) = llm/g_.() BZm n/d2m.

This shows that limg_o sup.e» L(a, B) = 0 under the assumption 2m — n > 0, i.e., that
fewer than ('4)n observations coincide. Under this assumption we conclude that, for every
£ > 0, there exists a constant & > 0 with

{(a, B): L(a, B) = €} C {(a, B): |log B = b}.
Finally, we note that with 4 = {8: |log B| = b}
lim;| .. supge s L(a, B) < limjsj o € [[7=1 [1 + (@ — x:)%7°]7 = 0.

In other words, we can find a constant a > 0 such that L(a, 8) < ¢ whenever |a| > a and
|log B| = b. Combining these arguments we have shown that, for every ¢ > 0, there exist
positive constants a, b with {(a, 8): L(a, 8) = ¢} C {(a, 8): |a| = a and e™* < § < e’}. This
proves that lim, 4 s+ L(a, B) = 0 whenever 2m — n > 0.
Let us now look at the case when at least half of the observations are equal, say x; =
. = x;, with 2 = (%)n. Then, setting D = max | x; — x;|, we get, for sufficiently small 3,

L(xi, B) =B 7" [[ike1 [1 + (x: — x1)%/B*]
> B—n(l + DZ/BZ)—(n—k} > B—n(2D2/B2)—(n—k}
= Bn—2k(2D2)n—k~
Thus L(x, 8) 4 0as B} 0.

In conclusion, the Cauchy likelihood vanishes on the boundary if and only if every
subset of equal observations contains fewer than half of all the observations. If exactly half
of the observations are equal then L is bounded, but not constant on the boundary; in fact
there is a global maximum on the boundary. If more than half of the observations are
equal, to x; say, one even gets limg_o L(x;, 8) = o, i.e., L tends to an absolute supremum
on the boundary and has no global maximum.

Copas (1975) proved that the matrix of second derivatives of L is negative definite
whenever the likelihood equations hold. It then follows from Theorem 2.1 that if fewer
than half of the observations are coincident then L is unimodal and the two-parameter
Cauchy distribution has a unique maximum likelihood estimate. See also McMillan (1978,
Appendix B). By contrast the concavity approach of Theorem 2.2 does not work since
for B fixed and small enough, L is multimodal (cf. Barnett, 1966) contradicting
(quasi-)concavity.

It is interesting to note that the Cauchy distribution is a member of the Pearson VII
family, whose likelihood functions may be written as

1 X — a 294—-(1+1/c)/2
(4.2) L(a, B) =FH""=‘ [1 +c( lB ) ] , areal, >0,

where ¢ is a known positive constant. For ¢ = 0,

1, 1 % - )’
= 55

and the distribution is normal. For ¢ =.1/r, the distribution is Student’s ¢ with r degrees of
freedom and location-scale parameters (a, ). For ¢ = 1 (4.2) becomes (4.1).

For every ¢ = 0, one can again easily verify negative definiteness of the Hessian matrix
whenever the likelihood equations hold. Furthermore, with ¢ < n — 1 it can be shown that
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the likelihood function is constant on the boundary of the parameter space {(a, B):
a € #, B > 0}, provided that fewer than n/(1 + c¢) observations coincide; under this
condition Theorem 2.1 implies once again the existence of a unique maximum likelihood
estimate.

4.2. A survivorship function with double-censoring. Turnbull (1974) considered a
random sample of the lifetimes 7', T, - - -, T,, of n items, where not all the T\ are observed
exactly but some are censored on the right and some on the left. From each item i = 1, 2,
-+.,n,let L, < U, be lower and upper limits of observation so that (L;, U;] is a “window”
of observation and the recorded information is

X; = max(min{T};, U;}, L;); i=12,-.-.,n.

It is known whether X; = U, (i.e., T: > U, and the item is right-censored or a “loss”), or X;
= L, (i.e., T; = L, and the item is left-censored or a “late entry”), or X; = T (i.e., Li< T;
=< U, and the item is uncensored or a “death”).

The lifetimes are recorded only as belonging to one of the m time intervals (¢,-1, ¢];
j=1,2, -, mand 0=t <t;, < --- <tn. Let

A, = number of losses at age ¢;;

1 = number of late entires at age ¢;;
; = number of deaths in (¢, ¢];

Py = G(t),

wherej=1,2, ..., mand G(¢t) = P(T > t) is the survivorship function. Note that 1 — G(¢)
= P(T = t) is the lifetime distribution function.

The problem is to estimate the P, given the A;, p;and §;; 7 = 1, 2, - . ., m. The likelihood
function is

L=cl[ PY1 - P)“(Pi-, — P)?,
where c is a known positive constant and the observations satisfy
(4.3) Am > 0; Ai=0, wi=0, 8 >0, Jj=12, ..., m.
The parameter space is the open convex region 4 in #7 given by:
O<P,<:..-<P <Py=1.

It is clear that L vanishes on the boundary of %. Moreover, if [ = log L then the Hessian
matrix

H = {3%l/aP;0P;} = —A — UBU”,

where the m X m diagonal matrices

_ Aj i
A_dg{Pf+(1—P,->2 :

and
B = dg{8,/(P;-, — P)?},

while the m X m upper bidiagonal matrix

1 -1 o 0 0
0 1 -1 - 0 0
U= P
0 0 0 1 -

o
(=}
(e}
(=}



766 T. MAKELAINEN, K. SCHMIDT AND G. P. H. STYAN

Under the assumptions (4.3) it follows that H is negative definite throughout %. We may,
therefore, apply Theorem 2.1 to conclude that L is unimodal and that there is a unique
maximum likelihood estimate for the m X 1 vector { P;} in the region %. The assumptions
(4.3) may be relaxed to include the possibility that

8 =0 and w > 0.

In other words, we may assume that
(4.4) A >0; A =0, ;; =0, 6,=0; p +86>0;
’ AN=0, w=0, §>0, Jj=2,3 ..., m.

When (4.4) holds L still vanishes on the boundary of ¥; to see that H is still negative

definite we note that
_fa 0 . .
H=K= (o o) * ( UIBIU1T>’

where a, is the leading element of A, while U; and B; are the lower right (m — 1) X
(m — 1) submatrices of U and B, respectively. It follows that U,B,U7 > 0 and |K| =
a,|UB,UT| > 0, the second matrix in K having rank m — 1. We note that our method
allowed us to avoid the rather difficult question of whether the likelihood equations have
a solution in the parameter space %. Furthermore the methods mentioned in Section 3 for
establishing uniqueness in exponential families do not appear to be readily applicable here
since L is not regular, even with the constraints \; + ; + §,=n;j=1,2, ---, m.

4.3. The multivariate normal distribution with known correlation matrix. Consider
the p X 1 random vector X which follows the multivariate normal distribution 470, X),
where

X = ARA;

here A is the positive definite diagonal matrix of unknown standard deviations o; and R is
the known positive definite correlation matrix. The parameter space is, therefore, #% =
{0:i: 0: > 0}.

Let x,, X2, - - -, X, denote a random sample from this distribution and let

S=Y",xx]/n.
If n = p then S is positive definite with probability 1. Let L denote the likelihood; then
—l=—(2/n)log L — plog 2=
=tr27'S + log| Z|
=0"(R'+S)0 — Y7, log 87 + log|R|,

where 6 = {1/0,}, cf. Styan (1973, page 233). The operation * denotes the elementwise
Hadamard (or Schur) product: A*B = {a;;b;;}. As 0, = 0 or © so does §; and [ —» —oo for

—1—log|R| = 32, log(e®/8?),

where a is the smallest characteristic root of the positive definite (with probability 1)
matrix R7'+S (the theorem that the Hadamard product of two positive definite matrices
is positive definite is due to Schur, cf. Styan, 1973, Theorem 3.1). Hence we can apply
Theorem 2.1 to see that

al/90 = —2[(R'+S)0 — a]
vanishes at least once (with probability 1) in #4 . Here ¢ = {0;}. Furthermore,

3%1/0000" = —2(R™'+S + A?)
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is negative definite throughout %%, since R™'*S is nonnegative definite and A? is positive
definite.

It then follows from Theorem 2.1 and the remarks following it that the likelihood
equation

(R"'+S)0=0

for a multivariate normal distribution with known correlation matrix admits a unique
solution in #%, and that the associated likelihood is strictly concave (with probability 1).
Notice that here the likelihood belongs to the exponential family but is not regular.
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