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BROWN-MOOD TYPE MEDIAN ESTIMATORS FOR SIMPLE
REGRESSION MODELS

By D. G. KiLDEA
C.S.I.R.O., Melbourne

In the context of simple linear regression we investigate a class of estimators
for the parameters which contains the Brown-Mood estimators. We derive the
asymptotic efficiency properties of the class of slope estimators and find the most
-efficient slope estimator. This estimator is shown to have efficiency properties
analogous to those of other median estimators for slope found in the literature.
The equations which define the optimal estimators are median analogues of the
least squares normal equation.

1. Introduction. The general method of Brown-Mood estimation was proposed by Brown
and Mood (1951) and Mood (1950), as an intuitive analogue of the sample median, suitable
for estimating parameters of linear regression models.

For the case of simple linear regression Hill (1962) has studied the theoretical properties of
the estimators. Hill’s results cast doubt on the status of Brown-Mood estimators as median
analogues of least squares estimators—see Adichie (1967).

We will show here how the Brown-Mood estimator may be modified to produce a natural
median analogue of the least squares estimator.

Section 2 introduces a class of modified Brown-Mood estimators and Section 3 establishes
conditions for the class of slope estimators to be asymptotically normal. Section 4 contains the
proof of a technical lemma needed in Section 3. Section 5 derives the most efficient member
of the class of slope estimators and Section 6 discusses the case of regression through the
origin.

2. Modified Brown-Mood estimators.

WEIGHTED MEDIAN AND WEIGHTED MEAN. If Xj, ... X, are random variables (rv’s), a1,

- an, are nonnegative constants, define a weighted empirical distribution (df) pointwise by
Fu(s) = [Ye al(X, = 5))(T ¢ a:)~" where G is some subset of {1, 2, .- -n} for which ¥ a; #
0 and I( ) is the set indicator function. Define the following symbols:

2.1 med.(X,, a;, G) is the smallest median of F,( ).
2.2) mean(X;, a;, G) isf s dF,(s).

(When mentioning specific sets G we will occasionally, for example, abbreviate “{i: i < n}” to
“I=n”)

Note that the symbol mean (X,, a,, G) is just a weighted mean, and, by analogy, we will
call the symbol in (2.1) a weighted median. This terminology has been used previously by
Jaeckel (1972).

We have chosen to define the weighted median as the smallest median of the underlying
empirical df for convenience. All results still hold if any other median of the underlying
weighted empirical df is defined as the weighted median.
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Before introducing the modified Brown-Mood estimators we formally introduce the simple
linear regression model. We assume we have n pairs of observations (., ¢;), i=1,2, .-+ n
with each pair satisfying y; = a + Bc¢; + &, where {c;} are known constants, « and 8 are
unknown parameters, and {¢;} are unobservable errors.

Now let ¢* be the smallest median of the numbers {c,; i =1, 2, --- n}, and let ¢ be their
mean, then the Brown-Mood estimator (a’, 8”) of (a, 8) is defined by

2.3) med.(yi —a' — B'a,l,a=c*)=med.(yi —a’ — B¢, 1, >c*)=0.
We can rewrite (2.3) as

(A) med.(y,—a' — B'c;, 1,i=n)=0

(B) med.(y, — B'ci, I, i< c*) =med.(y. — Bc;, 1, & > ¢*).

(2.4)

We can write the normal equations which define the least squares estimator (a, B) in the same
form using (2.2) to get

5 (A) mean(yi — & — fc, L, i< n) =
2.5 . <
B) mean( y; — Bc¢i, |6, — €|, ¢; =< ¢) = mean(y, — Bei, ¢&. — €, ¢; > ©).

A comparison of (2.5) with (2.4) suggests that (2.4)(A) is a natural median analogue of
(2.5)(A), but (2.4)(B) differs from (2.5)(B) not only in the mean and median operations but
also with respect to weightings and groupings of residuals. Hence we allow the equation
(2.4)(B) to be modified as follows.

Let S and U be two disjoint nonempty subsets of {1, 2, - -+ n} such that

(2.6) (ieSandjE U)=c <g.

Let {s;:i € S} and {u,:i € U} be two sets of nonnegative numbers (weights) for which }’ s,
> 0, ¥ u, > 0. Then our class of modified Brown-Mood estimators is defined by

(A) med(y—a—pfc,lisn)=

2.7 - _ = |
(B) med.( y; — B¢, 5., §) = med.(y. — Bci, w, U). l

Since g(¢t) = med( y, — tc., 5, S) — med( y, — tc,, u,, U) is piecewise linear with derivative at
least minyc, — maxsc;, which exceeds 0 by (2.6), it follows that (q, B) defined by (2.7) exists
and is unique.

Calculation of 8 (and hence @), can be carried out exactly by evaluating g(¢) at the finite
number of points {(y, — yi)(¢; — &) "': (i, j € U) or (i, j € S)}. Although tedious this is
programmable.

3. Asymptotic normality of the class of estimators 8. We shall suppress the dependence
on n of all quantities in this section except for § which we shall write as 8,. We need the
following technical lemma whose proof we defer until Section 4.

Let G and {a:} be as given in the definition of weighted median. Let m be the cardmallty
of G and {b.} a sequence of positive numbers. Assume that m — o, as n — .

Consider the following conditions:

31 {&} are i.i.d. with df F( ) and density f( ) continuous in a neighbourhood of 0.
Gh Further F(0) = % and £(0) > 0.

(3.2) lim supn«[b2(Te ci)] < o,

3.3) lim,_,(maxga?)(Ye a?)™! = lim,_.(maxgci)(Fe ;)™ = 0.
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Define:
0.(t, a, G) = med.(e, — tc;by, a;, G),
(34) 0n(t, 2, G) = —tbn(Fo aic:)(Te @)™,
ox(a, G) = [4/*(0)] ' (Te a}) (e a) ™"
LemMa 3.1, If conditions (3.1) to (3.3) hold, then
(3.5)  [on(a, 1[0, 2, G) — 6:(t, a, G)] —p N(O, 1)  as n—> o for each fixed t.

We can now state and prove our main theorem. Let the cardinalities of S and U both —
o as n — . We need the following definition and condition:

(3.6) Vi=[oi(s, S) +oi(u, DICvuwc)Evw) " — Tssc)Ts )17
3.7 lim supnw[ VA(TE1 ¢f)] < .
THEOREM 3.1. Given that (3.1) holds, that (3.3) holds for {{s;:i € S}, {c.:i € S}} and
{{u;:i € U}, {c.:i € U}} and that we also have condition (3.7), then it follows that
(3.8) Vil(B.—B)—=pNO, 1) asn— o,
ProOOF OF THEOREM 3.1. 'We can assume without loss of generality that « = 8 = 0. Recall
g( ) defined below (2.7). From its monoticity we have
3.9) Pr(V7'8.>t) = Pr(g(tV») < 0).
Hence, by Lemma 3.1 and (3.6), and using the independence of the two parts of g( ),
Pr(V:'B.>t) = Pr(M.(t) < —t)
where M, (1) »p N(0, 1) as n — oo, for each ¢. Hence the proof is complete.
4. Proof of Lemma 3.1. We need the following notation
Sn(s;8) =Y 6 al(e;i — te,b, < 5)
Un(s; t) = [Sn(s; t) — ESu(s; t)[Var /28, (s; 1).

We write 8,(¢, a, G) and o.(a, G) as simply 6, and o, respectively in this section.
We have

Pr{[0.(t, a, G) — 6,]0" > 5} = Pr[Sn(s50. + 0,; 1) < % Y6 a]

@.1 = Pr[Un(s0n + 0n; 1) < ra],
where !
@4.2) Fa = [% Y6 @ — ESn(50n + 0a; ][Var Su(son + b3 )] 72

Now, by using (3.1) and (3.2) we obtain
(43) % Y6 a — ESn(s0n + 0n; 1) = —%s(Te al)? + o((Te a®)V?)  asn-> w,
44 Var Su(s0, + 0,5 1) = Y4 Y ¢ al + o(Tc a?) asn— oo,

Both lim,_,. 8, = 0 and lim,_,.0, = 0 follow from (3.2) and (3.3) and some simple arguments
after it is established that b,max|c,| = 0 as n — ). Hence lim,_,.r» = —s. Also because
U.(s; t) is a weighted sum of bounded, independent rv’s, and because of (3.3) and (4.4), it
follows that Un(s; t) —»p N(0, 1) as n — oo. The result then follows immediately.
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5. An optimal 8. Our criterion for optimality in this section will be minimum asymptotic
variance.

THEOREM 5.1.  Let the hypotheses of Theorem 3.1 hold. Then V3 of (3.6) is minimized if
é.) si=|ci—c|, S={ita=sc} and wu=c¢—¢, U= {ii¢>cC}
the minimum value of V}, being

(52 [4f°O1 [ (e — 0117

PrROOF OF THEOREM 5.1. V3 is proportional to (X1 L)X /=1 Lic;)~* where

L‘ = i f j N
3) i = (Zu i) orjES

Li=—3s s)u forje U.
Define two n dimensional vectors L = (L, -+, L,)T and ¢ = (c1, +-+, ¢x)”. Then (5.3)
implies that any L must lie on the hyperplane in n dimensions defined by )7, L, = 0. Hence
minimizing V7% is equivalent to finding a vector L on this hyperplane whose angle with the
vector ¢ is minimized. Hence the optimal vector must be proportional to the projection of ¢ on
the hyperplane. The result then follows because we must have all {s;} and {%.} nonnegative
and the projection of ¢ into the hyperplane is (c1 — ¢, ¢z — &, « -+, ¢n — €)™

Substituting (5.1) in (2.7) we get the following estimating equations.

(A) med.(y; — & — fci, 1,i=n) =0,
5.4 _ -
(B) med.(y,- — Bci, IC,' - El, CG=cC)= med.(y,- — Bci, ¢ — ¢, ¢i > 0).

Thus (5.4) can be seen to be a natural median analogue of the least squares normal
equations (2.5). Further the asymptotic minimum variance given in (5.2) is the same as that of
other median analogues found in the literature (Adichie (1967), Bickel (1973) and Kraft and
Van Eeden (1972)).

6. Regression through the origin. We shall briefly indicate the modifications required to
estimate 8 when « is known a priori. This “regression through the origin” model was not
discussed by Brown and Mood. Without loss of generality we will take a known to be 0.

We shall write “Y ¢ <0” as “Y1”, and “Y. 0" as “Y,2”. For this model the least squares
normal equation becomes

6.1) (X1l eal)mean(y: — B, | e, 6. < 0) = (32 ¢;)mean( yi — Be;, ¢, ¢ > 0).

This suggests that we should take a median estimating equation for § that is slightly more
general than (2.7)(B), namely

6.2) K.med( y. — Bci, si, S) = K,med( y: — Bei, u,, U),

where (E S=c <0 and (€ U=c¢;>0). .
Theorem 3.1 generalizes immediately to this situation. For fixed sequences of weights {s;}
and {u,}, the values of K and K, which give minimum asymptotic variance are

63) K, = (s s)(Ts sici)(Ts s7) 7,
K,=Qvu)Tvwe)Tuvui)™

The minimum asymptotic variance of B, is

64 [4/°O1 7 (T e ™

This is proportional to the least squares asymptotic variance with the same constant of
proportionality as for simple linear regression. The optimal weights are

(6.5) ss=lea|, S={iia<0} and w,=c¢, U= {iic>0}.
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The optimal estimating equation is once again a natural median analogue of (6.1):
(6.6) (21 | ci|)ymed( y: — Bei, ci, i < 0) = (32 ¢;)med( ;i — B, ¢, ¢ > 0).

The median estimator for this model which is given in Bickel (1973) is thus seen to be a one-
step solution to (6.6)—see Bickel’s equation (2.13).
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