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AN OPTIMAL AUTOREGRESSIVE SPECTRAL ESTIMATE

By RITEI SHIBATA

Tokyo Institute of Technology

An asymptotic lower bound is obtained for the integrated relative squared
error of autoregressive spectral estimate when the order of autoregression is
selected. The bound is attained in the limit by the same selection as has been
proposed for prediction.

1. Introduction. In a recent paper (Shibata, 1980), the author, assuming data come
from an infinite order autoregressive process, has proposed an asymptotically efficient
selection of the order of an autoregressive model for estimating parameters of the process.
The proposed selection attains a lower bound in the limit for the mean squared error of
the estimated predictor. The purpose of the present paper is to apply the result to an
autoregressive spectral estimate f.(A) of a spectral density f(A) obtained by a kth order
autoregressive model fitting.

Consider a weakly stationary process {x;, t = .-, —1,0, 1, -..} with mean 0, which
satisfies the equation
(1.1) YEouxi = e

where ao = 1, ¥, af < » and {e,} is a sequence of i.i.d. random variables. We suppose that
the process {x.} has the spectral density

(1.2) fA) ="/ | A [,
where A(e*™) is a boundary function of A(z) = 1 + a1z + @222 + - - -.
Given observations x1, x2, -, x, from the process {x.}, we have the least squares

estimate d(k)’ = (d.(k), da(k), - - -, dx(k)) of the autoregressive parameters by fitting a kth
order autoregressive model

k -
Zl=0 A X—) = €.

Let {K..} be a sequence of positive integers and N = n — K,,. The estimate d(%) is a solution
of the following linear equation with K, < n initial conditions

R(k)a(k) = —F(k),

where
Rk) = Fim 1= L, m=k), FR) = (Fo, Foo, -+, Fro),
Fim = Yok, Xev1-Kes1-m/N
and & = K,.

By using this estimate and an estimate of 6% namely
Gi = 27;11’" (xee1 + dr(R)x: + -+ - + Gr(R)xe1-1)?/ N,
we obtain an autoregressive spectral estimate

fk(}\) = 5k/ |Ak(€2m) |2,
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where
An(z) =1 + di(B)z + Go(R)22 + - - + Gu(B)2".

Following Akaike (1969, 1970), as the loss function of a spectral estimate fi(\) we will
adopt the integrated relative squared error

) = F)\
(1.3) J(—m———) dA,

where the integrals throughout are taken from —% to %.

If % is selected from the given range 1 = & = K,,, an asymptotic lower bound for this
error is given by the following.

Define the norm

”a"C = (El,m C\’IC\’mC'lm)l/2

for any vector a, where C = (C,,) is a finite or infinite dimensional positive definite matrix.
Let a(k)’ = (ai(k), az(k), ---, ar(k), O, ---) be the projection of a’ = (ai, as, - -+) on the
space

Vk) = {a; o' = (a1, a2, +++, a, 0, --+)}

with the norm | - |z, where R = (rim, 1 = I, m < «) and ry, = E(X;-X:-m). Define a function
of &

La(k) = ||a — a(®) [} + ko®/N
=o0% — 0%+ ko?/N,
where
0% = E(xee1 + ar(R)xs + «++ + ap(B)xre1-2)%

Then let £} be the 2 which minimizes L,(k) in 1 = k = K,.. In Theorem 2.2, we obtain the
lower bound 2L, (%})/o? for the integrated relative squared error (1.3). It is also shown that
this bound is attained by the selection which minimizes the statistic

S.(k) = (N + 2k) 3.

2. An optimal autoregressive spectral estimate. We shall make use of the
following assumptions on the process {x;} and the sequence {K,}, which are the same as
in Shibata (1980).

ASSUMPTIONS.

(A1) {x.} is a stationary Gaussian process of the form (1.1) and |a| =7 |a:| < o».

(A2) A(z) is nonzero for |z| = 1. )

(A3) The order k is selected from a given range 1 = k& = K,,, where K, — o and
K,./n"?—> 0asn— .

(A4) {x:) is not degenerate to a finite order autoregressive process.

To obtain the lower bound, we need the following lemmas on asymptotics of the
estimates 6°(k) and d(k). In Theorem 2.1 it is shown that the integrated relative squared
error is asymptotically equivalent to L, (k) if £ diverges to infinity as n — . From this, the
main Theorem 2.2 is easily derived.

LEMMA 2.1. Assume (Al) to (A3). Then 6; — oi converges to zero in probability
uniformly in 1 = k = K,, and for any divergent sequence {k,}, (6¢ — 0%)/(Ln(k))*
converges to zero uniformly in k, = k = K,.
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Proor. Putting
sk =Yk (X1 + ai(R)x, + -+ + ap(B)x1-4)?/N
we have
(2.1) | 6% — ok = ||d(k) — a(k)||zw + |5} — oF.

By Proposition 3.2 and Lemma 3.3 of Shibata (1980), we see the first term of the right-
hand side of (2.1) is written as ((k/N)o®> + L.(k)o,(1))"/? uniformly in %, which then
converges to zero in probability from Assumption (A3) and the boundedness of L, (k). The
second term is rewritten as

sk — ok = (Foo — ro) + 2a(k)'(F(k) — r(k)) + a(k) (R(k) — R(k))a(k),

where R(k) = (ri-m, 1=1,m = k) and r(k) = (ry, - - - , ). By Lemma 4.2 of Shibata (1980),
the fourth moment of each term of the right-hand side is bounded by some constant times
1/N? uniformly in 1 = & = K,, so that the first assertion is established. In k.=k =K,
L, (k) uniformly converges to zero as n — o, so that

(la(k) — a(®) lzw + of — 0%)/(La(k))"*
converges to zero in probability uniformly in £, = £ = K,,. On the other hand
Yhzs, 1/(NLn(R))* = Tk, 1/(ko?)?,
so that the sum from % equals %, to K, of the fourth moments of
(st — o)/ (Ln(k))'"?

converges to zero. This proves the second assertion.

LEMMA 2.2 Assume (Al) to (A3). Then
|d(k) — a(k)|

converges to zero in probability uniformly in1 =k = K,,.

Proor. By using the Euclidean norm || - ||, we have
|a(k) — a(k)| = k' ||a(k) — a(k) |
SR REB) ) ak) — alk) |rw,

where R(k)™! is the inverse matrix of R(k), whose operator norm || R(k) ™' || is bounded (see
Berk (1974)). Furthermore

5 2 R [(N 2 2 2
(2.2) k|la(k) — a(k)||kw = ~ 1z la(k) — a(k) |kw — o) +0*¢.

Applying Lemmas 3.3 and 3.4 of Shibata (1980), we see that the right-hand side of (2.2)
uniformly converges to zero as n — o in probability. Thus the desired result is obtained.
If we define

Tk =fez"w‘fk()\)d)\,

then the behavior of the estimated covariance matrix
Ri= (Fromp, 1 = 1, m < )

is given in the following lemma.
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LEMMA 2.3. Assume (Al) to (A3). Then for any divergent sequence {k,}, | Rr — R||
converges to zero in probability uniformly in k., = k = K., where || - || denotes the operator
norm of the matrix.

ProoF. From the definition of R, omitting the arguments of A(e*™) and A(e*™) for
simplicity, we have

|Rx — R| = 2 max, |[fi(A) — fQN) |

[|A|?> = |Ax)?] . 1 .
< P, —_
= 2 max), A TTAL ok+2lAlz|a;e o
Now
(2.3) | |4z = |A%| = {|ak) — a(k)| + |a(k) — a|}™

By Lemma 4 of Berk (1974) and Lemma 2.2, the right-hand side of (2.3) converges to zero
as n — o uniformly in &, = k = K,.. The result follows from Lemma 2.1.

THEOREM 2.1. Assume (Al) to (A3). Then for any divergent sequence {k.},

m»—ﬂmf //

————— ) d\/ L.(k

J( ™ *)
converges to 2/0° as n — « in probability uniformly in k, = k = K.

ProoF. By Lemma 2.3 and an application of Proposition 3.2 of Shibata (1980),
@ — d(k)|*s,/Ln(k)

converges to 1 in probability uniformly in 1 = 2 = K,, where d(k) is considered as an
infinite dimensional vector with undefined entries zero. On the other hand, f(A) converges
to f(A) in probability as n — o uniformly in k&, = £ = K, and —'% = A < ', so that F} =
max,fi(A) is stochastically bounded uniformly in &, < k < K,. Putting f*(\) =£.(\) in the
following lemma, completes the proof.

LeEMMA 2.4. Consider another spectral density

f*()\) - 0*2/IA*(€,27:¢A)|2
which induces the covariance matrix
R*=(rin,, 1=1 m< ).

Assume that |a*| < © and A*(z) is nonzero in |z| = 1. If |a — a*| < » and both o* and
o*? are positive, then

& =FNY L lla—a*fk
f( N )‘“ S

2\ 2 —a*l%. 2
< (é;}) +”L_;_UE_<|a_a*,2F* +4a—a*| (F*)%* +2|Ad?| (2 +-‘1*7)>
o g a

Here F* = max,f*(\), Ao® = 6% — 6*% and a*’' = (al, a3, - - -) is the vector of the coefficients

of A*.

The proof of this lemma is placed in the Appendix. To see the behavior of the loss
function (1.3) when 1 = k& = &, define

Arz) =1+ ai(B)z + -+ + an(k)2” and fi(A) = ai/lAk(ez"‘k)lz.
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ProposiTION 2.1. Assume (Al) to (A3). If {k.} is a divergent sequence of integers

such that
j ( f) — ka\))
fr(A)

diverges to infinity as n — o uniformly in 1 = k = k,, then

j (fm ﬁw) 0\ / f (fm fkm)
ANy JAN)

converges to 1 in probability uniformly in 1 = k = k,.

Proor. By Schwartz inequality we have

f) = fd) ) = AW\
f( 7 )"“ f( 20 )‘”‘
’ f (f(A) fkm) J’ (fm —fkm)z d}\‘
RN )
£ = F)
29 H ( TN ) ’

0 = AN o =MW L\
o2 (] (5 ™) o | (57%) »)

From the uniform convergence of fx(A) to fi()), it suffices to show that

frD) = ) ) = feN)
J( AN )‘”/f( ™) )‘”

converges to zero in probability uniformly in 1 = k& = k,. As was shown by Whittle (1963),
if 6% # 0, then Ax(2) % 0 in | 2| = 1. Thus for any € > 0,

lim,.P(|Ax(2)| > € |2|=1) = 1.

We can then apply Lemma 2.4 to fo(A\) and f»(\). From the choice of {k,} and Lemma 3.4
of Shibata (1980), we have the desired result.

LEMMA 2.5. Assume (Al) to (A3). Then

J’ (f(A)fmﬂ(A)) a / J’ (fmko\/:ko\))

is stochastically bounded away from zero uniformly in 1 = k = K,.

ProoF. From the inequality

(fw - fkm)z - (fm - ﬁm)z / (1 . (fm - ﬁm)z)
Y A TN fih)

we may show that

J{ONE AN
JAN)
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is stochastically bounded uniformly in 1 < £ = K,, and —% = A < !. Here

(0r—mwy<2(l+(ﬂ»Y)
JA0) = )
(2.6) =2(1 + {maxaf(\) max\(1/F(A)}?)

=2(1 + |r|}|a(k)[*/d}).

As was shown by Berk (1974), | a(k)| is bounded in %, and the vector r of serial correlations
has a finite absolute norm | r |, so that, by Lemma 2.2 the right-hand side of (2.6) is
stochastically bounded uniformly in 1 = k£ = K,.. Thus the proof is complete.

Let £} be the & which attains the minimum of L,(k) in 1 = % = K,. The assumption
(A4) then indicates that &} diverges to infinity as n — oo, at the same time, L,.(%k5) goes to
zero. The following main theorem shows that the selection 2 which minimizes the statistic

S.(k) = (N + 2k)6}
is an optimal one.

THEOREM 2.2. Assume (Al) to (A4). Then for any order selection E which is a
random variable possibly depending on the observations xi, xz, - - - Xn, and for any € > 0,

. NE NS wo2  \_
llm,,_mP (j (—T d\ Ln(kn) = ‘0—2' e]l=1

and k attains the lower bound in the limit, that is,

) = FNY? .
f ( - ) "“/ Ltk

converges to 2/6” in probability as n — .

Proor. We can choose a divergent sequence of integers {%£*} such that

FO) = fuld)
j ( fe(\) )dA
O = M\ X

diverge to infinity as n — o uniformly in 1 = & = k}*. The first part of the theorem follows
from Theorem 2.1 if £ > k}*. Otherwise it follows from Proposition 2.1 and Lemma 2.5.
Theorem 2.1 together with the proof of Theorem 4.1 of Shibata (1980) implies the last
part, since £ diverges to infinity as n — o in probability.

As was shown by Shibata (1980), Akaike’s AIC method (Akaike, 1973) is asymptotically
equivalent to our method. Therefore its optimality was also established in the case of
autoregressive spectral estimate.

and

Acknowledgment. The author wishes to thank an associate editor and a referee for
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APPENDIX

PROOF OF LEMMA 2.4. Putting A|A|* = A*(A — A*) + :4—*(A — A*), we have

fO) = f*N) _Ad® AJAP |A—A*[Fe*?  AJA]’AS?

t—_
f(}\) 02 |A*|2 IA*IZ 02 IA*IZ 02
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By Wiener’s theorem, the Taylor expansion
1/A*(z) = B*(z2) =1+ bz + bfz> + - ..

is absolutely convergent on the unit circle, that is, |6*| < o, where b* = (b, b%, ---).
Therefore

A - A* d}\ _ © * © b* 2m (I+m)\ d}\

——Z—*——- = Zz=1 (a; — al) Zm=0 meé

= Y"1 Yom=o0 (a; — af)b} f eZmtm g = (.

2 A%
AELdA=2JReGLfi)dA=Q

Thus

|A*[* A

A-A*\
it =0.
On the other hand

2\ 2 2 2
- A* A - A*
—;AIAI d\=2 lA—‘—£~'—d>x+Re ——] dA
lA*l IA*lZ A*

= (2/0*2) j lA _ A*,Zf*o\) d\

By the same way,

2
R*.

= (2/0*})|la — a*|

Combining these results, we have

N =FNY . (A% | lla - a*|E
J <_..___fw ) d\ = (__) +ple -l

a*t |A—A*] 2A|AIP\ |A - A*)?

- dA

04 f( IA*IZ + lA*lz lA*|2

2|la — a*|k [(Ad® : Ao® Ad®

T \\or) 2ory i lesatle
It is enough to note that
Al? A—-A*
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