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LEARNING AND DECISION MAKING WHEN SUBJECTIVE
PROBABILITIES HAVE SUBJECTIVE DOMAINS

By CHARLES F. MANSKI

The Hebrew University of Jerusalem

This paper relaxes the conventional subjective probability setup by allowing
the o-algebra on which probabilities are defined to be subjective along with the
probability measure. First, the role of the probability domain in existing statistical
decision theory is examined. Then the existing theory is extended by character-
izing the individual’s selection of a probability domain as the outcome of a
decision process.

1. Introduction. A central element of modern statistical decision theory is the idea of a
subjective probability system (O, £, P), that is a probability measure P subjectively imposed
on a o-algebra § of subsets of an abstract space ©. Within the existing theory the probability
domain (6, Q) is prespecified and fixed. The measure P on the other hand is variable. Not
only may P vary across individuals but a given individual’s subjective probabilities can vary
as a function of the data available to him. Bayes rule, of course, provides the mechanism by
which data is integrated with prior beliefs. This paper relaxes the conventional subjective
probability setup by allowing the o-algebra on which probabilities are defined to be variable
along with the probability measure.

The plan of the paper is as follows. Section 2 reviews elements of existing statistical decision
theory, in particular the conditions a probability domain must satisfy if Bayes rule and
expected utility maximization are to be well-defined processes. Section 3 presents a model of
decision making when the elicitation of subjective probabilities is costly. In this context, the
decision maker faces the auxiliary problem of selecting a probability domain.

Before proceeding it must be said that the present paper does not stand in isolation from
past literature. The Keynes (1921) distinction between risk and uncertainty, the Good (1962)
discussion of the ‘measure of a nonmeasurable set’, the Fine (1973) suggestion that probabilities
need not be defined on a o-algebra and the extensive Dempster (1967, 1968)-Shafer (1976)
work on inference based on ‘lower probabilities’ are all relevant and I have benefitted from
the thinking of these authors.

2. Statistical decision thecry with the probability domain fixed.

A. LEARNING.

1. Conditions permitting Bayesian learning. Given a subjective probability system (O, £,
P), the conditions under which Bayesian learning is a well-defined process are most often
assumed without comment. For present purposes, however, it is important to review and
interpret these conditions.

Let (Y, ®, ») be a measure space of observations and F,, § € O a family of probability
measures on (Y, ®), each Fy < », with » o-finite. Let f( y/6) be the density at y € Y of F,.
Furthermore, let 1 be a measure on (O, &) with P < p and u o-finite and let p(6) be the prior
density at § € ©. Finally, assume that for each y € Y, the likelihood function f( y/-) is P-
integrable and that fo f( y/0) dP(8) = 0 = f(y/8) = 0, all § € O. Then Bayes rule defines a
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posterior density on © as follows. If ( y, 8) satisfy f( y/8)p(@) > 0, then
S(y/6)p(6)

pO/y) = :
J’ Sf(y/8) aP@)

(<]
Otherwise, p(6/y) = 0.

In the above, two conditions involve the subjective probability domain . First, the P-
dominating, o-finite measure u has domain . Second, integrability of the likelihood function
requires that this function be 2-measurable.

Of the two conditions, the first is relatively inconsequential. The specification of £ does
delimit the-class of measures u which are o-finite. However, given any £, the set of P-
dominating o-finite measures always is nonempty. In particular, p = P is always a possible
choice. Since the posterior probability on any w € { does not depend on what P-dominating,
o-finite 4 one employs, it follows that the restrictions  places on the class of feasible u
measures have no operational effect.

The second, measurability, condition is of substantial importance. An essential aspect of
the restriction £ imposes on f( y/-) is contained in the following simple proposition, whose
validity is a direct consequence of the definition of measurability.

PROPOSITION 1. Let w be a minimal set of Q, that is w € Q and no nonempty proper subset
of w belongs to Q. Then f(y/+) can be Q-measurable only if there exists a J, = 0 such that
f(y/0)=J,,all 0 € w.

It follows from the proposition that if the likelihood function is not constant on minimal
sets of the probability domain, then Bayes rule is not well defined.

The Bayesian literature has generally ignored the implications of Proposition 1. This has
been done without technical error because authors have universally specified probability
systems (O, 2, P) in which the minimal sets of { are the elements of ©. In particular, in the
case of © countable, it has generally been assumed that € = 2°. In the case of © = R", © has
been taken to be the Borel o-algebra or the Lebesgue measurable sets.'

What must be emphasized here is that the assumption of such rich probability domains
buys integrability of the likelihood function at a price in behavioral realism. As an example,
consider a simple economic growth model e’” where T is ‘time’ and § € © = (—», ®). An
economist may reasonably be willing to place subjective probability on the possibilities § €
(=, 0), § =0, 8 € (0, ) corresponding to a shrinking, stable or expanding economy but to
go no further. In this case, £ = o[¢, (—, 0), [0], (0, )] where o[ -] denotes the operation of
forming the smallest o-algebra containing the sets in the brackets. Given an observation y,
Bayesian learning about the economy’s growth rate is then possible only if f( y/-) is constant
over each of the sets (—o, 0) and (0, ), a strong restriction on the nature of the observation.

It is of interest to observe that by Proposition 1, Bayesian learning may not be possible
because an observation is too informative, in the sense that its likelihood varies too much
across the elements of ©. Observations with sharply varying likelihood functions are usually
and quite naturally considered to be the ones which carry the most information about 8. It is
therefore curious that it is in the presence of such observations that failure of Bayes rule is
most likely.

2. Learning without Bayes rule. 'When Bayes rule fails, how may one proceed?
One approach is simply not to let the rule fail. A way to accomplish this is to condition
specification of the prior probability system on the observation. That is, given an observation

! It should be noted that identification of the minimal sets of £ with the elements of © does not per se
ensure that € is an interesting ¢-algebra. For example, consider the case where © = R' and {2 is generated
from the points of R' plus R itself. Then the only uncountable subset of R which is a member of € is the
set R itself.
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with associated likelihood function, one might impose a prior probability domain rich enough
to support application of Bayes rule. The use of such a data-dependent prior domain may not
be orthodox Bayesian procedure but it is akin in spirit to suggestions made by Zellner (1977)
and others for the specification of prior probability measures.

Alternatively, one might condition specification of the likelihood function on the prior
probability domain. That is, given €, one might specify f( y/-) to be Q-measurable. This
procedure will not be appealing to those Bayesians who view the likelihood function as an
objective characterization of a random process but may be acceptable to those who argue that
the likelihood function is no less subjective than is the prior.

Of course mixtures of the above procedures are also possible. In fact, to those authors
who take as their primitive the subjective product probability space (6 X Y, 2 X ®, F,- P) and
derive the posterior via Bayes theorem, there exist no grounds for treating the prior and the
likelihood asymmetrically.’

B. DECISION MAKING.

1. Conditions permitting expected utility maximization. Let D be a set of feasible actions
and U(d/0) be the utility associated with action d € D under state of nature § € ©. Then the
expected utility maximization decision rule directs one to select an action d € D that maximizes
the expected utility V(d) = [o¢ U(d/6) dP(0).

The expected utility criterion is well defined only if for each d € D, U(d/-) is P-integrable
and if the function V(d) has a maximum in D. The probability domain € is involved in these
conditions in that U(d/-) must be 2-measurable if it is to be P-integrable.

Recognition of this requirement is long standing. Nevertheless, the measurability condition
on U, like that on the likelihood function, has been largely ignored in the recent literature.
Again, the assumption by authors of rich o-algebras has made this lack of attention technically
legitimate. But again, a price in behavioral realism has been paid. In particular, Proposition
1 has the same force with respect to the utility function U(d/-) as it does with the likelihood
function f.

2. Other decision rules. As in the case of Bayesian learning, when the utility function is
not measurable, one may decide to respecify U, 2, or both. The maximin and maximax
decision rules may usefully be viewed as the results of two possible respecifications of U
undertaken when @ = (¢, ©). In the maximin case, U(d/-) is replaced by U(d/O) =
infyeo U(d/8), while the maximax replacement is U(d/©) = supseo U(d/#). The functions
U(d/©) and U(d/©), each being constant over O, are both measurable under .

3. Statistical decision theory with the probability domain variable. Existing literature
implicitly adopts the position that probability domains, like utilities and prior subjective
probability measures, are idiosynchratic personal characteristics which should be taken as
exogenous by decision theory.

Alternatively, one can regard a subjective probability domain as a construct selected by an
individual for its value in a given context. In this view, a domain is not an innate attribute of
a person but rather a tool he employs in solving a decision problem. As the decision context
changes, for example through the accumulation of observational evidence or a change in the
set of feasible actions, the individual suitably alters the domain he uses. If this endogenous

! One major difference between the specification of data-dependent prior domains and data-dependent
prior measures should be noted. In the latter case, the existence of extensive data will make the choice of
prior measure largely irrelevant as the data will dominate the prior in forming the posterior. In the former
case, however, extensiveness of the data does not reduce the importance of the prior specification. In
application of Bayes rule, the posterior domain is always the same as the prior domain.

*Bayes theorem, that is the probability theory result that a measure on a product space can be
decomposed into conditional and marginal measures, is to be distinguished from Bayes rule, where the
prior (a marginal measure) and likelihood (a family of conditional measures) are posited as primitives.
The presentation of Bayesian analysis in DeGroot (1970) utilizes Bayes theorem. That in Lindley (1971)
rests on Bayes rule.
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view is adopted, one must seck to explain how probability domains are determined.

The latter position will be taken here. In particular, we shall adopt the premise that a
person could in principle place a subjective probability measure on an arbitrarily refined
system of subsets of the model space. However, because the elicitation of subjective probabil-
ities is costly, he may choose to assign probabilities only on a limited domain. The reason why
the person bothers to elicit his probabilities at all in the face of elicitation costs is that
knowledge of the probabilities is useful in solving a statistical decision problem.

In order to move the discussion beyond generalities, I sketch out a formal model.

A. THE IDEALIZED DECISION PROBLEM. To begin, assume a decision maker with a set of
feasible actions D, a model space © and utilities U(d/), deD, 6€©O. Assume that the utilities
are bounded in D X ©. Also assume that there exists a o-algebra & of subsets of © such that
U(d/-) is Q-measurable for all 4 € D. Moreover, if the elicitation of subjective probabilities
were costless, the decision maker would place a subjective probability measure P on .

These assumptions define an idealized decision problem whose solution is a * € D which
maximizes the expected utility function V(d) = [e U(d/0) dP(0) over d € D. The decision
problem is idealized because the process of finding its solution has been assumed costless. In
what follows, this assumption is relaxed.

B. ELICITATION cOsTS. There can be no doubt that the process of solving a formal
statistical decision problem can be costly to the problem solver. In particular, there is ample
evidence that the introspective elicitation of subjective probabilities constitutes a difficult, time
consuming task even in relatively simple contexts.'

To characterize the costs of eliciting subjective probabilities, assume that the decision
maker has an initial domain o on which he has previously assigned probabilities. Also assume
that the decision maker’s new domain ; will always be a refinement of the initial one. That
is, £ C 1. Now define C(: | Qo) to be the cost of eliciting probabilities on the refined domain
2, given that the decision maker had previously elicited probabilities on the cruder domain
Q.

We shall assume that the cost function satisfies certain intuitive but nevertheless restrictive
conditions. Let £ C £, C &; with & # €, # ;. Then we assume

(i) infe, (/) = K> 0
(i) CQ1/R) + C(Qu/ Q) = C 1/ Qo).

That is, elicitation costs are bounded below and path independent.

We shall also assume that probabilities elicited on crude and refined domains agree, that
is

(iii) w € Qo, & = Po(w) = P1(w)

where Py and P; are the subjective probability measures on o and £, respectively.

Finally, we assume that the elicitation cost C(£2; /) is known to the decision maker and
is subtracted from the idealized utility U(d/8) to form the joint utility of an action and a
probability elicitation

@iv) O(d, /0, Q) = U(d/0) — C(2: /%)

C. THE DECISION PROCESS.  Consider now a decision maker with initial probability domain
& such that the utilities U(d/-) are not £-measurable. The existence of elicitation costs faces
this decision maker with a situation in which solution of the idealized decision problem is
costly. And it poses for him the auxiliary problem of selecting a domain alongside his need to
choose an action from D.

Let do be the action the person would select conditional on £ being his domain. Rather

! The elicitation of utilities and computation of expected utilities may also be burdensome. In order to
focus attention on the problem of selecting a probability domain however, I shall continue to make the
idealized assumption that these latter aspects of decision making are costless.
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than retaining £, the decision maker may elect to refine his probability domain before
selecting an action from D. If ; is the refined domain and 4, the selected action under i, the
realized value of the probability elicitation is ¥ (d1) — V(d,) and its cost is C(2:/). At the
time of the elicitation decision, the elicitation cost is known to the decision maker but its value
cannot be computed.

The above describes the context in which the decision maker finds himself. It seems useless
in this context to seek an optimal solution to the decision maker’s problem. As Simon (1957)
properly points out, when the process of solving an idealized optimization problem is costly,
the process of solving the respecified optimization problem which makes these costs explicit
will generally be even more costly. I shall therefore suggest a decision process that a person
facing elicitation costs might reasonably follow.

To introduce the suggested procedure, first observe that under conditions (i) and (ii) the
cost of eliciting probabilities on an infinite system of sets is itself infinite.' It may therefore be
assumed that the initial probability domain and subsequent refinements are all finite.

Next note that with any finite algebra of sets {2 there is associated a unique basis I'y, a
finite system of sets which partitions © into mutually exclusive and exhaustive subsets and
which satisfies the condition o(I"y) = . The sets y € 'y are the minimal sets of .

Third, for any d € D, y C O, define the lower and upper utilities

U(d/vy) = infoe, U(d/6), U(d/v) = supse, U(d/6)
and thence the lower and upper expected utilities
Vo(d) = Yer, U(d/v)-Po(v), Vo(d) = Ter, U(d/7)-Po(y).

Observe that the lower and upper expectations are computable by a decision maker using
domain £.

As a final preliminary, consider an action dy € D which maximizes V,(-) and a dy € D
which maximizes Vo(-). Given o, dy and d, are respectively the maximin and maximax
solutions to the decision maker’s choice problem. Recalling that U is assumed bounded, it is
easy to see that

0 > Vo(do) = Vo(d*) = V(d*) = V(do) = Vo(do) > —.

We now assume that given £, the decision maker begins by solving the costless problem
max Vo(d) as an approximation to the idealized problem max V'(d). With d, the tentatively
chosen action, the maximal value of refining the probability domain is V' (d*) — V(d,). This
uncomputable quantity is bounded from above by the computable expression Vo(do) — Vo (do).
It immediately follows that if there exists no refinement £, of £ such that Vo(dy) — Vo(db)
> C(8:1/%%), the decision maker should elect to retain the domain £, and take the action d,.
It remains then to discuss situations in which a beneficial refinement may exist.

There are many a priori sensible strategies a decision maker might follow in this context
and it is difficult to point to one as being clearly superior. One general principle, however, is
that refinement of the domain should be approached as a sequential process rather than as a
once and for all decision.

The value of a sequential strategy derives from the assumption that elicitation costs are
path independent. Under path independence, the cost of shifting from a domain €, to a
proposed refinement §2; is independent of the number of intermediate refinements made en
route. On the other hand, intermediate refinements yield probability information that allow
the decision maker to reevaluate the transition to §; before incurring all of its costs. It follows
that the best refinement processes are those with a maximal number of stages, that is, those in
which each stage makes a binary division of one of the sets forming the current probability
domain basis.

! To see this, consider C(§o/(¢, ©)) where o is infinite. Let £_, be an infinite o-algebra with Q_; C
Qo, Q-1 # Q. Then C(Ro/(¢, ©)) = C(Q-1/(¢, ©)) + K. By induction, C(2o/(¢, ©)) is greater than any
positive number.
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Given the above, the decision maker’s elicitation problem reduces from one of considering
all possible refinements of the initial domain £ to one of examining the minimal sets y € T’
and determining which one if any of these sets should be split into two parts. Although a
formal analysis of this problem will not be attempted here, attention may be called to three
germane factors.

First, the relative values of the prior probabilities Py(y), y € I" will be relevant. All else
equal, the higher the probability assigned to a set, the more this set influences the expected
utility values, hence the more important it is to know how the probability Py(y) distributes
itself within y.

Second, one should be concerned with the relative spread of utility values within each set
of I'y. If for some y € Iy it is the case that U(d/6) = U(d/#'), all 6, 8’ € y,d € D or if U(d/
0) = U(d'/0), all d, d’ € D, 6 € y then clearly there is no value in refining y. Conversely,
refinement has the greatest potential benefit when the utilities U(d/f) vary greatly across 6
€ vy for each d € D and across d € D for each 6 € y.

The third consideration is of course the relative cost of eliciting probabilities on different
sets.

To conclude this discussion, we raise the question of the convergence of the sequential
elicitation process. Observe first that for all d € D

Qo C Q= Vo(d) = Vi(d), Vo(d) = Vi(d).
From this it follows that
© > I—/o(d—o) — Vo(do) = 171((71) - Vi(d)=0,

that is, the computable upper bound on the value of probability elicitation cannot increase as
the domain becomes more refined.

It is of interest to seek conditions on the utilities, the action and model spaces, and the
elicitation process that guarantee that this bound converges to zero as refinement proceeds. A
very simple such case is that in which the sets D and © are finite. When the bound does
converge to zero, a point must eventually come at which K exceeds the bound and hence
further refinement is unprofitable. If K is sufficiently large, this point necessarily is reached
before a domain rich enough to make the utilities measurable has been attained. A general
examination of the circumstances under which the terminal domain does not yield measurable
utilities is not attempted here.

D. THE EFFECT OF OBSERVATIONAL EVIDENCE ON THE CHOICE OF DOMAIN. Assume now
that our decision maker with ‘initial probability domain &, observes a realization y from the
observation space Y. How will this event affect his decision process?

In line with the earlier discussion, assume the existence of a o-algebra £ under which the
utility functions U(d/-), d € D and the likelihood function f( y/-) are all measurable. Then
the observation of y changes the original idealized decision problem to

Jo U(d/0)f(y/8) 4P (6)
Jo f(y/0)aP@®)

Let us now define the lower and upper marginal likelihoods
fo(») = Byer, (infoc, f(3/0))-Po(v), fo() = T rer, (Supse, f(¥/8))-Po(y)
and the lower and upper posterior expected utilities
Vo(d/y) = [Zer, (infoc, U(d/0)f(y/6))-Po(v)1/fo(»)
Vo(d/y) = [Zer, (supee, U(d/0)f(y/6))- Po()1/fo())-

Let the bounded cardinal utilities U be normalized so that U(d/6) = 0, all deD, 6e©. Then as
long as fo( ) > 0, Vo(do/y) — Vo(do/y) places a computable finite upper bound on the value
of refining o, dy and d, being the posterior maximax and maximin solutions. (A question not

maXgep
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addressed here is whether this is the least upper computable bound.) As before, V,(do/y) —
Vo(do/y) < K is a sufficient condition for the decision maker to retain the domain Q. And as
before, the bound decreases in magnitude as the probability domain becomes more refined.

It should also be clear that the earlier argument for a sequential refinement process and the
discussion of considerations in selecting a minimal set to split still hold. We need only add a
fourth consideration to the list, that regarding the likelihood function.

Both the between-minimal set and within-minimal set spreads of likelihood values are
relevant to the refinement decision. To see the former concern, consider a situation in which
the likelihood function is constant within each minimal set. In this case, the likelihood function
is Qo-measurable, Bayes rule applies and the lower and upper posterior expected utilities
become

Vo(d/y) = Xver, U(d/¥)-Po(Y/y)
Vo(d/y) = Zver, U(d/v)-Po(v/y).

Thus the sets y on which the likelihood value is relatively large have higher posterior than
prior probability and therefore become more important in the refinement process after the
observation than before.

When the likelihood function is not constant within minimal sets, the impact of the
observation on the refinement process becomes more difficult to assess. One effect of within-
minimal set spread is to increase fy(y) and decrease fo( ), thus enlarging the bound Vo(db/y)
— Vo(do/y) relative to the situation with no such spread. This increase in the size of the bound
makes refinement of £ relatively more attractive. However, a spread of likelihood values
within each vy also interacts with the spread of utility values and affects the lower and upper
expected utilities in this way. Whether this effect works to tighten or loosen the bound is case
specific.

E. ConcLusiON. The model presented here makes a start at integrating the selection of
probability domains into statistical decision theory. To complement theoretical work there is
a need for behavioral analysis. How rich are the probability domains that people use in
practice? In what contexts do elicitation costs constitute an important barrier to the application
of rich domains? When elicitation costs are important, how do people act? These questions
warrant empirical investigation.
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