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REMARKS ON BAHADUR OPTIMALITY OF CONDITIONAL TESTS

By I. V. Basawa

La Trobe University

It is customary to use a conditional test-statistic when testing for one
parameter in a two-parameter exponential family model, the other parameter
being considered as a nuisance parameter. In this note we discuss the Bahadur
efficiency of such a condtional test and illustrate the results with examples from
a branching process, a pure birth process, and a stable process.

1. Introduction. Let X" = (Xi, Xz, .-, X,) be a vector of observations having a density
Ppxn(x"; 6, n) with respect to some product measure p.(x"). We suppose that (4, 1) € Q, an
open subset of R% R being the real line. The observations (X, Xz, - -+, X;) are not necessarily
identically distributed and they are allowed to be mutually dependent. Assume for the time
being (see Theorem 2.3) that the density px-(x"; 6, n) belongs to an exponential family, viz.

(LD pxn(x"; 0, 1) = Ca(8, m) exp[0Un(x") + nVn(x™)]

where U, and V, are statistics and C, does not depend on the observations. See Lehmann
(1959) for a detailed description of the densities of the type (1.1). The two dimensional statistic
(Ux, V») occurring in (1.1) is a minimal sufficient statistic for (6, 7).

Consider the problem of testing

H:0=0, against K:0> 6,

where 7 is a nuisance parameter in both the hypotheses. Now, the conditional density,
PUv,(Un; 8), of U, given V, = v, is known to be free from the nuisance parameter 5 and in
fact, it belongs to a one-parameter exponential family; thus

(12) PUv,(Un; 8) = C¥(va, 8) exp(8Uy)

where C; depends on the observations only through v,. Since (1.2) is free from 7 it is
customary to conduct inference about § using the density (1.2) rather than (1.1). We have for
o > b,

pU,,|V,_(Un; 01) — C:(Vn, 01)

5 6, — 6,)U, in U,.
P0,19.(Un; o) Ca(Var ) PLE ~ B U] T

It therefore follows by the Neyman-Pearson lemma that given ¥, a uniformly most powerful
(UMP) size-a test of H against K is of the form

&on(Un, Va)=[1 if U,>k.(Vy)
(1.3) =14 a.(Va) if = ko(V2)
= (0 otherwise

where k.(V,) and a.(V>) are determined by
Eg[on(Un, Vo) | V=] = a.
The power function of this conditional test is

(14) Bs,(01vn) = E[¢n(Un, Va)| Vo = ]
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which is free from 7 but depends on v,. Note, however, that the observation v, is not available
in advance and therefore one needs to view the conditional power function B,,(f| V) as a
random variable. One obvious way of dealing with this situation is to look at the average
power function, Eq,[f,,(0| V)], as the criterion. This amounts to assessing the performance
of the conditional test-statistic U, | ¥ with reference to the unconditional density (1.1) rather
than the conditional density (1.2). Such an unconditional argument leads to a justification of
¢» in (1.3) as a UMP unbiased size-a test (see Lehmann (1959), Chapter 4, Section 4, or
Kendall and Stuart (1973), Chapter 23). However, it may be desirable to assess the conditional
test-statistic U, | ¥, directly with reference to the conditional density (1.2). Following Bahadur
(1960, 1967) and Bahadur and Raghavachari (1971) we shall use the level (conditional) (see
Definition 2.1 below) rather than the power as the underlying optimality criterion and discuss
the Bahadur efficiency of the statistic U, | ¥, in the following section. Although we have used
a “discrete-time” formulation in Sections 1 and 2, an analogous “continuous-time” formulation
is obvious. In Section 3 we briefly discuss some examples from discrete as well as continuous
time models.

2. Bahadur optimality criterion. Suppose X" = (X1, Xz, ---, X,) has a density px-(x"; a,
B) where the parameters a and B take values in open real intervals 4 and B respectively, and
(a, B) € Q& = A X B. Suppose one is interested in testing H:a = o treating 8 as a nuisance
parameter. Let 7, and S, be two statistics and suppose we are interested in assessing the
performance of the conditional statistic T, | S. for testing H for large n. Assume that large
values of T, correspond to the rejection of H. Let h = (a0, Bo) and k = (a1, B1), (a1 > ao) be
typical elements of H and K respectively.

DEerINITION 2.1.  The conditional level attained by the statistic T, | S, is given by

.1 Z(X"™) = supreay [P {Tn = To(X")| Sn = Su(X™)}]

where P, denotes the probability computed under the hypothesis # = (a0, Bo), and £ =
{(a, B):a = ag, B € B}. Thus, Z,(X") is the largest probability under H of obtaining a value
of T, not less than the observed T.(X") conditional on S, = S.(X"). Z,(X") is also known as
the (conditional) P-value of the statistic T, given S,.

Typically, Z,(X") — 0 almost surely (a.s.) under any fixed k. The rate at which this
convergence obtains can be used as an optimality criterion.

Define

px~(X"; k)
px~(X"; h)

where 0 < a,(k) 1 = is a suitably chosen sequence of real numbers (possibly depending on k)
such that

2.2) K. (k, h) = a,'(k) log

2.3) K,.(k, h) > K(k, h), a.s. under k,
where 0 < K(k, h) < . Let
24) J(k) = infyeq, {K(k, h)}.

The following result is a generalization of that in Bahadur and Raghavachari (1971, Corollary
3):

THEOREM 2.1.  Using the notation introduced above we have
2.5) lim inf,.»{az'(k) log Z.(X™)} = —J(k), a.s. under k
forany T, and S,.

REMARK. Bahadur and Raghavachari use the norm » in place of our a.(k). The more
general norm a,(k) will be required in some of the examples we discuss in Section 3.
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DEFINITION 2.2. (Exact slope). Suppose —2a;'(k) log Z.(X") = sx(T»| S»), a.s. under k,
where 0 < s53(T»| S») < . Then, sx(T,| S») is called the exact slope of T, | S, against k.

DEFINITION 2.3. (Bahadur efficiency). The statistic T, | S, is said to be efficient for testing
H against K if s3(T»| S») = 2J (k).

REMARK. Note that in view of Theorem 2.1, sx(T» | S») < 2J(k) for any statistic T, | S~
and this inequality provides a natural motivation for Definition 2.3.

We now return to the case when X" has a density of the form (1.1). In many examples
satisfying (1.1) it is possible to effect a one-to-one transformation, (6, n) to (4, £.) so that the
reparametrized likelihood function, L.(X"; 9, ¢,) can be factorized as

2.6) Lo(X"; 0, £,) = La(Uz | Vs 0)La(Va; £2)

where the first factor corresponds to the conditional density of U, given ¥V, and the second
factor corresponds to the marginal density of ¥,. Note that £ is allowed to depend on 7. (This
does not affect our results.) The first factor on the right of (2.6) is free from £, and the second
factor does not depend on §. We also assume that

@7 0,£)EQ =6 X D,.

The problem of testing H:0 = 6 against K:6 > 6, is unaffected by the above reparametrization.
The following result then establishes the efficiency of the statistic U, | ¥V, in the sense of
Definition 2.3.

THEOREM 2.2. Suppose for the density of the type (1.1) a one-to-one reparametrization (9,
1) = (0, £,), exists such that (2.6) and (2.7) are satisfied. Then, the statistic U, | V., is efficient in
the sense of Definition 2.3.

Proor. Choose and fix an alternative parameter point k = (61, {n1). Corresponding to this
choice we may choose a null point 4 = (6o, £.1). Consider the problem of testing

H:pag,:,) against K:pe,.c,.),6,>6)-
With the notation of Bahadur and Raghavachari (1971, Section 3),

An(X™) = az'(k)log {r.(X")/pn(X")}

_ 1 Li(Un| Vy; 6h)
a, (k)log{————-Lz UALAYD)

= K,(k, hz), since (2.6) obtains.
— K(k, hx) a.s. under k.
Now,
La(X™) = Pyt (Fn Z Fa(X™) | Vi = Va(X™))
= Pgpt,) (Un = Un(X™) | Vi = V(X))

in virtue of (2.6) and (1.2).
A generalization of Theorem 3 of Bahadur and Raghavachari (1971) gives

ax'(k)log L.(X")— —K(k, b) a.s. under k.
Note, however, that since the conditional distribution of U, given V, is ffee from £,., we have
Zn(X") = supa[ poy {Un = Un(X")| Va = Va(X")}]
= Pota {Un = Un(X™) | Vo = Vo(X™)}
= L.(X™).
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Therefore,
(2.8) ay'(k)log Z,(X") —» —K(k,l) a.s. under k.
By Theorem 2.1, we must have

K(k, h) < J(k).

But, by definition, J(k) < K(k, h), and hence we have equality K(k, hx) = J (k). This equality
in conjunction with (2.8) shows that U, | ¥, has the exact slope 2J(k) and hence it is efficient
according to Definition 2.3. a

The result in Theorem 2.2 remains valid when the restriction to exponential family (1.1) is
relaxed and also if (2.6) is weakened as follows:

THEOREM 2.3.  Suppose (U, V) is a minimal sufficient statistic Sor (6, m) in the density
px~(x"; 6, m) which admits a one-to-one reparametrization (0, n) — (6, &) such that the
reparametrized likelihood function L.(X"; 0, {,) can be factorized as

29 La(X"; 8, &) = Li(Up | Va; 0)Lo(V; 0, &)

where the first factor on the right is free from &, and the second factor satisfies
Ln(Va; 6,

2.10) a;’(k)logm%—a 0 under k as.

Further, assume that
2.11) 6,£)EQ=0x%x0,

and that L,(X"; 0, £,) possesses a monotone likelihood ratio in U,; more specifically,

Ln(X"; 61, én1)
Ln(Xn; 00, gnl)

For testing 6 = 6o against § > 6, for the likelihood L.(X"; 8, £.) satisfying (2.9) to (2.12), the
conditional statistic U, |V, is efficient in the sense of Definition 2.3.

2.12) 1 in U, (6> o).

This result can be proved as in Corollary 4 of Bahadur and Raghavachari and we omit the
details. We shall now discuss some examples.

3. Examples.

EXAMPLE 1. (Independent and identically distributed observations). Let Xi, --- X, be
independent N(p, ¢®) variables where both p and o? are unknown. Consider the classical
problem of testing ” = 0§ against o > o3. It is easily verified that

Pxn(x"™; 0, 1) = Ca(8, n)exp@u, + nv,)

where 0 = 67, 7= po ™%, u, = =% Y1 x7, and v, = Y1 x;. We will show that the statistic T, | V,
is efficient according to Bahadur’s criterion for testing 6 = 6, against 8 < 8, where T, = =2 U,,.

We may reparametrize (6, 1) to (6, i), the transformation being one-to-one. The likelihood
function can now be written as

Ln(Tn’ Vn; 09 N) = Lfl(n | Vn; 0)Ln(Vn; 0, I.l.).

Note that while the first factor on the right of the above equation is free from the nuisance
parameter u the second factor, however, depends on 6. Choosing a.(k) = n it is easily verified
that (2.10) is satisfied. Therefore, by Theorem 2.3 T, | V, is efficient. The exact slope of T, | V.,
is seen to be

{Q(%'ol—) — log(6o/ 01)} ,

which, incidently, is free from the nuisance parameter.
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EXAMPLE 2. (Independent but not identically distributed observations; supercritical branching
process). Let X;, (j=1,2, ..., n), be independent Poisson random variables with E(X;) =
af’ where a > 0 and 8 > 1 are unknown parameters. Consider the problem of testing 8 = 8o
against 8 > B,. The density of X" = (Xi, .-, X,) then satisfies (1.1) with

O=1logB, mn=loga, u,=3Tjx; and v, =T x,.

Consider the one-one transformation (6, n) — (6, £.) where

6+n
£ = (;—_T)(e"" -1

The reparametrized likelihood function of (6, £.) can be factorized as in (2.6). Note that V, is
a Poisson random variable with mean §,. Choose a.(k) = n{,: and verify that Theorem 2.2 is
applicable. Thus, U, | ¥, is efficient. Note, however, that the exact slope of U, | V¥, is zero.

The above example is closely related to the supercritical Galton-Watson process with Z,
=1, Zy, Z,, -+, Z, being successive generation sizes and Z, distributed as a geometric
random variable with mean B, (8 > 1). It is well known that for such a process Z,87"
converges almost surely to a positive random variable W; in the present case W has a negative
exponential distribution with mean unity. See Basawa and Scott (1976) for a discussion of a
testing problem for this model. It is argued by Lauritzen (1976) that any asymptotic inference
for B should be conducted conditionally on W = w, treating w as a nuisance parameter. It is
known that conditionallyon W=w, X;=(Z;,— Z;,), (j= 1,2, ...), are independent Poisson
random variables with means (w(8 — 1)/8)8’. Thus, taking a = w(8 — 1)/B this problem
reduces to Example 2 above.

EXAMPLE 3. (Inhomogeneous Poisson process; pure birth process). This is a continuous-
time analogue of Example 2. Let {X(s), s = 0} be a Poisson process with intensity e***,
(A > 0). Set X(0) = 1 and observe the process over the fixed interval (0, 7). It is seen that the
likelihood function (see Keiding (1974)) belongs to the exponential family (1.1) with

L, p) = G, wexpUMOA + V(0]

where U(t) = tX(t) — S(1), V(¢) = X(t) — 1, and S(f) = [§ X(s) ds. Suppose we wish to test
A = Ao against A > Ao. We may reparametrize (A, ) — (A, &) where & = e*(e™ — 1)A™". We
then obtain the factorization

LA, &) = Li(U@)| V(1); M L(V(1); &),

i.e., (2.6) is satisfied. We find that the continuous-time analogue of Theorem 2.2 is applicable
and hence U(?)| V(¢) is optimal. Here we need to choose a,(k) = t§.. It can be verified that
the exact slope of U(#)| V(?) is zero.

Example 3 is closely related to the pure birth process { Z(s), s = 0} as follows. Let {Z(s),
s = 0} with Z(0) = 1 be a pure birth process with birth rate A. It is well known that Z(s)e ™*
converges, as s — %, almost surely to a negative exponential (unit mean) random variable W.
As in the case of the supercritical Galton-Watson process in the previous example it can be
argued that any asymptotic inference regarding A should be conducted conditionally on W =
w (see Keiding (1974)) treating w as a nuisance parameter. It is known that conditionally on
W = w, {Z(s), s = 0} is an inhomogeneous Poisson process with Z(0) = 1 and intensity wAe™".
Thus, setting u = log(wA) this problem reduces to Example 3.

EXAMPLE 4. (Additive stable process). Let {X(s), s = 0} be an additive nondecreasing
stable process discussed by Basawa and Brockwell (1978). The Laplace transform of X(s) is
given by

—saA®
E[CXP{—AX(S)}] = exp{w} s ((! > 0, 0< B < l),



BAHADUR OPTIMALITY OF CONDITIONAL TESTS 1387

where a and g are the unknown parameters. Suppose we wish to test 8 = o against 8 > B,
using a suitable realization of the process. Choose and fix € > 0. Suppose we observe {X(s)}
continuously over the fixed interval (0, ) but record only jumps of size not less than €. Let
{(tn, Ya), h=1,2, ..., N(2)} be the observed realization 7, is the epoch at which hth jump
(=€) occurs and Y, the jump-size (Y» = €); N(?) is the total number of jumps in (0, ) whose
size is not less than €. The likelihood function corresponding to this realization is seen to be of
the type (1.1), i.e,,

Le(n, B) = C«(B, m) exp[U(1)B + V(t)n]

where 7 = log(aBe™®), U(t) = =Y X1 Z;, Z; = log(Y;/e), and V(t) = N(¢).

Let T(r) = —U(#) and consider the conditional test-statistic 7(¢)| ¥(¢). We may reparame-
trize (B, n) to (B, £) where £ = ¢"87". It is then seen that the factorization (2.6) obtains.
Choosing a:(k) = t§, we find that, by Theorem 2.2, T(¢)| ¥(¢) is efficient.

It is not difficult to verify using equation (13) of Basawa and Brockwell that

Li(U®| V() B1)| _ _ —
log{m}—V(t)log(Bl/ﬂo) (Br = Bo)T(1).

Now, under k, E(V(f)) = té (since V(7) is Poisson with mean t£), and hence a;'(k) V()
converges to unity almost surely under k. Note also that a; ' (k) T(¢) converges a.e. (k) to 81"
via the law of large numbers applied to the random sum T(¢); note that Z;, (j=1,2, -+, ) are
independent identically distributed exponential random variables with mean 8. The exact
slope of the statistic T(¢)| ¥(¢) is then seen to be

2{log(Bo/B1) + (Br — Bo)/B1}.

This expression can be obtained alternatively by noting that conditional on V(¢), T(¢) is a
gamma random variable mean V(r)/8 and index V().

Acknowledgment. 1 am greatly indebted to a referee for valuable and constructive
comments which led to some improvements both in content and presentation (especially in the
proof of Theorem 2.2).
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