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BALANCED REPEATED MEASUREMENTS DESIGNS

BY CHING-SHUI CHENG' AND CHIEN-FU WU?

University of California, Berkeley and University of Wisconsin, Madison

Two types of repeated measurements designs (RMD), the strongly balanced
uniform RMD, and the balanced uniform RMD, are defined and their universal
optimality is proved over very broad classes of competing designs. Construction
methods for strongly balanced uniform RMD are also given.

1. Introduction. In repeated measurements designs (cross over, or change over designs),
experimental units are used repeatedly by exposing them to a sequence of different or identical
treatments. For a discussion on the use of this kind of design, the readers may consult Hedayat
and Afsarinejad (1975), which also provides an extensive bibliography containing more than
130 references on repeated measurements designs.

Using a tool due to Kiefer (1975), Hedayat and Afsarinejad (1978) proved the universal
optimality of some balanced repeated measurements designs over the class of uniform designs.
They considered the following model:

Let ¢ treatments be compared via n experimental units in p periods. Altogether np observa-
tions are taken. An allocation of the ¢ treatments into the np observations is called a repeated
measurements design (RMD). If d is an RMD, then let d(i, j) denote the treatment assigned by
d in the ith period to the jth experimental unit. Let y; be the response obtained under d(j, ;).
Then all the observations are assumed to be uncorrelated with common variance and

(1.1 E(yy) = ai + B + Taij) + Pai-1.,
i=1.p, j=1-c,n, pawnjy =0 for all j,

where the unknown constants a;, 8, Ta, ) and pai-1,) are respectively called the ith period
effect, the jth experimental unit effect, the direct effect of treatment d(i, j), and the first order
residual effect of treatment d(i — 1, j).

For convenience, a repeated measurements design with ¢ treatments, n units and p periods
is abbreviated as RMD(1, n, p). The collection of all such designs is denoted by i .

DEFINITION 1.1. A design d is said to be uniform on the periods if, in each period, d assigns
the same number of units to each treatment.

DEFINITION 1.2. A design is said to be uniform on the units if, on each unit, each treatment
appears in the same number of periods.

DEFINITION 1.3. A design is called uniform if it is uniform on the periods and units.

Hedayat and Afsarinejad (1978) considered the setting in which ¢ = p and t| n (say n = Ay).
They also restricted the competing designs to be uniform. For a uniform design in Q. it is
clear that a treatment can not be preceded by itself. Thus, a design in ;. is defined to be
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balanced if in the order of application, each treatment is preceded precisely A; times by each
other treatment, i.e., the collection of ordered pairs (d(i, j), di + 1, j)), | sist—1, 1)<
Ait, contains each ordered pair of distinct treatments A, times. In general (not necessarily ¢ =
p and t|n), an RMD is called balanced if in the order of application, each treatment is not
preceded by itself and is preceded by the other treatments equally often. Using Kiefer’s tool,
Hedayat and Afsarinejad proved the universal optimality of a balanced uniform RMD(s, Ay,
r) for the estimation of direct as well as residual effects over the uniform designs in &,x ..

There is an intrinsic difficulty in removing the restriction of uniformity which Hedayat and
Afsarinejad imposed on the competing designs. From an optimality point of view, there is no
reason to exclude the designs which allow a treatment to be preceded by itself. When A, > 1,
the t* ordered pairs of treatments do not appear as nearly equally often as possible in a
balanced uniform RMD(¢, Ait, ) and hence its optimality over all possible designs is quite
doubtful. This also causes difficulty in verifying the maximization of the trace of the
information matrices, an important step in applying Kiefer’s result. In view of this, it seems
unlikely to remove entirely Hedayat and Afsarinejad’s restriction. However, we are able to
show that a balanced RMD(z, A1, 1) is universally optimal for the estimation of residual effects
over the designs in which each treatment is not preceded by itself. Thus, the restriction of
uniformity is relaxed substantially. As to the estimation of direct effects, the restriction of
uniformity can also be relaxed to a certain extent. The first purpose of the present paper is to
extend and strengthen Hedayat and Afsarinejad’s results.

If we want to dispose of the restriction entirely, then a stronger kind of balancing is needed.

DEerFINITION 1.4.  An RMD(1, n, p) d is called strongly balanced if the collection of ordered
pairs (d(i, j), d(i + 1, j)), | =i<p — 1, 1 =j = n, contains each ordered pair of treatments
(distinct or not) the same number of times, say A times.

Note that in a strongly balanced RMD(t, n, p), A =t *(p — Dn.

The second purpose of this paper is to discuss the optimality of some strongly balanced
designs. We are able to prove that a strongly balanced uniform design is universally optimal
for the estimation of direct as well as residual effects over all possible designs. A more
interesting result says that if we repeat the observations in the last period of Hedayat and
Afsarinejad’s balanced uniform RMD(z, Ay, 1), then the resulting design is universally optimal
for direct as well as residual effects over Q .+1. This design is strongly balanced and uniform
on the periods but is not uniform on the units. The strongly balanced uniform designs were
discussed in Berenblut (1964) and the procedure of repeating the observations in the last
period was first proposed by Lucas (1957) under the name of extra-period designs. Both designs
have very nice orthogonality structures which are closely related to the optimality.

The organization of this paper is the following. Section 2 contains some preliminaries. The
optimality of some strongly balanced designs is proved in Section 3. Some examples and
methods of construction are also presented. The results in this section can be extended in
several directions including the case where there are higher-order residual effects and the
model in which each unit effect has a higher-dimensional structure. These extensions are
treated in Cheng and Wu (1979). Section 4 deals with the extension of Hedayat and
Afsarinejad’s result on balanced designs. Section 5 contains the proofs of the results in Section
4. '

2. Preliminaries. We write C, (resp., Cq) as the C-matrix or information matrix of the
direct (resp., residual) effects when design d is used. An optimality criterion is a function ®:
B, — (—, ], where %, is the collection of ¢ X ¢ nonnegative definite matrices with zero row
and column sums. A design is called ®-optimal if it minimizes ®(Cy) or ®(C,) over the
competing designs depending on which effects we are interested in. Note that Cq, Ca € Bipin
our setting.

Kiefer (1975) introduced the notion of universal optimality. A design d* is called universally
optimal if it is ®-optimal for all @ satisfying
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(i) ® is convex,
(ii) ®(bC) is nonincreasing in the scalar b = 0,
(iii) @ is invariant under any simultaneous permutation of rows
and columns of C.

Note that if d* is universally optimal then it is D-, A-, and E-optimal. Kiefer (1975) obtained
a very simple sufficient condition for universal optimality. A simple algebraic argument shows
that d* is universally optimal as long as 4* maximizes tr Cy (or tr Cq) and Cy (or Cyv) is
completely symmetric in the sense that all the diagonal elements of Cq- (or Cq+) are equal and
all the off-diagonals are the same.

For each design d € Q,, define

@1

ngi, = number of appearances of treatment i on unit u,
A = number of appearances of treatment i on unit u in the first
p — 1 periods.
l4i» = number of appearances of treatment i in period k,
mg; = number of appearances of treatment i preceded by treatment j
on the same unit,

wherei, j=1,---,,bu=1,-..,n k=1, ..., p. It follows that
Fai = Yu=1 Naiv = Yk=1 laix = number of appearances of treatment i,
(2.2) Fai = Y1 Aagiw = Yh=1 lair = Y.=1 ma;; = number of appearances of
treatment i in the first p — 1 periods.
The following relations are fundamental:
Tict Naiw = Py Di=t Aaie = p — 1, Yim1 Lair = 1,
(2.3) sq; = number of appearances of treatment i in the last p — 1 periods
= Yoo Liix = Yj=1 maijs, Yim1 rai = np, Yi=1Fai = n(p — 1).

From (2.2) and (2.3), uniformity on units and equal my; imply the uniformity in the first
and last periods.
In vector notation, for any d € Q,,

2.4) Eyq = Xa9,

where yq is the np X 1 vector of observations, X, is the design matrix, and 6 = (71, 72, =+ -, T4,
D1, =+ Pty A1, * =+, Op, Bl’ RN B")" Then

Ds My Na Na
M :1 D_d Ndp Ndu
Ny Nop nly Jpn |
Now Naw Jnp pla

(2.5) XiXa=

where [, is the identity matrix of order p, J, . is the p X n matrix of ones, Dy = diag(rai, - - -,
rar), Da = dia_g(idl» «ee, Fat)y Mg = [mayli<ij=t; Nap = [Idikllsisi,lsksp, Nap = [lai)i<i=t1=k=p
Wlth ldil = 09 Idik = Idi,k—l fOl' k = 2, Ndu = [ndiullsiﬁt'lsusn, and Ndu = [ﬁdiullsi<1 l=<u=sn.

From (2.5), the information matrix for estimating direct and residual effects jointly is
26) Da Ma| _|Nap Naul|[nl, Jon| | N Nop| _|Can Carz
’ M:i Dd Ndp Ndu Jn'p pIn Nt’iu N;Iu Cd21 Cd22 ’
where
Cdll = Dd - n_lNde;Ip —p_lNduNiiu + n#lp_]Ndan,nN,du’
Cdl2 = C:iZI = Md - n#lNde_:ip - p_lNduN;Iu + n_]p_lNdan.nN-/dm
Cd22 = D-d - n_lNde;lp —P_]NduN-’:iu + n_lp_]Ndan.nN:ill,
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and A~ denotes a generalized inverse of 4.

Then
2.7 Ca = Cai1 — Ca12Ca22Can
and
28 Ca= Cuzz = Ca2iCa11Canz.

The following lemmas are useful for later developments.

LEMMA 2.1. The row sums and column sums of Ca12 and My — n™'N4,NY, are all equal to
zero, and the column sums of Mq — p~'Na, Ny, are all equal to zero.

ProoF. From (2.2) and (2.3), it can be easily checked that the jth column sums of Ma,
n"'NapNip, p~'NauN g, and n™'p~'NauJnnN g, are all equal to 7. Also, the ith row sums of
M, and n~'Ng,Ny, are all equal to s4 as defined in (2.3) and the ith row sums of p ™' Na, N,

and n”'p"'NauJn.N i are both equal to p~(p — 1)rq:. The desired results follow. [

From Lemma 2.1, it follows easily that the row and column sums of Cq and C, are zero for
any d € Qp,p.

LEMMA 2.2. The followmg matrices are all nonnegatxve definite: Cq11, Dg — n~ Nde  dp, Dy
-p~ NduNduy Ndedp P NdpJp,dep, NauNaw — 1" 'Nawnn Ny, Cazz, Da — 1 NgpNlgp, Dy
-p "NauN'gus NapNigp — P 'NapJppNiapy NauN'gu — 1 NayJon N sy

The proof of Lemma 2.2 is straightforward. For example, NauN . — n~'NauJnnNau = Nau(In
— n~Y,2) N, where the middle matrix is nonnegative definite; and Dy — n™'N4,N{, is the C-
matrix for the direct effects when the residual and unit effects are not present in the model.

LeMMA 2.3.  For any positive integers s and t, the minimum of Yi-i n} subject to ¥j=i n; = t,
where the nis are nonnegative integers, is obtained when t — s[t/s] of the n/s are equal to [t/s]
+ 1 and the others are equal to [t/s], where [t/s] is the largest integer < t/s.

LEMMA 2.4. Let d* be a uniform RMD(¢, n, p). Then d* maximizes tr Cq11 and tr Cyz; over
d € Qupp.

Proor. We only prove that d* maximizes tr Cqs. The proof for the maximization of tr
Cay, is similar and in fact is even simpler.
For any d € Qn,p,

trCae=n(p— 1) —n ' N Y03 13— p7 Yo Yoy Adi + n 7 p ™t Ny
=n(p—1) = p" Tt Bhies i — n 7 [Biher T (g — (p — D)7 Fa)?
+{(p-D"'=p ) i ] since Fy = Y2 lu

For a uniform design d*, Y{-; Y25/ (ld',j — (p = 1)"'F4+)® = 0, so it suffices to show that d*
minimizes Yie; Yro1 A%, and Yio; 7% This follows immediately from Lemma 2.3 since
et Yimt flgis = n(p — 1) = Yicy Faiy Favi are all equal, and | g+ — Aavine | < 1, ¥ (4, u) # (7,
u’).0

Similarly, the following lemma can be established.

LEMMA 2.5. Let d* be an RMD({, n, p) which is uniform on the periods and is uniform on the
units in the first p — 1 periods, i.e., if the last period of d* is deleted, then the resulting design is
uniform on the units. Then d* maximizes tr C411 and tr Cqy; over d € Q.
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Proor. The proof is similar to Lemma 2.4 except that in the present case ny+: are all
equal, and | ng«i — Na=iw | < 1,V (5, w) # (', w'). O

3. Optimality of strongly balanced repeated measurements designs.
THEOREM 3.1. Let d* be a strongly balanced uniform design in Q,,,. Then d* is universally
optimal for the estimation of direct as well as residual effects over Q. n,.

ProoF. By Proposition 1 of Kiefer (1975), it suffices to show that both C4+ and C,- are
completely symmetric and 4* maximizes tr C, and tr C; over d € Q5.

The existence of a uniform design in ., implies that 7| n and ¢ | p. Let n = A;r and p = Aat.
Then it can easily be checked that Cyuz = Mg+ — n~'NgyNie, — p~'NawuNiew +
n7'p  NawudnnNaow=1""M(p = DJoe —n 'N(p — DI — p~Na(r = A)ew + n7'p7'r(r = M)y
= 0, where r = t"'np = n\; = p\,. Therefore Cy- = Cqo11 =t 'np(I, — t7'J,) and Cy+ = Cyo2
=t"'n(p — 1), — t~'J,;) which are completely symmetric.

For any d € Qun p, Ca = Ca11 — Ca12Ca2:Ca21 = Cy11 and Ci= Cazr— C421C7311Car2 < Caa,
where 4 = B means that B — 4 is nonnegative definite. Hence

tr Ca<tr Cqni = tr Cyrn1 (Lemma 2.4)
=tr Cy+

Similarly, tr Cg < tr C4-.0

Thus, a strongly balanced uniform RMD is optimal in a very strong sense. We now show
a simple construction for this kind of design. If there exists a strongly balanced uniform
RMD(¢, n, p) then t*|n and p = Aot with A, = 2. In case A; is even, we have the following:

THEOREM 3.2. Ift*|nand p/tis an even integer, then there exists a strongly balanced uniform
RMD(, n, p).

PrOOF. Suppose #*|n and p = At where A, is an even integer. Denote the ¢ treatments by
the nonnegative residues modulo ¢. Assign the treatments to the first two periods so that each
treatment receives the same number of units in each period, and each ordered pair of
treatments appears the same number of times. This is possible since t*|n. Let the rows
correspond to the units and the columns correspond to the periods. Then an n X 2 array is
constructed.

To each symbol in this n X 2 array add i (mod ¢) (i = 1, 2, .-+, ¢t — 1), and put the two
columns obtained in this way in the (2i + 1)st and (2i + 2)nd periods. Then we get an n X 2t
plan which is obviously a strongly balanced uniform RMD(, n, 2f). A strongly balanced
uniform RMD (1, n, Aot) with A; even is obtained by piecing A»/2 copies of this design together.
0

For example, the following is a strongly balanced uniform RMD(3, 9, 6);

units
0 0 0 1 1
o1 201 201 2

N
N
[\S}

1 1 22 2 000

@D periods | 5 9 1 201 2 0
2220001 1 1
N 201201 20 1

A similar method to construct a strongly balanced uniform RMD(, 1%, 2r) was reported in
Berenblut (1964).
Another kind of optimal strongly balanced RMD is provided by the following;
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THEOREM 3.3. Letn=Ait, p = Aot + 1, A, \2 = 1, and let d* be a strongly balanced RMD(1,
n, p) which is uniform on the periods and is uniform on the units in the first p — 1(= Aot) periods.
Then d* is universally optimal for the estimation of direct as well as residual effects over Q..

ProOF. It can be easily checked that Cyri2 = My — n"'NyyNiy — p 'NawuNigwuw +
np T NawudwaN low = MhoJ 1 = 7' (p = DNee = p 7N + nAo) o+ n7'p7'r(r = A = 0,
where r = t"'np = pA; = Aon + A;. Hence Cq+ = Cy+11 and Cq+ = Cq-2» which are completely
symmetric. Theorem 3.3 follows from Lemma 2.5 and the same argument as in the proof of
Theorem 3.1.0

A simple example of the design d* in Theorem 3.3 is the one obtained by repeating the
observations in the last period of a balanced uniform RMD(¢, Ayt, f). The resulting design is an
RMD(t, Ait, t + 1) which is clearly uniform on the periods and is uniform on the units in the
first p — 1(= t) periods. In the original design, each treatment is preceded by any other
treatment A, times. By repeating the observations in the last period we make each treatment
also precede itself A, times since n = A;t. So the augmented design is strongly balanced. In
summary, we have

COROLLARY 3.3.1. Let d* be obtained by repeating the observations in the last period of a
balanced uniform RMD(t, Ait, t). Then d* is universally optimal for the direct as well as residual
effects over SZ,,AI,,,)H.

Therefore, from each of the Hedayat and Afsarinejad’s balanced uniform designs, we can
construct an optimum design satisfying the conditions in Theorem 3.3. The conditions for the
existence of the designs in Theorem 3.3 are less restrictive than those for strongly balanced
uniform designs. It is not necessary that t*|n and p = 21. So it is possible to construct optimal
designs with fewer units and periods.

Designs satisfying the conditions in Theorem 3.3 can also be constructed from strongly
balanced uniform ones. Let d* be a strongly balanced uniform RMD(¢, n, p). Then since > | n,
an extra period can be added so that the resulting design is still strongly balanced. This design
certainly satisfies the conditions in Theorem 3.3 and hence is universally optimal over Q. p+1.

If we restrict the competing designs to a smaller class, then some stronger optimality results
can be proved. Let Q% , = {d € Qunpira,=ra,= --+ =rq}, ie., Q¥ , is the collection of all
equally replicated designs in &, ,. Then we have

THEOREM 3.4. Let d* be a strongly balanced uniform RMD(t, n, p). Then d* minimizes the
variance of the best linear unbiased estimator of any contrast among the direct effects {1} over

*
tn,p-

ProoF. By a theorem of Ehrenfeld (1955), it suffices to show that Cy+ = Cq for any d €
Q¥ p. Since both C; and Cq- have zero row sums, it is enough to show that x'Cq-x = x'Cax
for any ¢ X 1 vector x such that x'l, = 0 where 1, is the 7 X | vector of ones. By the computation
in the proof of Theorem 3.1, Cy+ = Cy+11 = rl, — aJ, for some constant a, where r = t'np. On
the other hand, for any d € Q% , Ca = Cai1 — Ca12Ca22Ca21 < Cqn1 = rl; — n'NgpNiyp —
(P 'NauNo — n7'p " 'NawnaNa) < rl,, since by Lemma 2.2, both n™'Ny,N 4, and p~'NauN
— n7'p 7' NauonN 4. are nonnegative definite. Thus

x'Cax = x'(rl)x = x'(rl; — aJ)x (since x'J;, = 0)
= x'Cqx. a
Similarly, we have
THEOREM 3.5. Let d* be an RMD(t, n, p) satisfying the conditions in Theorem 3.3. Then d*

minimizes the variance of the best linear unbiased estimator of any contrast among the residual
effects {pi}i over Q¥,, where QX¥, = {d € Qunp: Fa1 = -+« = Fay).
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4. Optimality of balanced repeated measurements designs. In this section we will discuss
the optimality of balanced uniform RMD over the class of designs d in Qi for which mau
=0 for | =i=<t(ie., no treatment is allowed to be preceded by itself in 4). The collection of
such designs is denoted by A, . In order to prove optimality we sometimes impose uniformity
on units or periods on the class of competing designs. A related paper by Hedayat and
Afsarinejad (1978) gave the same optimality result under the more restrictive assumption that
the competing designs are uniform on both units and periods.

More precisely, recall that the definition of a uniform RMD(t, n, p) implies n = Ayt and p
= Aot for some A1, A2. Therefore, for the rest of the section, we will only consider RMD(¢, A,
A2t). For a balanced uniform RMD(z, Ait, Ast) d*,

)\1( p - l) _

t—1 A,

4.1 Nariw = A2, lavin = A1, mg+i =0, Mmy+ij =

for all i, u, k and i # j, which, in turn, give

Cao1 = Mip(Ie — t7'00), Ci2= Caror = =N, — t7'J10),
4.2)
Cdvzz = }\1(p -1 —p_l)(lt - t_lJu).

Therefore, C4+ and Cy- are both completely symmetric. To prove universal optimality, it
remains to show that d* maximizes tr(Cg11 — Cq12Ca22Ca21) and tr(Cazz — Ca21Can1Ca12) over
the class of competing designs. However, unlike the strongly balanced RMD, the Cy+12 matrix
in (4.2) is not zero. It is thus necessary to compute the very intractable Cg1; and Cy2 for an
arbitrary d, which is the major technical difficulty for the optimality proof. In the case of Caui,
the following technique circumvents this problem. Since Nu,Nip and NawN g — n~'NauJnnNu
are nonnegative definite from Lemma 2.2, Cq11 < Dy for any d € §,,,. From Theorem 5(i) of
W, (1980), there exists a g-inverse Can of Can such that Can = Dg ! for any d. Furthermore,
Dg! is a g-inverse of Cy+11 for any balanced uniform RMD d*. Therefore, to prove that d*
maximizes tr(Caze — Ca21Cq11Ca12) OVer A, a, it suffices to prove that 4* maximizes the
more tractable tr(Cyzz — Ca21D7'Ca12) over Aea i, With this basic idea in mind, we will
defer the technical proofs to the next section and only summarize the optimality results here.

THEOREM 4.1.  Let d* be a balanced uniform design in /\,x 1x i, t = 3. Then d* is universally
optimal for the estimation of residual effects over the class of designs d in N i« With Fai = Mi(p
— 1) for all i, i.e., d is equally-replicated in the first p — 1 periods.

The reason for imposing the equal 7z requirement on the class of competing designs is
purely technical. For A; = 1, such a restriction can be removed.

THEOREM 4.2. Let d* be a balanced uniform design in N\ 1., t = 3. Then d* is universally
optimal for the estimation of residual effects over /i, 1.:.

The proof of optimality for the estimation of direct effects is more difficult. Unlike the
residual effect case, C7e22 — Dg? = A'(p — 1 — p™")I, = X"'(p — 1)"'I, is not zero and the
minimization of tr(Cy12Ca2:Caz1) OVET A x 1.1« can not be replaced by the minimization of the
more tractable tr(Cq12D3'Ca21) over A oa,c. To make the computation possible, we impose
a uniformity condition on each unit and the last period.

THEOREM 4.3. Let d* be a balanced uniform design in N, . Then d* is universally
optimal for the estimation of direct effects over the class of designs in \ix «.x, which are uniform
on each unit and the last period.

When the period effect is not present in model (1.1), the optimality results are even stronger.
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The C,; matrices in (2.6) become

Cann = Dy —p_lNduN:hu Ca12= Caa1 = Mq— P_lNduIV-zliua
4.3)
Caz2 = Da— p~'NauNou,
Let d* be a RMD(t, Az, Aot) which is

(i) uniform on each unit
(ii) uniform in the last period
A(p =1 . L
(4.4) (iil) mqa- =—1(t—p-_l—)= A for i # jand mg+; = 0 (i.e., in the order of application,
each treatment is preceded by each other treatment the same number of
times.)

From (2.2) and (2.3), one can easily verify that (i) and (iii) imply (ii) and the uniformity in the
first period.

THEOREM 4.4. Assume there is no period effect in model (1.1). The design d* defined in (4.4)
is universally optimal for the estimation of residual effects over N\, ... The same design is also
universally optimal for the estimation of direct effects over the class of designs in /\,x «,x,: which
are uniform on each unit and the last period.

5. Proofs. The optimality proofs require some preliminary lemmas on constrained min-
imization. Unless otherwise stated, all the variables below are assumed to be real.

— , d
LeMMA 5.1. The minimum of Y1 xi, subject to Y-\ x; = d, is achieved by taking x; = N for
2 N .
all i and is equal to -

2

LEMMA 5.2.  The minimum of Y- %, subject to Yi-y xi=d, ri=0and ¥i-i ri=e> 0, is

d 2

achieved by taking x; = o7 for all i and is equal to -

LEMMA 5.3.  Suppose two sequences (x;)i=1 and (y:)i=\ are similarly ordered in the sense that
(xi = x;)(yi — yj) = 0 for all i, j, then

S xyiz (z,z. x,-) (2,":1 yi).

The first two lemmas can be easily proved by the method of Lagrange multiplier. Lemma
5.3 can be found in Hardy, Littlewood and Polya (1967), page 43.

LEMMA 5.4. Suppose (x)i=1, A2 and t are all nonnegative integers. Then the minimum of

‘21 x¥ + xd(xe — 1), subject to x; = 1 and Yi—, x; = Aat, is achieved by taking x; = A, and is equal

to Njt — A

ProOOF. We want to show that
5.1 Sirx? = xe = Aot — A

for Yi-1 xi = Aot, x, = | and x; are nonnegative integers. (5.1) is equivalent to

(52) ) Zf—l Xlz - )\5[ =X — Az.
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From Lemma 5.1, the left-hand side of (5.2) is always nonnegative. Therefore, (5.2) holds if x,
=< As. On the other hand, if x, = A2 + m, m is a positive integer, then
. s Mot = A — m\’ N , !
2-1 X,’2= f;l x,-'+x[2(t— l)(——-—t—:zl—'i"-) +()\g+m)‘=)\§t+m2t—_—1

This implies that Y=y x7 — A3t = m? z——t_l > m = x, — Ay, proving (5.2).0

LEMMA 5.5. The matrix A = [a;] withai = | for | =i<n,a;=b for |i — j| =1 and a;

. onim
—— sin——, ..., sin
n+1 n+1 n+1

= 0 otherwise has eigenvectors v; = | sin with corresponding

in
n+1

eigenvalues 1 + 2b cos for 1 =i < n. In particular, A is nonsingular when |b| <

-1
(2cos kil )
n+1

This can be verified by routine matrix multiplication and trigonometric identities. It is stated
in Noble (1969), page 307.

LeMMa 5.6. For 0 = ¢ < [20p — DN, the minimum of F(x) = Yioi Yh=1 xh +
A(Tie1 Y82 xinXi p-1)’, subject to Yiy xu = it for | < k < p, is achieved by taking xs = A, for
all i, k.

Proor. It is obvious that the minimum must be attained at some bounded x;. values.
Therefore, the minimum must also be a local minimum. Rewrite F(x) as

iy X%+ B2 (At — 2t xa)®
+ o{Tizt Tz xinxin—1 + Thes Ait — Ti2h xip)Aat — To2h xik-1))
A necessary condition for local minimum is
‘]

Fx)=0, for l=ist-11=k=p,
0X i

which gives

xi — Xu + cAX)(xi2 — x12) = 0,
(5.3)  xie— xu + CAX)(Xik+1 — Xep+1 + Xig—1 — X4-1) =0 for 2<k=p-—1
cAX)(Xip-1 — Xtp-1) = 0,

where A(x) = Yie1 Yhe2 xinXih-1.

(i) If A(x) = O at the local minimum, then (5.3) implies x = xpfor l =it -1, 1 <k
=< p — 1, which is equivalent to x;; = A, for | = i<+, | =k =< p — L. But this, in turn, implies
that A(x) > 0. Therefore, at the local minimum A(x) # 0.

(ii) Since Y- Y= x} is minimized by xi = A, for | =i=<f 1=k =<p — 1 and the
corresponding A(x) value is #(p — 1)A{, any x = (xix) with | A(x)| > #(p — 1)A can not give the
global minimum of F(x).

(iii) For any x with 0 < | A(x)| < #(p — 1)A}, we want to show that the only solution of (5.3)
isxx —xwe=0forall l =i=<r—1,1=<k=p. Since (5.3) is equivalent to By, =0 for | =i
<t— 1, wherey; = (xi — xq, +++, Xip — Xyp) and B = [by] with b;; = | for i < p, by, = 0, b
= cA(x) for all |i — k| = | and by = 0 otherwise, it remains to prove the nonsingularity of B.
From cA(x) > 0 and the special form of B, it can be seen that B is nonsingular if and only if
its upper left (p — 2) X (p — 2) submatrix, called B, is nonsingular. (This can be done by
showing that the p column or row vectors of B are linearly independent iff the p — 2 column
or row vectors of By, are linearly independent.) In particular, B is always nonsingular for p
=< 3, cA(x) > 0. The matrix By is a special form of the matrix 4 in Lemma 5.5 with b = cA(x)
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and n = p — 2. From Lemma 5.5, B, is nonsingular since cA(x) < (2/(p — DAH™'e(p — DAY
<l
=5

(iv) From (iii), a necessary condition for any x with 0 < A(x) = #(p — 1)A? is that xiz = z
for | =i=<1 1< k=< p. From the constraint condition Yioi xie = Ait, we have xi = z, = A1
Together with (ii), we have shown that the global minimum of F(x) is achieved by taking x.
=\, forall i k.0

LEMMA 5.7. For 0 < ¢ < [tp(p — DAL, the minimum of F(x) = Yia Yh=i x5 — p~' Tim
(82t xi)? + c(Ther Yhea xinxi p-1)> subject to Yizy xie = it for 1 < k < p, is achieved by taking
Xie = Ay for all i, k.

PrOOF. Since the argument is very similar to that of Lemma 5.6, the proof will be sketched
briefly. By rewriting x, = A1 — Yi=1 xa in F(x), a necessary condition for the local minimum
of F(x) is,

Xi— X — p~" Yhat (xie = xak) + cAX)(xiz — Xe2) = 0,

Xik = X — p~F Th21 (xin — Xu)

+ cAX)(Xik+1 — Xt p+1 + Xijk—1 —Xt,p-1) = 0, for 2<k =p- 1,
cA(X)(xi,p-1 — Xep-1) = 0,

(5.4)

Yhel‘e AX) = Yicy Yoas XipXi p-1.

A very similar argument to (i), (ii) of the proof of Lemma 5.6 shows that |A(x)| can not be
equal to zero or greater than #(p — 1)AZ For any x with 0 < | A(x)| < #(p — 1)A}, it remains to
show that the only solution of (5.4) is x;x — xx =0 forall l =i=<t— 1, 1 =k =< p. The linear
system (5.4) is defined as By, =0for l =it — 1, y;= (xa = Xe1, =+ +, Xip — Xpp), B=B-
p~'Jp, where B is given in the proof of Lemma 5.6, J, is the p X p matrix with all entries 1.
Since cA(x) > 0, B is nonsmgular iff its upper left (p — 2) X (p — 2) submatrix By is
nonsingular. Note that Bi; = Biy — p~'J,—2, Bu1 is defined in the proof of Lemma 5.6 and J,—»
is the (p — 2) X (p — 2) matrix with all entries 1. From Lemma 5.5, the smallest eigenvalue of

By is 1 — 2¢| A(x)| cos 7 j T and the largest eigenvalue of p~'J,_, is 2 ; 2. Therefore, By

is nonsingular since p~' — | cA(x)| cosp i > 0, which is satisfied since | A(x)| < #(p — 1)A}

1
and ¢ < (pt(p — DA) ™. O

PROOF OF THEOREM 4.1. Cq4- is clearly completely symmetric. It remains to show that tr
Ca22 — tr Ca21Cq11Ca2 is maximized by d* over the specified class of designs. Since Can =
D7 for d = d* and in general there exists a generalized inverse Cq11 = Dy’ (see the paragraph
before Theorem 4.1), we proceed to show that tr Caz — tr Ca21 D' Ca12 is maximized by d*.

First, note that

tr Caze = Y i=1 Fai — n N YR B — p 7 Y Yt Rgi + n_lp_l S P,
and
tr CamD3'Care = Yo ral Y=t (may— n™' S8 o Lk laj 1
—p ' Yot nai Agiu + n_lp_lrdi;dj)2~
Since 7. is constant over the class of competing designs and ¥ (- Yii-1 715 is minimized by d*
according to Lemma 2.3, it suffices to show that d* minimizes
(5.5) n7t Vi T8 L + Bie ral Yiet (Mai — qay)’s

where gaj = n~' Y-z larlaje-1 + p~' Tiim1 Naihiau — n”'p~'raifa;, subject to the constraints
Sy Lain = 1y maii = 0, $i=1 rai = np and Y1 (Maij — gaiy) = Xi=1 (Maij — gayy) = 0 (corresponding
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to the fact that the row and column sums of Ca 2 are zero). This minimization problem will be
solved in several steps.
(i) Y=1 (maij — qdij)l =Y, jwi (Maij — qdij)l +gq %i and the constraint is ¥ i (Maij — qaij) =

.. .. . 1
qaii, since mqi; = 0. From Lemma 5.1, this is minimized by taking ma; — qq; = =1 qaii for j

1
# i and the minimum 1s ! = g% It can be checked that my; — qaij = T i holds for d

=d*.

(ii) From Lemma 5.2, the minimum of ¥ {-; ra/ ¢, subject to Yi-, ra; = np, is achieved by
taking ra; = Aon and qai = t 7' ¥ =1 gaw and is equal to (fA:n) ' (Ti=1 qai)’. Again, for d*, it can
be checked that ry+; = Az2n and garii = l_] 2§=1 Ga+ii do hold.

(iii) In it qais = 07" Viat Thos lairdaip—1 + p~' it Yot Naihiaiw — n7'p 7 it raifai = n7!
Sioy Yhes laielaipmr+ pt Yiet et (aiw — n7'rai). (Aaie — 17 Fai)y Yonmt (Maiw — 17 ra))(Rdiu —
n~'74) = 0 and equals zero for d* (which gives ng+ s = A2 = n'ry4-;). This follows from Lemma
5.3 if one can show that (nqu)i=1 and (i )u-1 are similarly ordered for all i. For any u and v,
if ngi. > nai, then ngi, = ngi,. + 1 which 1mphes Agiv = Ngir and (Ndiv — Naiv )(ﬁd,‘,, bl ﬁdiv) =0
holds. Other cases are proved similarly. Therefore (¥i-i gui)’ = n~> ($i=1 S5=2 Liinlai »-1)° and
equality holds for d*.

(iv) From (i) (ii) (iii), it remains to show that

n7t Y Yhod ldzk+ 2(2 s Y8 Lainlai k—1)%

-1 nt)\ n
subject to Yi=1 lsix = n for all i, is minimized by d* (which gives lg+ix = A, for all i, k). This
follows easily from Lemma 5.6, since [(t — 1)A2n*]"" < [2¢(p — )AT]™" holds for ¢ = 3.0

ProOF oF THEOREM 4.2. The proof will be given by simply modifying that of Theorem
4.1. All the notations are the same. Only the steps involving different arguments are given
below.

The complete symmetry of Cy- is obvious. We want to show that d* also maximizes tr(Caz.
— Ca21Da'Car2) over A .. Since Fy; is not assumed constant, the minimization problem (5.5)
is replaced, in this case, by

(56) nAl l Zk-l ldlk -n ] ! =1 (Zp_l Idlk) + Zl-l rt_hl 2_] !(mdu qdlj)zy

subject to the same set of constraints. Here, Fg; = Y%<1 lix is used. From (i) (ii) (iii) of the
proof of Theorem 4.1, the third term of (5.6) is greater than or equal to [( — 1)A:n®]™
(Fi=1 Th-2 lainlai r-1)* and equality holds for d*. The proof will be completed by showing that

=1 Y%= Vo —p ' Yo (Zk-l Lain)® + [(t = DAan®]™! Ciai Y8 Laitlai p-1)°

is minimized by d* which gives ls-ix = A, for all i, k. However, this follows from Lemma 5.7,
since [(1 — Aon? ™' < [1p(p — DA} for p = (&= N2 = 1).0

PrOOF OF THEOREM 4.3. The complete symmetry of Cy- follows easily from computation
(5.7). Since the class of competing designs are uniform on each unit and in the last period, one
can easily verify that

Can=Mp(I — t7' ), Carz = Chi =My —t"'M(p — Doy,
G.7)
Ca=A(p—1=p "L —1t7"J.]

Since tr Cq11 is a constant and Cgs = AT'(p — 1 — p™) 'L, tr(Cant — Ca12Ca22Ca2) is
maximized iff tr Cq12Cq21 is minimized. However, tr Cq12Ca21 = Yij=1 (may — t "Ai(p — 1)) is
minimized, over the class of designs with mg; = 0, by d* (which gives my-; =t 'Ay(p — 1) for
alli#j).0
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Proor oF THEOREM 4.4. The idea of proof is essentially the same as that of Theorems 4.1
and 4.3. The only difference is for the residual effect case, where part (iii) of the proof of
Theorem 4.1 is replaced by the minimization of Y- Yi=1 nautlain, Subject to Yici naw = p,
which is minimized by ng+i = A according to Lemma 5.4. Note that n4i, = fai for all i not
equal to some i, and na; . = Aai, + 1.0
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