The Annals of Statistics
1980, Vol. 8, No. 5, 10571064

A NOTE ON STRONG CONSISTENCY OF LEAST SQUARES
ESTIMATORS IN REGRESSION MODELS WITH MARTINGALE
DIFFERENCE ERRORS

By PauL 1. NELsON
Bucknell University and The Pennsylvania State University
Conditions for the pointwise consistency of weighted least squares estima-
tors from multivariate regression models with martingale difference errors are
given in terms of the relative rates at which certain quadratic forms diverge to
infinity.

1. Introduction. This note concerns the pointwis¢ consistency of weighted
least squares estimators from multivariate regression models with dependent error
terms. The focus is on models where the error terms are martingale differences.

Let {y,};2o be an integrable real r X 1 vector valued discrete parameter sto-
chastic process whose distribution depends on an unknown p X 1 vector of
parameters #*, which is assumed to be an interior point of an open subset ©® = {4}
of Euclidean p-space. Let Ey(-) and E, (-YI') denote expectation and conditional
expectation respectively under the distribution determined by §. When 8 = §* (the
“true” value) the subscript will be omitted. A regression model may be created by
writing for t = 0,1,- - -,

(1.1) Yier = Eg(y 1| F) + (J’1+1 - E0(.yt+l|E))
= g(0,F) + u,.,(9),

where F, is a subsigma field generated by an arbitrary subset of {y;,j < ¢} for
t > 0. The least squares estimators considered here are obtained by minimizing,
with respect to 8, the weighted sum of squares.

Qn(a) = 27;(:}(yt+l - g(o’F;))ISt(yﬁl - g(o’F;))’

where {S,}, called the “weights sequence”, consists of » X r positive semidefinite
symmetric matrices which are free of # and with S, measurable with respect to
E,t>0.

Call the sequence {6@,} “a strongly consistent sequence of least squares estimators
on the event 4™ if {6,} — 6* a.e. on 4; and for some sequence of weights {S,}, for
any & > 0 there is a positive integer n, such that for all n > ngy, Q,(6,) is a local
minimum of Q, (+) on part of 4 with probability at least P(4) — e. The existence
of such a sequence follows from

(1.2) liminfs_,liminf, inf o g _s(Q.(0) — Q,(0%*) > 0 ae.ond,

which implies that a.e. on 4 Q,(-) ultimately in n (random) has a local minimum in
any neighborhood of §*. The strongly consistent least squares estimators can then
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1058 PAUL 1. NELSON

be constructed by using Egoroff’s theorem as in Theorem 2.1 and its corollary of
Klimko and Nelson (1978).

Klimko and Nelson (1978) obtained (1.2) in the unweighted univariate case by
using the Taylor expansion

(13) 0.(6) = 0,(8%) + (8 - 0y 22

82Qn(49“)

+3(0 — 0%y —=—(8 — 6*) + R,(0)

to find conditions under which the remamder R,{8} is negligible and such that
there is a sequence {k,} of positive values converging to zero for which

30,(6%)

(1.4) lim, k"T = 07*1a.e,,
9%Q,(0*
(15) im k22D, o
n—»oo ''n 802

a positive definite matrix of constants. Theorem 2.1 of this paper extends this
approach, which was mainly designed to handle stationary ergodic processes {y,};
first, by replacing (1.5) with a condition concerning the relative rates at which the
eigenvalues of a sequence of matrices, whose elements are sums of products of
partial derivatives of the regression functions {g(0, F,)} with respect to 4, diverge to
infinity. The condition is given in Lemma 2.1. It is seen to hold in Example 2.1 for
a linear regression model to which the results of Klimko and Nelson (1978) do not
apply since (1.5) fails to hold for any sequence {k,}. In addition, when the error
terms {u,(0*)} are martingale differences, (1.4) is replaced here by using a result of
Neveu (1965, page 150) which implies the convergence to zero of a martingale
divided by the sum of the conditional variances of its difference sequence a.e. on
the set where that sum diverges. Some necessary conditions for the existence of
strongly consistent least squares estimators are also given in Theorem 2.1. A feature
of the approach taken here is that it allows consistency to hold with probability less
than one. This is convenient, for example, in working with branching processes
where asymptotic results do not hold on the set of extinction. See Example 2.2.

Jennrich (1969) investigated consistency for univariate nonlinear nonrandom
regression functions with i.i.d. error terms. His approach avoids the differentiability
and remainder assumptions of (1.3) by getting at (1.2) through an argument that
amounts to an examination of the terms of the decomposition

(1.6)  Q,(0) = Q.(6*) + 22725(8(6*. F) — g(6, F))'S,u,,.1(6*)
=_01(g(0*’ F;‘) - g(0, E))IS,(g(e*, F;') - g(0, F;))

In lieu of (1.5), Jennrich assumes that (1/n) times the last term in (1.6) converges
uniformly in 6 to a function of # which has a unique minimum at §* and uses a
special case of the aforementioned martingale convergence theorem of Neveu to
show that (1/n) times the cross product term of (1.6) converges to zero a.e., which
is the analogue of (1.4).
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Many others have worked on the problem of consistency for least squares
estimators in a wide variety of models. We mention only a few of the recent papers
in this area. Dunsmuir and Hannan (1976) and Nicholls (1976) deal with stationary
vector valued autoregressive moving average processes. Robinson (1972) considers
asymptotically stable vector valued nonlinear regression functions which are func-
tions of exogeneous variables only and have a stationary error sequence. Phillips
(1976) compares least squares estimators with what are called quasimaximum
likelihood estimators in similar models with independent error terms. Robinson
(1977) treats univariate processes which are quadratic moving averages. The results
of Anderson and Taylor (1976a,b) and Lai, Robbins and Wei (1978) are compared
to those presented here directly after the proof of Theorem 2.1.

2. Consistency. Henceforth, let 4 denote an event and assume that the com-

ponents g,(8, F;), m = 1,2,- - -, r of the regression vectors g(8, F,) are a.e. continu-
ously differentiable with respect to 8,8 € ©,¢ > 0. Define a.e.
3g.(0*, F,)
rxXp — m > .
o - () o
m<r,j<p

Let d = d(8) = § — 6* for a general § € ©. With R,(#) an appropriate remainder
term, expansion (1.3) may be written as
2.1 0.(0) = Q,(0%) + (6 — %)y ——
+ (067 (Z3 VS, v,)(o —6%) + R,(0)
Q,(0%) — 2(8 — 0*)2i50 V,"Su,.,(8%)
+(0—0*)(Z120 VS, V,)(0 — 6*) + R,(9)
Q,(0*) — 2372Jv,(d) + 2'24bX(d) + R,(9)
= Qn(ﬁ*) + Z120b7(d) (—227230(d)/
1Zob}(d) + 1+ R,(0)/2r2)b}(d))
a.e. on {Z720b(d) > 0},

99, (0*)

where we have set
o(d) = d' V,'Su,, (6%, >0,

b(d) =d' V,’S,V,d, t > 0.

In view of the preceding discussion, (2.1) and the following conditions imply
(1.2) and hence the existence of a sequence of strongly consistent least squares
estimators.

(2.2 lim inf, ,  3""db*(d) > Oa.e. on Afor alld # 0
(2.3) limsup, o limsup, ., sup =s2/=gv,(d)/Z/2gb}(d) < Oa.e.on4,
(24) liminf;_oliminf, , inf , _sR, (0)/2 ob3(d) > Oa.e.ond.
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A martingale convergence theorem will be used to obtain (2.3) for fixed d and a

constraint on the rate of growth of quadratic forms in the sequence of p X p

matrices {273 VS, V,} will be used to make the limit uniform in &§ = ||§ — 8*|.
Let

e, (min. (max.)) = min. (max.) eigenvalue ="~} V,’S, V,, n>1,

Il

p, = e,(max.)/e,(min.), n> 1.

LeMMA 2.1.  If either of the following holds,
() ZrZov(d)/Zr=ab*(d) — O for all d + 0 and limsup,_,, p, < o a.c. on 4,
(i) 2r-Jv,(d)/e,(min.) — 0 a.e. on A for all d # 0,

then, (2.3) holds.

ProOOF. Given & > 0, let d(j) denote the p X 1 vector with & in the jth place
and zeros elsewhere. Then, for all d, ||d|| = §; a.e. on 4

|2t2du(d)|/ 215063 (d) < |2idv(d)]/e, (min)
< 224|220 (d()))| /e, (min.) 82
< P20 [Z5 o d( )] /e, (max ) 82
< (2limsupp,)22_,|=720v,(d(j))| /e, (max.) §*
< (2limsupp,)Z2_, |27 Z00,(d()))/ 1272067 (A ()],

where the next to last inequality holds ultimately in n. If (ii) holds uniform
convergence follows from the second inequality; if (i) holds it follows from the last.
For linear regression models
3’Q,(6*)
062
In such cases (1.5) implies that k, times the eigenvalues of 27_} V,'S, V, converge
to positive constants and hence that lim sup,_,  p, < oo a.e. The following example
shows that the converse implication is not valid.

=251 V,’S, V,ae.

ExampLE 2.1. Lety, = 0,x, + 0,x,, + u,,t = 1,2,- - -, be a univariate (r = 1)
linear model where the error sequence {u,}, whose distribution is free of 4, and the
o fields { F;} are such that E(u,lF,_l) = 0 ae t=12,- . Take x;; = 1 and set
x,; = 01if zis even and x,, = (2’_l x2)%if tis odd t>2 Letx,=0ifzis
odd and x,, = 2'"' — ZTixy) if ¢ is even, t > 1. Then (taking S, = 1,7 > 1)

27—1xr21 0 )

0 27=1xr22 ,
where 37_,x2 =2""1,3"_ x3 =2""2if n > 3is odd and 37_,x} =2""%, 3"_,x2
=2""1if n > 2 is even. Clearly, p, = 2,n > 3 but (1.5) fails to hold for any

sequence {k,}. Of course, as a practical matter, this particular model would be
analyzed as two separate problems.

2 VY, = (
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When F, = o(yo,»1," %), t >0, {u,(0%)} is a sequence of martingale dif-
ferences. With this choice of {F}, called the martingale case, the following
elementwise integrability assumptions will be needed.

(2'5) u,(0*)u,’(0*)8Ll, v.’s, v, eLl’ v, ’Stut+1(0*)u’t+l(0*)St v, eLl’
t > 0.

Now, whenever (2.5) holds, define the r X r conditional covariance matrices by
Q = E(u,+1(0*)u',+l(0*)|E), t > 0.
The main result on consistency can now be given.

THEOREM 2.1. In the martingale case, suppose that the integrability conditions
(2.5) hold. We then have the following partial dichotomy: a strongly consistent
sequence of least squares estimators

(a) exists a.e. on the event A if

(i) {min. eigenvalue E'-) V,/S,V,} —» w0 a.e. on 4,
(ii) h, = inf,_ _, {min. eigenvalue B/}, B,} > 0 a.e. on A,
h, = sup,_, . {max. eigenvalue B/2,B,} < oo a.e. on A,
where S, = B,B/,t > 0.

(iii) limsup,_,  p, < oo a.e. on A4,

(iv) (2.4) holds;

(b) does not exist a.e. if

(V) sup,_,, {min. eigenvalue E(E7-4 V,’S,V,)} < o,

(vi) sup,_,,, {max. eigenvalue B/, B,} < k a.e., k a positive constant,

(vii) the regression functions {g(0, F,)} are componentwise a.e. twice continu-
ously differentiable, t > 0, and sup,.q sup,,_m|(82Q,,(0))/(80,.80j)| < o©
ae,i,j=12---,p

(viii) (2.2) holds a.e.

ProOOF. In view of Lemma 2.1, to prove (a) it suffices to show that (i) and (ii)
imply that for all d # 0, £7-Jv,(d)/Z723b*(d) — 0 a.e. on A. Since for all d,d’ V'S,
is measurable with respect to F,, 1> 0, f(d) = Z/Zjv(d) = 2'20d’ V,/S,u,, (6%),n
> 1 is a martingale. Therefore,

(2.6) © f(d)/ZI20E(0h (d)|F) > 0

for all d # 0 a.e. on the set where =2 E(v?, (d)|F) = oo (Neveu (1965), page
150). Since for all d,

,_OE(v,,H(d)lF) = d'SI2V,S0,8, V,d > (45120 VS, V,d)h,
Z/20b}(d)h, > hy||d||*min. eigenvalue (272} V.S, V,),
and
10E(v%(d)|F) < h,2'2db*(d)a.e.on 4,
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(i), (i) and (2.6) imply that
£.(d)/Zr=ab?(d) — Oa.e.on A4 foralld # 0.

This completes the proof of (a).

To prove (b), suppose that a strongly consistent sequence {0:,} of least squares
estimators exists a.e. Expand the pX 1 vector 8Q,,(0:,) /90 in a Taylor series about
#* to obtain

aQn(én) - 30,(8%) + aan(o_n) (0“ _ 0*)

90 a0 902 " ’
where 67,, is some vector between 67,, and 6*. I{ltimately in n(random)
(3Q,(6,))/(38) = 07! a.e. Since the elements of (3°Q,(6,))/(36,) are a.e. bounded
by assumption and 8, — 8*, a.e. (2.7) implies

0*

(2.8) lim,,_m—a—g%—) = 07P*!ae.
The proof proceeds by showing that (v), (vi) and (viii) lead to a contrary implica-
tion. ' '

Assumptions (v) and (vi) imply the existence of a p X 1 vector d 0=9-6*+0
such that

sup, ., E(d°S724 V,/5,2,8,V,d°) < ksup,_, E(d°2]2 V/S,V,d°) < .

=0
Therefore, {£,(d°)} is an L? — bounded martingale. Hence, {£(4°)} is uniformly
integrable and f(d°) = lim,_,  f,(d°) exists a.e. with

29) E(f(d°)|E,) = f(d°)ae, ">

Neveu (1965, Proposition IV. 5.6.). Since from (viii) { f(d %)} is not a.e. a sequence
of zeros, (2.9) implies that P(f(d°) # 0) > 0. But, (f(d%)) =
— 1d%(3Q,(8*))/(89) is a linear combination of the elements of (3Q,(0%))/(36),
n > 1. Therefore, P(lim,_,_, (3Q,(6%)/(38) = 07*') < 1, which contradicts (2.8)
and completes the proof of (b).

To compare Theorem 2.1 to some related results, first consider the univariate
(r = 1) multiple regression model ¥ = X,0 + &,Y = (y,05," * *» ,)» X, @ nxp ma-
trix of constants of rank p,n > p,e ~ MVN(O, ¥,) with ¥, a known positive
definite matrix. Take y, = 0. When S, = @ ! which is free of 8 here, ¢ > 1, the sum
of squares given in (1.1) becomes Q,(0) = (Y — X,0)V, (Y — X,0) and hence
6, = (X,V;'X,)"'X,'V;'Y, the Gauss-Markov estimator. Theorem 2.1 implies
that §, —> 6* a.e. if min. eigenvalue X'V, X, — oo and limsup,_,,, {max. eigen-
value X,'V,"'X,/min. eigenvalue X,'V;'X,} < c0; and §,|>0*a.. if sup, ., {max.
eigenvalue X,'V; 'X,} < 0. For this particular model with V, = o2I"™ ", and
S, = (1), ¢ > 1, Anderson and Taylor (1976a) obtain sharper results by showing
that {min. eigenvalue =, V,'V,} — co is necessary and sufficient for the strong
consistency of {é}. Lai, Robbins and Wei (1978) show that this condition is
sufficient for strong consistency when the assumptions that e ~ MVN(O0, 621"*")
are weakened to sup, E(¢?) < oo and {¢,} are martingale differences.

.7)
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Theorem 2.1 extends the results of Anderson and Taylor (1976b) who, for model
(1.1) in the martingale case, assume that (i) holds; that the regression functions
{g(0,F)} are a.e. linear in 8,7 > O(R,(0) =0 a.e.), 2, = Q a.e. independent of
t > 0, positive definite and S, = I"",¢ > 0 ((ii) holds); and that {p,} is uniformly
bounded in n with probability one ((iii) holds).

ExampLE 2.1. Let {y,} be a super critical single type (+ = 1) branching process
whose branching distribution has unknown mean 4, § > 1, and finite variance o2
See Jagers (1975) for a discussion of such processes. Let A be the complement of
the set where the process becomes extinct. The process is Markov and we take
F,=0(y),t > 0. Then, g0, F)) = E)(y,,\|F) =6y, ae. and Q, = E((y,,, —
0, ’|F) = 0%, ae., t > 0. Let the weight §!*' = 1/y, if y, > 0 and 0 elsewhere,
t > 0. Then 2720V,S,V, = 3120y, = 21230%,/0" — oo a.e. on A4 since {y,/(8°)}
is a nonnegative martingale which converges to a positive random variable a.e.-on
A. That is, (i) of Theorem 2.1 holds. Since €, = ¢2S,”! a.e. on 4 and p = 1
conditions (ii) and (iii) hold trivially. Since V,/S,V, =y, and V/Su,,,
O, (0)S,V, = (¥,41 — &,)* ae. on A, t > 0, the integrability assumptions of
the martingale case hold. Condition (2.4) holds since R,(#) = 0. Therefore, Theo-
rem 2.1 implies that the weighted least ‘squares estimator § = 37_,y,/S"Z1y,
converges to # a.e. on A. It is interesting to note that § is also the maximum
likelihood estimator for a wide variety of offspring distributions (Feigin (1977))
whose consistency is already known. Extensions of both approaches to estimation
of the r* elements of the matrix M of conditional means in a positively regular
super critical multitype branching process have not yet been worked out. One
problem here is an appropriate parameterization since the elements of M are
constrained by the condition that its Perron-Frobenius root be greater than one.
See Mode (1971).

Acknowledgment. 1 would like to thank the referee whose suggestions led to a
greatly improved presentation.
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