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MINIMAX RIDGE REGRESSION ESTIMATION!

BY GEORGE CASELLA
Rutgers University

The technique of ridge regression, first proposed by Hoerl and Kennard,
has become a popular tool for data analysts faced with a high degree of
multicollinearity in their data. By using a ridge estimator, one hopes to both
stabilize one’s estimates (lower the condition number of the design matrix) and
improve upon the squared error loss of the least squares estimator.

Recently, much attention has been focused on the latter objective. Building
on the work of Stein and others, Strawderman and Thisted have developed classes
of ridge regression estimators which dominate the usual estimator in risk, and
hence are minimax. The unwieldy form of the risk function, however, has led
these authors to minimax conditions which are stronger than needed.

In this paper, using an entirely new method of proof, we derive conditions
that are necessary and sufficient for minimaxity of a large class of ridge
regression estimators. The conditions derived here are very similar to those
derived for minimaxity of some Stein-type estimators.

We also show, however, that if one forces a ridge regression estimator to
satisfy the minimax conditions, it is quite likely that the other goal of Hoerl and
Kennard (stability of the estimates) cannot be realized.

1. Introduction. Beginning with the work of Stein (1955), who showed that in
higher dimensional problems, the sample mean of a multivariate normal distribu-
tion is inadmissible against squared error loss, much research has been aimed at
developing estimators whose risk functions dominate that of the sample mean.
More recently, a new estimation procedure, ridge regression, has been developed to
improve upon the numerical stability of the least squares estimator in linear
regression. Although it was not the original purpose of the ridge regression
estimator to dominate the risk of the least squares estimator, recent research has
gone in that direction.

In the present paper we develop a class of ridge regression estimators and,
utilizing a new method of proof, derive necessary and sufficient conditions for
these estimators to be minimax and thus dominate the least squares estimator in
risk. We also point out that “forcing” ridge regression estimators to be minimax
makes it difficult for them to provide the numerical stability for which they were
originally intended.

We start with the familiar linear model

(1.1) Y =2ZB + ¢,
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where Y is an n X 1 vector of observations, Z is the known n X p design matrix of
rank p, B is the p X 1 vector of unknown regression coefficients, and ¢ is n X 1
vector of experimental errors. We assume that £ has a multivariate normal distribu-
tion with mean vector zero and covariance matrix ¢2I,. (I, denotes the n X n
identity matrix.)

The usual estimator of B in (1.1) is the least squares estimator

(12) B = (zz)'zv.
B minimizes the residual sum of squares of the regression, i.e.,
(13) min,(Y — ZB) (Y — ZB) = (Y — ZB) (Y - ZB),

and is thus the estimate which best “fits” the data. Two ‘different lines of research,
however, pointed out deficiencies in f.

The first deficiency in ﬁ is its inadmissibility. If we measure the loss of an
estimator & of 8 by

(14) L(8.8.0%) = — (5~ B)Q(3~ )

where Q is an arbitrary positive definite matrix, and let the risk of § be given by
(1.5) R(8,B8,0%) = EL(8,B,0%),

then the results of Brown (1966) show that /3 is inadmissible. Several authors (e.g.,
Bhattacharya (1966), Berger (1976b)) have exhibited large classes of estimators
whose risk functions dominate that of 8. Since 8 is a minimax estimator of 8 with
constant risk

(1.6) R(B.B,0%) = wQ(2'Z)"",

where “tr” denotes the trace operator, this search for estimators better than ,é isa
search for minimax estimators.

A second deficiency in ,é was first noted by Hoerl and Kennard (1970). If the
matrix Z arises from observation rather than from a designed experiment, it is
possible that there will be high correlation among the Z variables. This will lead to
a Z'Z matrix that is “nearly singular”, i.e., Z’Z will have a wide eigenvalue
spectrum. Hoerl and Kennard point out that, if this is the case, the least squares
estimator ,é will be “unstable” in the sense that a nearly singular Z’Z will produce
an inverse with inflated diagonal values, and (see (1.2)) small changes in the
observations might produce large changes in ,é To correct this problem, they
proposed the ridge estimator

1.7) B(k) = (zZ+ kL) 'zY
where & is a positive number. Adding the number k before inverting amounts to

increasing each eigenvalue of Z’Z by k. This can be made clear as follows: Let P
be the matrix of orthonormal eigenvectors of Z'Z, and let A; > A, > --- > A, be
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its eigenvalues. It follows that

(1.8) P'Z’ZP = D,, PP =1,
where D, = diag(A,,- - -,A,). Then (1.7) can be written as
(1.9) B(k) = (P'(Dy+ kI,)P)”'Z'Y.

To see that the ridge estimator is more stable than B, we note that the condition
number of the matrix being inverted in (1.9) is decreased. The condition number of
a matrix is a measure of its ill-conditioning and is given by

A max(4)
1.10 A) = F——,

(1o = X
where A, (+) and A_; () denote the largest and smallest roots of a matrix. Large
values of k(A4) imply that A4 is ill conditioned. Since

AN+HEA
(1.11) L —

A, +k A,

for k > 0, the ridge estimator is relieving the ill-conditioning problem of Z’Z. A
straightforward generalization of (1.9) is the generalized ridge estimator

(1.12) B(K) = (P(D,+ K)P)"'ZY

where K = diag(ky,- - - ,k,). Here, we allow each eigenvalue of Z’Z to be in-
creased by differing amounts.

Hoerl and Kennard list many properties of the ridge estimator, and prove the
“ridge existence theorem”. This theorem asserts that for a fixed parameter point 8,
there exists a value of k (or values of k;,, i = 1,2,---,p) depending on B,, for
which the risk of ,é(k) is smaller than the risk of ,é This theorem, together with
results arising from the work of Stein, has lead to the search for minimax ridge
estimators.

In Section 2, we discuss the canonical form of the problem, and develop the
necessary notation. Section 3 contains the asymptotic (as the parameter value
increases) results needed as a preliminary step in developing the main theorem.
Section 4 contains the main theorem, the suffi/cient conditions for minimaxity of
the estimators, while in Section 5 we show that for a smaller class of estimators
these conditions are necessary and sufficient. Section 6 contains a discussion of the
relationship between minimaxity and the conditioning problem.

2. The canonical problem. The technique of simultaneous diagonalization has
found frequent use in proving minimaxity of classes of estimators (see, for example,
Berger (1976b) or Strawderman (1978)). The problem is rotated into a space where
both the covariance matrix and the loss matrix are diagonal, which greatly
simplifies calculations while preserving minimaxity. However, with estimators of
the form (1.12) it is necessary to simultaneously diagonalize three matrices
(Z'Z, P’KP, Q) which, in general, is not possible. A sufficient condition for the
simultaneous diagonalization of these three matrices is that Q and Z’Z have



MINIMAX ESTIMATION 1039

common eigenvectors. In the absence of any prior knowledge, an experimenter will
usually choose Q = I or Q = (Z’Z) ! and the simultaneous diagonalization can be
carried out. However, it is often the case that an experimenter has some knowledge
of the losses he is willing to incur in the individual components, possibly from cost
considerations or prior knowledge. In such cases, it is worthwhile for the estimator
to perform well against an arbitrary choice of Q.

Since Hoerl and Kennard’s estimator was proposed only with the choice Q = I
in mind, we cannot expect it to perform well when Q is arbitrary. A slight
generalization, however, will handle any choice of Q. As an extension of (1.12) we
define

(2.1) B(K,Q) = (ZZ+ MKM)™'z,

where M is a nonsingular matrix which simultaneously diagonalizes Z’Z and Q. If
Q and Z’Z have common eigenvectors, (2.1) is the original ridge estimator. If D is
the diagonal matrix of eigenvalues of (Q~*(Z'Z YO~ 3)~, M satisfies

(2.2) M'D'M = Z'Z
MM = Q,
and showing that B(K, Q) is minimax against the loss
23) L(B.B.0%) = = (B - BYQ(B - )
can be reduced as follows. (K, Q) can be written
B(K,Q) = (M(D™"+ K)M)™'M'D~'MB
(2.4) = M (D' + K)"'D"'MB.

Let X = MB, § = MB. Since f ~ N(B,6*(Z'Z)™"), it follows that X ~ N(8, 32D).
Also, from (2.2),

L(B,B,0?) %(MB — MB)'(MB — MpB)

L (mMB - 9y(MB - 0).

If we let 8(K, Q) = MB(K, Q), we have
8(K,0) = (D~'+K)"'D7'x,
where the ith component can be written
k.d,
(2.5) 5(K,Q) = (1 - Ed_,.:-_l)x“
and the loss of (2.3) becomes

(2:6) L(8(K,Q),0,0%) = %(8(1@ Q) — 0)(8(K, Q) - 0).
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It then follows that S(K, Q) is minimax against loss (2.3) if and only if §( K, Q) is
minimax against the loss (2.6).

In the following we will suppress the dependence of the estimator on Q, and
since K will be a function of X and s, the variance estimate, we will denote the
ridge estimators by §%(X,s).

Finally, we note that since X is minimax with constant risk

R(X,0,0%) = EL(X,0,0%) = tr D,
an estimator §(X,s) is minimax if and only if
A(8,0,0%) = R(8,0,0%) — R(X,0,6%) < 0, V.

3. Tail minimax conditions. The form of Hoerl and Kennard’s ridge estimator,
while intuitively pleasing, leads to a rather complicated risk function. If one tries to
apply Stein’s integration-by-parts technique (Efron and Morris (1976)) in which an
unbiased estimate of the risk is obtained and bounded above for all X, it seems that
one is led either to bounds that, in some cases, are not sharp (Thisted (1976)) or to
additional conditions on the estimator (Strawderman (1978)). The proof in this
paper avoids these complications by obtaining an upper bound on the risk of
8R(X,s) by an indirect method.

We begin with the concept of tail minimaxity, first introduced by Berger (1976a)
to deal with losses other than quadratic. We use tail minimaxity here to obtain a
simplified expression for the risk of 8%(X,s).

DErFINITION 3.1.  An estimator 8§(X,s) is fail minimax if 3M > 0 such that V4
satisfying 0’6 > M, A(§,0,02) < 0.

Since 8R(X,s) shrinks X toward zero, (as can be seen from (2.5)), it should
perform well against quadratic loss for small values of #. Thus, we begin our
investigation for minimax ridge estimators by examining conditions under which
the risk of the ridge estimators dominates that of X for large values of 6, i.e., those
that are tail minimax. We first develop conditions under which, for large values of
0, the quantity Ef(X) can be approximated by f(#) with error small enough to be
ignored. We then use this approximation on the risk function of §®(X, s) to derive
conditions for tail minimaxity.

From the work of Brown (1971) and Berger (1976a), it is reasonable to choose k;
so that the quantity

3.1 v(X,s) = X — 8(X,s),
is, for large values of X’X, approximately ¢/X’X for some constant c, i.e.,
3.2) y(X,s) ~¢/X'X.

To this end, we consider k; of the form
a;sr(X'D7'X/s)
X'D™'x

where q; is a positive constant and r(-) is a bounded function satisfying certain

(3.3) k, =
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regularity conditions. While the quadratic form in the denominator may contain
any positive definite matrix and still satisfy (3.2), it will be important later in this
paper for the quadratic form to have a noncentral chi-square distribution.

For k; as in (3.3), the ridge estimator of (2.5) can be written componentwise as

ad;r(X'D'X/s)
adr(X'D7'X/s) + X'D™'X/s

(3.4) SR(X,s) = (1 - )X 1 <i<p.

We start with the following lemma, which gives conditions on a function f(x)
under which, for large values of #, Ef(X) can be approximated by f(#) with
sufficiently small error.

LemMA 3.1. Let X ~ N(0, 1), and let the function f: R? — R satisfy
(i) f has all second order partial derivatives;
() E(A(X) — f(8))* < K|8|? for some constants q and K;
(iii) sup, . 01,2 ] F(¥) = SO = 0(10]72), 1 < i,j < p, where fU(X) =
(32/0X,0X,)f(X).
Then as |0 — o,

|Ef(X) = £(0)] = o(10]72).

Proor. The technique of proof is very similar to that used in Theorem 1 of
Berger (1976a). Thus, we will only sketch the essential details.
Define the regions W and W° by

W= {X:|X-0|<|0]/2), W= {X:|Xx-8]>]|0/2)

and expand f(X) in a Taylor series around 6 (up to second order terms). It can
then be verified that
(3.5)

|Ef(X) = f(0)] < [wlo(X,0)|dD(X = 0) + [y f(X) — f(6)|dD(X - 0),

where ®(-) denotes the cumulative normal distribution with mean 0 and covariance
I, and p(X,#) is the remainder in the Taylor expansion. Then, using conditions
(i)—(iii) it can be shown that the right-hand side of (3.5) is o(|8|~2). [

We now derive the asymptotic expression for the risk of the estimator §R(X,s),
given by (3.4), and the conditions under which it is tail minimax.

THEOREM 3.1. Let X ~ N(0,0°D), D = diag(d,, - - ,d,), and let s ~ 62, be
independent of X. Let the loss of an estimator 8( X,s) of 0 be given by (2.6), and let
8R(X,s) be the ridge estimator given by (3.4) where r(t): R — [0, c0) satisfies

() r'(¢) = o(t™%) as t — oo0;
@) r”(f) = o(t" %) as t — o0;
(iit) r(¢) is bounded and nondecreasing;
(iv) r(t)/t is nonincreasing.
If 3¢, > 0 and &, > 0 such that

& < (1) <[2(m+2)7 (0 AD? = 2] 1y AD?)/ 1y A2D°| — ¢y,
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where A = diag(a,,- - ,a,),a; > 0, 1 <i<p, then 3K >0 such that V¥0'0 >
K,R(8%,0,0%) < R(X,0,0?).

ProOF. Define A(8%,0,0%) = R(6%,0,0%) — R(X,0,0?). From (2.6) and (3.4)
straightforward calculation yields

(3.6) A(SR,0,02)= (I/OZ)EP_IE{ (aidir(t),Yi)2 _ 2Xi(’Yx‘ - 0i)aidir(t)}

(a,d,r(1) + 1)’ a;d;r(t) + ¢

where t = X’D~'X/s. Integrating the last term in (3.6) by parts and defining

w, = s/6?, Z; = X,/o, v = Z'D7'Z,
hi(w,,v) = (a,d;r(v/w,)W, + v)”!
yields
3.7 A(8R,0,0%) = S E{h¥(w,,0)| a;d;r(v/w, W2 Z?

- 2hi(wm’v)aidi2r(v/wm)wm
+ 4a,d,r(v/w,)W,Z?
— 4072w %a,d, Z2or' (v/W,,) ] }-

Since r is nondecreasing, the last term is bounded above by zero. Noting that
t=XD"'X/s=2Z'D"'Z/w,, and applying Lemma 4 of the Appendix to the
function g(¢) = ¢~ 's(¢), we have

(38) E{x%s(Z’D™'Z,x%)} = mE{s(Z'D™'Z,x2,.,}-

Using (3.8) on each of the first three terms of (3.7), bounding the last by zero, and
rearranging terms gives

A(8%,8,0%) < mzf;lE{h%(Wmn’ 0)a,d;r(0/ Wy 2 (@A, (0 Wi 2 ) Wimi2 + 4z}

(3.9) = 28,(Wis 25 0);d7r(0/ W s2) } -
It follows from conditions (i) and (ii) that r(v/w) is nonincreasing in w, and
wr(v/w) is nondecreasing in w, and hence the function

a;d;r(v/w)Z, )2

a;dwr(v/w) + v

g,(w) = (

is nonincreasing in w. Applying Lemma 5, Appendix shows
E(q,(Xs2)(Xos2 — (m +2)} <0,
so that (3.9) is bounded above by
A(8R,0,0%) < mEL E{h}(w,v)a,d;r(v/w)(a;d;r(v/w)(m +2) + 4)z?
(3.10) — 2h(w,v)a,d}r(v/w)}
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where, from here on, w = w,,, , ~ x2 . ,. Divide the region of integration of w into
the two intervals

Wy, = {w:w< M},

W, = {w:iw>M},
where M is a positive constant. The exact method of choosing M will be detailed
later in the proof. Let G,(w, Z) denote the quantity in braces in expression (3.10)
and let F(-) denote the cumulative x? distribution with m + 2 degrees of freedom.
Then

A(8%,0,0%) < mfy ZE\E,G(w,Z)dF(w) + m[y, 2 E,G,(w,Z)dF(w).

Consider first the integral over W,. Since a,d;r(v/w)w > 0 and Z'D~'Z > Z?/d,,

(3.11) fW,Ef"- IEZ(Gi(w’ Z)) dF(w)

x (a;d?r(v/w)(m + 2) + 2d,.)} dF(w)

*
ad;r
v

< leZ{’,,EZ{( )(a,.d,.zr*(m +2)+ 2d,.)} dF(w)

=[ E,{v™'(tr(m + 2)r*?4>D® + 2r*4D?)} | P(w > M)

where r* = sup,r(¢). Since
E,(v7") = E,(ZD'Z)™" = ¢2/0'D7'9 + 0(c?/0'0)
the last expression in (3.11) is equal to
(3.12) (0%/0'D7'9)(tr[(m + 2)r*24°D* + 2r*AD?])P(w > M) + o(0%/0'6).

Consider next the integral over W,. It is straightforward to verify that, for fixed w,
G;(w, Z) satisfies the conditions of Lemma 3.1. Thus

va02f=1EZGi(W’Z)dF(W) = fW02f=1Gi(W,0/°)dF(W)
(3.13) + [wo(c?/0'0) dF(w).

Straightforward calculation will show that the individual terms comprising the
0(62/8'6) term in (3.13), which are the higher order derivatives of G,(w,Z), can
each be bounded by a function which is independent of w and of order o(a2/8'8).
Now define
v = 0'D'9/s?,
s;(v/w,0) = a;d(a;d;r(v/w)(m + 2) + 4)0?/a?,
vi(v,w) = a,d;r(v/w)w/ (a;d;r(v/w)w + »).
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Supressing the arguments of s; and y; we can write (3.13) as

fWOZ{’, 1E2G,(w,Z) dF(w)

= 1L 5p [ (/9) — 20,07) dFOw)
(3.14) L 58 [a(/9) - 20,d2) — visy/v] dFCOw)

+ 0(0%/6'9).
Recall r* = sup,r(¢). Then for w € W,
Y < a;d;r*M(a,d;r*M + v)", 1 <ic<p,
5;/v < a,d?o*(a;d;r*(m +2) + 4), 1 <i<p,
and thus it is clear that the second integral in (3.14) is o(»™') = 0(a?%/66). Hence,
summing the first term in (3.14) yields
fWOEiPﬂEzGi(W’Z)dF(W)
r(v/w) { r(v/w)(m + 2)8’A’D%0 + 9’ADO
6'D"'¢

< fw,—s

- 2trAD2] dF(w)

(3.15) + 0(0%/60)

x[ . 2m+2)7(trAD* - 21, AD?)
.

< fw,

max ’
D dF(w)+ 0(02/09),

A max

since
6'A*D% 0’ADO
——— < A, 4D}, ———
0'D'0 max 9'D"'9
By assumption, the quantity in square brackets in (3.15) is bounded above by
—&,,r(v/w) > &, and since A, 4°D* > 0,

< ApaxAD?.

Sw, 1 EZG(w, Z) dF(w) < [ —e182Amax42D%(m + 2)P(w < M) ]

o
D9
(3.16) + 0(02/0'6).
Combining (3.12) and (3.16) yields
_o’m_
6'D"'9
(3.17) + (tr[(m + 2)r*242D% + 2r*AD?])P(w > M)}

+ 0(02/09).

A(8%,0,0%) < { —&18xA naxA2D3*(m + 2)P(w < M)
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Now M is chosen large enough that
— &8 AmaxA2D3*(m + 2)P(w < M)
+ tr[ (m + 2)r*242D> + 2r*AD*|P(w > M) < —¢, < 0,
for some e, > 0, and thus from (3.17),
A(8R,0,0%) < — (e3ma?/0'D7'9) + 0(c%/0'0)
< — (&mA L, D0?/60°0) + o(a%/0'9),

and for sufficiently large 8’6, A(8%,0,06%) < 0 and so 8%(X, s) is tail minimax. []

While Theorem 3.1 does not guarantee that the risk of §®(X,s) will lie below
that of X for any specified values of 8, it does provide a bound on the tail behavior
of the risk function of 8®%( X, s). In the next section we show that this bound is, in
fact, a global bound.

4. Sufficient conditions for minimaxity. The main theorem of this section,
Theorem 4.1, extends the tail minimax bound of Theorem 3.1 to a global bound.
We introduce a new method of proof, which differs sharply from the techniques
previously used to prove minimaxity. Rather than bounding the risk function
pointwise by a function which lies below R(X,#0,02) we identify the extrema of
R(8R,0,0%) and show that at these points the risk function of 8%(X,s) is below

that of X.
THEOREM 4.1. Let 8%(X, s) be the ridge estimator of (3.4) where r(t): R — [0, c0)
satisfies conditions (1)—(iv) of Theorem 3.1. If
(4.1) 0 < r(t) < 2(m+2)"'[trAD? — 2A, AD?]| /A, A?D?,
Vt > 0, then 8%(X,s) is minimax against the loss (2.6).

PrOOF. Assume that the bound in (4.1) is strict, i.e., ¢, and ¢,, both positive,
such that V¢ > 0

(42) & < r(1) < (2m+2)7'[trAD? = 2A . AD?] /A, A’D?) — ;.

Then from Theorem 3.1 3M > 0 such that V8’0 > M A(8R,0,6) < 0. Consider the
set & = {0:0'0 < M}, a compact sphere in R?. We will bound A(8%,8,62) by a
continuous function (8%, 8, ¢2), which must have a maximum on S. We will then
show that if §, € S is an extremum of v, then y(8%, 6, 02) < 0. Thus, if M is taken
sufficiently large it will follow from Theorem 3.1 that y(8%,0,0%) < 0 V4. A simple
argument, using Fatou’s lemma, then allows the result to be extended to the case
where the inequality in condition (4.1) is not strict.
Using the notation of Theorem 3.1, from (3.10) we have

A(8R,0,0%) < v(8%,0,02%)
(4.3) = mzip=1Eh?(W’U)gi(W,U)Zi2 - 2hi(W,U)aidi2"(v/W)
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where Z, ~ n(6,/0,d;), v = Z'D~'Z,w ~ x2,, , independent of Z and
(4.4) g:(w,v) = a,d;r(v/w)(a,d;r(v/w)(m + 2) + 4).

Letting xﬁ(a) denote a chi-square random variable with p degrees of freedom and
noncentrality parameter a/2, we have from Lemma 2, Appendix,

Y(8%,m,0%) = mSL E{d,h}(w,x242(»))g:(w, X242(?))
(4.5) + 2R (w, X2 44(7)) (W, X2 +4(¥))
- 2aidi2’(X§(V)/W)hi(W,X,z,(”))}

where 1, = §,/0 and » = 7'D~'y. From (4.5) it can be seen that y(6%,1,02) is a
function of n only through #?. Thus, with the possible exception of 7 = 0, a point
7o is an extreme point of y(8%,n0?) only if

(4.6) —6—27(8R,11,02) =0, 1 <ic<p.
an;

N="7o

We now show that if 7, satisfies (4.6), then y(8%,m9,062) < 0. For the sake of
clarity, we take some liberty with notation and define

4.7) b(p) = ER}(w,x3(»))&:(w. x3(»))
t(p) = Er(w,x;(")r(x3(»)/w).
Then
(4.8) y(8%,m,0*) = m2L_{d;b(p +2) + uib(p + 4) — 2a,d]1,(p)}.
From Lemma 6, Appendix, differentiating (4.8) with respect to n? yields

G t0%me?) = 35S {d(b(p+ 9 = blp+2)
(4.9) + 1 (bi(p + 6) — bi(p + 4)
— 2a,d}(t,(p +2) - ti(P))}
+ mb,(p + 4).

Notice that, with the exception of the multiplier d; !, the sum in (4.9) does not
depend on k, the index of differentiation. Denoting this sum by %(7),

(4.10) 17(8",17,02) = 2 D(n) + mb(p+4), k=1,-,p.
an? 2d,

Thus, in order for (4.6) to be satisfied it must be the case that
(4.11) db(p+4) =db(p+4), 1 <i,j<p.
Assume, without loss of generality, thatd, > d, > - -+ > d,. Lemma 7, Appendix,

and the definition of the b,’s show that each b; is strictly increasing in the quantity
a;d;. Therefore, if a,d; > a;d; for some i < j (i.e., when d; > d;) then (4.11) cannot
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be satisfied and y(8%,7,02) will have no extrema in S. Therefore we only need
consider the case a,d, < a,d, <--- < a,d,.

Note that the solution of (4.11), and hence of (4.6), depends only on », =
16D~ 'ne, not on the particular 1,. Now suppose 3y, such that (4.6) is satisfied, and
define 9N = {n:9'D~ 'y = vy}. We will show that y(8%,7,02) < 0 V5 € 9. Com-
bining (4.8) and (4.9) we have for n € 9N

0 _
a_niY(sR’n9o2) = 2dk IY(SR"",OZ)
(4.12) + 2mdy 'Zr_ {d;b,(p + 4) + 2b,(p + 6)
- 2a,d}t,(p +2)}
+ mb,(p + 4).

Setting (4.12) equal to zero and using the identity d;b,(p + 4) = d ;b(p +4) Vi, j
yields

v(8%,1,0%) = m{(p + 2)db(p + 4) + =L_n}b,(p + 6)
(4.13) — 230 a,dit(p +2)} Vk = 1,-- - ,p.
Set k = p and recall that a,d, > a,d,Vi. From the definition of ¢, it is clear that

t(p+2) < t(p+2)Vi
Also, from Lemma 8, Appendix,
d;bi(p+6) < d,b(p+6)Vi.
Using these bounds in (4.13) yields for n € 9
v(8%,1,0%) < m{(p +2)d,b,(p + 4) + =P (n?/d;)d,b,(p + 6)

— 23F jad}t,(p + 2))

= m{d,((p + 2b,(p +4) + vob,(p + 6)) — 2trAD*(p +2)},

where »y = =n?/d; and tr AD? = Sa,d?. Applying Lemma 3, Appendix to the first
two terms on the right hand side, and recalling the definition of b,, we have for

n€EN

dr(u*)(a,d,r(u*)(m +2) + 4 2p(u*
v(8®%,1,0%) < mE apdpr(u)apdyr(ur)(m 2) ) - ZtrAD*r(u) ,
(a,d,r(u*)w + u) ayd,r(u*)w + u

where u = x12,+2(v0) and u* = u/w. Collecting terms, and using the fact that
u(a,d,r(u*)w + u)~' < 1, we have for n € €N,

v(8%,1,02)

mE{ (apdp';(ul:;)w + u) [apdpz(apdpr(u*)(m +2)+ 4) — 2trAD2] ] )
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The right-hand side will be bounded above by zero if
(4.14) r(t) < 2(m +2)"(trAD? — 2a,d?)/a2d} V1.
But (4.14) is implied by assumption (4.2). Hence y(8%,1,02) < 0 Vq € 9. If
n = 0, or equivalently # = 0, it is obvious that
A(8%,0,6%) < O,
since 8%(X,s) is always closer to zero than X. Thus, if (4.1) is replaced by (4.2),
8R(X,s) is a minimax estimator of 6. If we define
(4.15) r(t) = (1 —&)r(z) + ce,
where 0 < ¢ < 1 and ¢ > O satisfies :

0 < c<2(m+2)""(trAD? — 2X 0 AD?) /A o A2D?,

max

then the ridge estimator §%(X, s) given componentwise by

d X/ -1
BEIS(X,S) _ (1 _ a; zre( D X/S) ) )

adr(X'D7'X/s) + X’D7'X/s

satisfies the theorem with (4.1) replaced by (4.2), and hence is minimax Ve,
0 < & < 1. Itis clear that lim, ,8%(X,s) = 8®(X,s), and thus from Fatou’s lemma

R(X,8,0%) > R(8%(X,s),0,0%)
> lim,_oinf R(8%(X,s),6,0%)
> E{lim,_,inf L(8X(X,s),0,0?)
EL(8%(X,s),0,0%)
R(8%(X,s),0,0%),

and hence 8%(X,s) is minimax. []

Condition (4.1) is essentially the same condition derived by other authors
working with certain Stein-type estimators. For example, Bock (1975) showed that
the spherically symmetric Stein-type estimator

85 (X.s) = [1- ar(X'D~'X/s) ¥
’ X'D™'X/s
is minimax provided
0 < ar(t) < 2(m+2)"'(trD — 2\, D)/A ... D,

which is exactly the condition of Theorem 4.1 if we choose a,d; = ¢ to make
8R(X,s) spherically symmetric. If D = I, A = al, then (4.1) reduces to the familiar

0<ar(t) <2p—-2(m+2)"".

Theorem 4.1 has an immediate extension to a wider class of functions. We state
this in the following corollary.
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COROLLARY 4.1. Let 8%(X,s) be given componentwise by
a,d;r(X'D7'X,s) )
a, d;r(X'D7'X,s) + X'D~'x/s )"

(4.16) SR(X,s) = (1 -

where r: R? — [0, 00) satisfies
() (3/3t,)r(t,,1,) = o(£7%) as t, — oo;

(i) (32/3t2)r(t) ;) = o(t™7) as t, — oo0;

(iii) r(¢,1,) is nondecreasing in t| and nonincreasing in t,;

(@iv) r(¢,,t,)/t, is nonincreasing in t,;

(V) r(t,,ty)t, is nondecreasing in t,.
If
(417) 0 < r(t,t;) < 2(m +2)"'(trAD? — 21, AD?) /A, A?D?,
for all t,,t, > 0, then 8%(X,s) is minimax against the loss (2.6).

The class of functions of Corollary 4.1 includes the ridge estimator §°(X,s),
given componentwise by

ad! X
(4.18) &(X,s) =[1— : - X;
ad;'+ X'D"'X/s + g+ h/s

where a, g and & are positive constants. Strawderman (1978) showed 6°(X,s) is
minimax if

i) A > 0;

(i) g > 2(p — 2)(m+2)7}

(iii) @ < (min,d;)2(p — 2)(m + 2)~ L
If we define

X'D7'X/s
XD 'X/s+g+h/s

= -2
a, = ad~*,

(4.19) r(X'D7'X,s)

we can write (4.18) in the form given by (4.16). It is easy to verify that the function
r in (4.19) satisfies the conditions of Corollary 4.1, and that the minimax bound
(4.17) can be written

. a < (mind,))2(p — 2)(m +2)7 ",
and that the restriction g > 2(m + 2)~!(p — 2) is not necessary.

5. Necessary and sufficient conditions. In this section we treat the case of
known variance (i.e., X ~ N(#,D)), and show that condition (5.3) is, in fact,
necessary and sufficient for minimaxity of the class of estimators developed here.
The main theorem of this section is the following.

THEOREM 5.1. Let X ~ N(8, D), D = diag(d,," - - ,d,), and let the ridge estima-
tor 8%(X) be given componentwise by
a;d;r(X'D~ X)
a, dr(X'D”'X) + X'D7'X

(5.1) SR(X) = (1 - )X 1<ic<op,
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where a; are positive constants and r : R — [0, o) satisfies
G r@)=o(t"Yast— wo;
Gi) r”(t) = o(t"%) as t > o0;
(iii) r(¢) is bounded and nondecreasing;
(@iv) r(t)/t is nonincreasing.
8R(X) is minimax against the loss

(5.2) L(8R(X),0) = (8%(x) — 8)(8%(X) = 6)
if and only if

(5.3) 0 < r(t) < 2(trAD?* —2X_,,AD*)/A,,A’D?,
for all t > 0, where A = diag(a,,- - - ,a,).

ReMark. Condition (i) is a slightly stronger requirement on the first derivative
of r than was previously needed, and is only needed for the necessity of the
theorem. The sufficiency of the theorem holds if »'(¢) = o(¢™ 7). It should be noted,
however, that the strengthening of this condition merely eliminates the more
pathological choices of the function r.

Proor. The sufficiency will follow from Theorem 4.1. Define §%(X,s) compo-
nentwise by

d.r(t
_a‘L)Xi, 1 <i<p,

R(X,s) = |1 -
P (X 5) ( ad;r(t) +1t

where ¢ = (m + 2)X'D~'X /s, r satisfies conditions (i)-(iv) and s ~ x2, indepen-
dent of X. From Theorem 4.1, SiR(X ,§) is minimax if

0 < r(t) < 2(trdAD* — 2\, AD*)/A ., A*D?, vt > 0.

Since lim,,_, ., s(m + 2)~! = 1 a.e,, it follows that lim,,_, , §%(X,s) = 6%(X). Also,
from Lebesgue’s dominated convergence theorem it is easy to verify that
R(8%(X,s),0) = R(8%(X),9),

and hence the sufficiency is proved.

For the necessity, we again define A(8%,8) = R(6%,6) — R(X(X),8). We pro-
ceed as in Theéorem 3.1, integrating by parts and applying Lemma 3.1. We note that
condition (i) insures that the term involving r’(¢) is 0(]8|~?). After collecting terms
we have for sufficiently large 6,
r(7)0’A*D? + 46'AD0

6'D~'9
where 7 = §’D~'9. Define a sequence of vectors §} as follows. Note that the
matrices 42D and AD? have common eigenvectors, and let a* be the normed

eigenvector of 42D corresponding to its largest root. a* is then also the normed
eigenvector of AD? corresponding to its largest root. Define 6} by

lim

m—>o0

(54) A(SR,0) = ’(:){ —2trAD2] + 0(10]72),

6 = nia*/ (a*D”'a%):
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Then §* D~ '9* = n and
8'A’D*4} _ a*A’D%*
6*D'g* a* D™ la*
= Anax42D3.
Similarly, 6’ ADG}/9*D~'6* = A\, AD?. Thus (5.4) becomes, for 0=20r,

A(SR,6¥) = i:—){r(n))\,m,x/ﬂ)3 + 4N, AD* — 2tr AD?} + 0(10]72)

= r(:))\maxAzD3{r(n) = 2(rAD* = \,,, AD?*) /A, A*D?}

N

+ o(n71).
Now suppose (5.3) is violated, i.e., 37 > 0 and ¢ > 0 such that V¢ > T,
(5.5) r(1) > (2(tr AD* — 27, AD?) /A ., A?D?) — ¢ > 0.

It then follows that for sufficiently large n

(5.6) A(SR,8%) > s’:);\mxA2D3 + o(n~ 1)

and, since (5.5) bounds r(¢) from below, for sufficiently large n (5.6) is positive and
8%(X) is not minimax. Therefore, the contrapositive and hence the theorem is

proved. []
The proof of necessity in Theorem 5.1 did not require condition (iii) on r(-). We
state this in the following corollary.

COROLLARY 5.1.  Let 8®(X) be the ridge estimator of (5.1) where r: R — [0, o) is
bounded and satisfies

@ #r'(1) = o(1);

(i) t7r"(t) = o(1).
If §®(X) is minimax against the loss (5.2), then

lim,, infr(z) < 2(trAD* — A, AD?)/\ . A?D>.

Thisted (1976) derived necessary conditions similar to the above for a different

class of ridge estimators.

6. Minimaxity and conditioning. The crucial condition for the minimaxity of
8%(X) is that

(6.1 0 < r(t) < 2(trAD?* — 2\, AD*)/A ., A’D?,
and hence, it must necessarily be the case that
(6.2) trAD* > 2XA_,,AD2.

We wish to point out the following inconsistency between the original goal of ridge
regression estimators and the performance of minimax ridge regression estimators.
Hoerl and Kennard saw ridge regression as a solution to the “ill-conditioning”
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problem mentioned earlier, which means, in particular, that the a,’s should be
chosen such that

(6.3) a;d; < a;d;whend; < d,, 1 <i,j<p,

which will lower the condition number of the matrix inverted in the regression
situation, and lead to what Hoerl and Kennard refer to as a more “stable”
estimator.

Choosing the a,’s to satisfy (6.3) is also intuitively appealing since it seems
sensible to add only small amounts of bias to directions which are providing good
information (small d,’s). One can also view the ridge estimator as a combination of
an estimator based on sample information and a prior.guess that the mean is zero,
with the a,’s being the weights given to the prior guess. It is well known that if we

assume @ ~ N(0,02K~ "), K = diag(k,," - -, k,), then the estimator given compo-
nentwise by
(6.4) 8%(x) = (1 - —k——)x

' ko +d7t )

is Bayes against squared error loss. The ridge estimator (5.1) is in the form of (6.4)
with k; = a,;r(X’D™'X)/X'D~ 1X. Although this argument is not a formal justifica-
tion, it lends credence to the interpretation of the a,’s as weights for a prior guess
of the mean vector. Thus if the sampling information is good (in the form of a
small values of d,) it is reasonable to down weight the prior guess (and choose a
smaller value of a;).

An inconsistency arises, however, when the condition of minimaxity is forced
into the estimator. If the d,’s are very unequal (as will occur in an ill-conditioned
problem), the matrix D is likely to satisfy

(6.5) trD? < 2A,,, D>

As the number of dimensions, p, increases, it is more likely that the inequality in
(6.5) will reverse, but in general one would expect (6.5) to be the case. If the ridge
estimator is to be minimax, (6.2) must hold, so the a;’s must be chosen to “reverse”
the inequality in (6.5), and this cannot be done if the a,’s satisfy (6.3).

The resulting is an incompatibility between minimaxity and the conditioning
problem. Most minimax estimators will have the constants a; satisfying

(6.6) a;d; > a;d; whend; < d;, 1 <i,j<p,

(see, e.g., Strawderman (1978)). Choosing the a,’s to satisfy (6.6), however, is not
only intuitively unappealing but, in many cases, will aggravate the conditioning
problem. The solution seems to lie in a compromise between the two criteria,
possibly resulting in an estimator with bounded risk which will improve the
conditioning problem. This idea is developed more fully in Casella (1977).
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APPENDIX

Computational lemmas. Let X have a p-variate normal distribution with mean 8
and covariance matrix D. Let xf,( J) denote a chi-square random variable with p
degrees of freedom and noncentrality parameter j/2.

LemMMA 0. If K ~ Poisson (a/2) and Z|K ~ X§+2x, then Z ~ xf,(a). In particu-
lar, if Eh(x%(a)) exists,
E[h(x}(e))] = ExEa h(x212x)IK]-
Proor. This is a relatively well-known result, stated here simply for complete-

ness (see, e.g., James and Stein (1961)). []
The next five lemmas are from Bock (1975), and are stated without proof.

LemMMmA 1. Let h:[0, 00) — (— 00, ). Then
E{h(X'D™'X)X} = 0E{h(x2.,(6'D7"9))}.
LemmA 2. If D = diagonal(d,,- - - »d,), and h : [0, ©) — (— 0, ), then
E{h(X'D™'X)X?} = d,E{h(x2,,(0'D'9))}
+ 07E{h(x2.4(0'D"'0))}.

LemMA 3. Let W, , be symmetric positive definite, and let h : [0, 00) — (— o0, ).

pXp
Then
E{h(X'D™'X)X'WX} = tt WDE{h(x%.,(6'D~'))}
+ O'WOE{h(x2.4(0'D"'0))}.

LEMMA 4. Let 5:[0, 00) — (— o0, ). Then, if the expected values on both sides

E(s(x2)} - E{———”s(’?’“) }

p+2

LEMMA 5. Let 5:[0, 00) — [0, 00) and ¢t : [0, 0) — [0, c0) be monotone nondecreas-
ing and nonincreasing functions, respectively. Let W be a nonnegative random varia-
ble. Assume E(W), E(s(W)), E(Ws(W)), E(t(W)) and E(Wt(W)) exist and are
finite. Then

E{(s(W)EW) - W)} <0 < E{t(W)EW)—-W)}.

LEMMA 6. Let h:[0, 00) » (— o0, ), D = diagonal(d,, - - -, d,). If

E{h(x§(0’D"0))} exists then
1

= B{h(0D79)) = o [ E(h(xa0'D=0)) - E(n(x(0'079))) ],

for 1 <i<p.
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Proor. Straightforward calculation. []

LEMMA 7. Letp > 3 and r: R — [0, 00) satisfy

(i) r(t) is nondecreasing;

(ii) r()/t is nonincreasing.
Let v = x2,,(0'0)/x2,, where X2, (8'0) and X2, are independent. The function
ar(v)(ar(v)m + 4) }

(ar(0)x% + x2,4(6°0))

o - 5

is strictly increasing in a if either
(@ 0<r(t) <2p—2)/ma,
or
() p >4

ProoF. After differentiating and collecting terms we obtain
2r(v)(ar(v)m + 2 , 2ar(v)x2,
( .) 3 X§+4(00)——()—5 .
(ar(0)x5 + X5.+4(0'9)) amrio
Adding +2amr(v)(amr(v) + 2)~! inside the parentheses yields

2r(v)(ar(v)m + 2) ( ) ) 2amr(v) )}
3 Xp+4(0 0) - Y=
(a’(v)xfn + xf,+4(0’0)) amr(v) + 2

+ E{ dar?(v) a (m - X'z")}
(ar(v)x7 + x5+4(00))

From condition (ii), the definition of v, and Lemma 5 it follows that the second
expectation above is nonnegative. Now from Lemma 1, the first expectation is
equal to

Q) EKE{

= f(a) = E{

- f(a) = E{

2r(w)(ar(w)m + 2) ( 2 _2amr(w) )|K
(ar(W)xX2 + X2ras2x) PrE T amr(w) + 2 ) [

where K ~ Poisson (0'6/2) and w = X2, 44,x/ X% Now applying Lemma 4 three
times shows that (1) is equal to

(2
s(K)r(u)(ar(u)ym+2) , , 3 ( ) _ 2amr(u) ) %
EKE{ (ar(u)xh, + Xf:—2+21()3 (Xp_2+2K) *\Xp-aean amr(u) + 2 Xp
where s(K)=2(p +2+2K) {(p +2K) (p—2+2K)"' >0, and u =

Xi—z+2x/xfn' Define

s(K)r(u)(ar(uym + 2)(x2_242x)’

(‘"’(“)an + Xf;—z+21<)3

>

q(X§—2+2K’an) =



MINIMAX ESTIMATION 1055

which is nondecreasing in xf,_2+2 x from the conditions on r. Adding =(p — 2 +
2K) inside the parentheses shows that (2) is equal to

ExEq(X2 2026 X0 )(Xp-242x = (P — 2 + 2K))

2amr(u) )

3 +E, Eq(x2_ , 2( —2+4+2K-
€)) k ‘I(Xp 242K Xm) p amr(u) + 2

The first expectation is nonnegative from Lemma 5, and if p > 4, the second
expectation is strictly positive since
p—2+2K>p—2>2> 2amr(u)(amr(u) +2)"".

If p =3, since 0 < r(¢) < 2(p — 2)/ma, the only concern is if r(¢y) =2(p —
2)/ma = 2/ma, for some ¢,. But then it follows from condition (i) that #(¢) = 2/ma
Vi > t,, and a simple argument will show that the first expectation in (3) is
positive. Hence the derivative of f(a) is always positive so f(a) is strictly increasing.

0 ,
LeMMA 8. Let f(a) be defined as in Lemma 1, and define

ar(v)(ar(v)m + 4) },
(ar(0)x2, + X2+6(6°0))’

i.e., g(a) is obtained by replacing x>, (0'0) in f(a) with x},s(8'0). Suppose that
there exist positive constants a, < a,,d, > d, such that d, f(a,) = d, f(a,). Then
dig(a,) < dg(a,).

PrOOF. After some algebra we obtain
0 = d,f(a;) — d;,f(a,)

r(v)

gla) = E{

= F
(@r(0)x% + X2, 4(80))
d,a, _ a;r(v)m + X,2;+4(0/0) 2( a,r(v)m+ 4)
dyay | |ayr(v)m + x2.4(0°0) | \air(v)m+ 4

From the restrictions on the function r and the constants a,,a,,d,,d, it is easily
shown that the function in square brackets is the product of two nonnegative,
nondecreasing functions of xf, +4(8’0), and hence is nonnegative and nondecreas-
ing. Therefore the function in braces has only one sign change, from positive to
negative values. Using the fact that the noncentral chi-square distribution has
monotone likelihood ratio in its degrees of freedom, it follows that if we replace
xf,,, 4(0'0) with x§+6(0’0), the expectation becomes nonpositive. Hence the lemma
is proved. []
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