The Annals of Statistics
1980, Vol. 8, No. 5, 977-988

EIGENFUNCTIONS OF EXPECTED VALUE OPERATORS IN
THE WISHART DISTRIBUTION

By H. B. KUSHNER AND MORRIS MEISNER
Rockland Research Institute

Let (X1,ms Xo,ms* * * Xg,m)» 1| < m < n, be a sample of size n from the k
dimensional normal distribution with mean vector y and covariance matrix =.
Let V' = (v;;), 1 < i,j < k, denote the symmetric scatter matrix where v; ;=
2 (X, m — 1 XX}, — ;). The problem posed is to characterize the eigenfunc-
tions of the expectation operators of the Wishart distribution, i.e., those scalar
valued functions, f(¥), such that E(f(V)) = A, , f(Z). If fis an eigenfunction
then (a) for nonsingular T, f(T'V'T) is an eigenfunction and (b) for integral p,
|V|P/2f(V) is an eigenfunction. For k < 2, a complete solution.of the problem
is given. For k = 1 the functions f(v) = cv® are the only eigenfunctions. For
k = 2, a function f is an eigenfunction if and only if (i) f is homogeneous and

(i) 4 8% o

dvp0vy; 320,
in terms of sums of associated Legendre functions. Relationships between
eigenfunctions and harmonic functions are indicated. Any homogeneous poly-
nomial is proved to be a linear combination of polynomial eigenfunctions.

= C|V|~!f. A representation of eigenfunctions is given

1. Introduction and summary. Let V' = (v,;) follow the Wishart distribution
W(k,n,Z). Properties of this distribution, as well as a comprehensive list of
references, are given in Johnson and Kotz [4].

In this paper we pose and partially solve the following problem: Characterize
those (scalar-valued) functions, f(¥'), in the matrix variable V with the property

(1) E(f(V)) = A, 1 f(Z).
In other words find all functions f(¥') whose expected value is “evaluation at =”
multiplied by a constant depending only on k, the dimension of the sample, and on

n, the sample size. We call this property EP, the “evaluation property” or “expecta-
tion property.” We can write equation (1) more precisely as

(2 E, (f(V) = [fV)K(V,Z,k,n)dV = A, , f(2)
where K(V, 2, k,n) = Cn,klzl"‘/zlllfl"—'—k
Cor=1 /2*?”7;’F(’<—1)/4I[J’F=,I‘(n;12t—l), and the range of integration is the
space of all k X k symmetric positive definite matrices, ¥ > 0. Equation (2)
represents, for each fixed k, an infinite number of integral equations (k < n) with
kernel K. The function f(V) is then a common eigenfunction (thus EP can also

stand for “eigenfunction property”) of all the integral operators defined by equa-
tion (2) and A, ; are the corresponding eigenvalues of f(V'). For example f(V) = 1

e~ "2 s the density function of V,
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is an eigenfunction with A, , = 1, as is the error sum of squares of multivariate
regression theory. Other simple examples of EP functions are f;(V) = v,;, f(V) =
[V|", and f¥%(V') = v”/ where (v'/) = V~'. As a final, more recondite example, we
note that equation (1) of Constantine [1] states that James’ “zonal polynomial” [5]
C(S) is an EP function.

The Wishart distribution is the distribution of the scatter matrix and, accord-
ingly, its chief interest is for integral n (i.e., sample size). However, it also has been
extended (Eaton [3]) to the case when n is complex; we denote this distribution by
W(k,»,2). (The following statement will be proved for k < 2: fis EP with respect
to W(k,n,X) implies f is EP with respect to W(k, », Z)).

Frequently, for a given f, E, ,( fl(l V)) may fail to exist unless n is sufficiently

large; for example E, ,(v'') = —— 3 provided n > 4. We shall still refer to the
function f(v) = v'! as an EP function. Throughout this paper, the expressions
E, . (f(V)) are tacitly assumed to exist with n > ny(k,f).

As a final preparatory observation, we note that an EP function can be viewed as
a multidimensional Laplace transform. In particular, partial differentiation under
the integral is permissible.

This paper presents a complete solution to the problem when k < 2. For
arbitrary k we prove two theorems about the construction of new EP functions
from a given EP function. As an application of these theorems we give a simple
proof that f(V') = v"/ are EP functions. In Section 3 all EP functions and their
eigenvalues are obtained for k = 1. Section 4 shows, for k = 2, that an EP function
is homogeneous and satisfies a certain second order partial differential equation.
This second order partial differential equation is shown after a change of coordi-
nates, to be the classical potential equation. The generation of all EP homogeneous
polynomials, for k = 2, is the subject of Section 5. Finally, Section 6 shows the
equivalence of four different statements defining EP functions and concludes with
two consequences of the preceding results: (a) f(V~") is EP if f is EP; and (b) the
distribution of certain EP functions is a product of powers of independent gamma
variates.

2. General theorems. We begin by noting some general theorems concerning
EP functions. Let T be a nonsingular k X k matrix. Denote the transpose of T by
T.

TueoReM 1. If f(V') is an EP function with eigenvalues A, ,, T a nonsingular
k X k matrix, then fr(V) = f(T'VT) is also an EP function with the same eigenvalues
Ak

THEOREM 2. Iff(V') is an EP function with eigenvalues A, , and a is an integer or
half an integer, then |V |*f(V') is an EP function with eigenvalues

C
n,k
”+2a’kc "k n > k - 2(1.
n+2,

A
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At the end of this paper, we shall prove this theorem for arbitrary a, when k = 2.
When k = 1, one can prove this theorem for arbitrary « using the results of Section
3.

We note that when a = —1, the eigenvalues of |V | 'f(V) are
A (n—k-2)

n—z,k“‘_“—“(n o)
= ¢'//(n — k — 1), (Seal [3]). For, f(V) = v'! is the quotient of two determinants.
Using 18.2.33 of Wilks [9] and Theorem 2 with « = — 1, one finds E(0v'!) = ¢'!/(n
— k — 1). Since f(T'VT) = s'V~ s (where s is the first row vector of T71), it
follows from Theorem 1 that for any vector s, s’V !s is an EP function with the
same eigenvalues as v''. The result now follows.

. As an illustration of these two theorems, we prove E, ,( v'/)

3. Eigenfunctions and eigenvalues for k = 1. We now begin a systematic study
of the eigenfunctions of the Wishart operators E, ,. We start with the case k = 1
which, of course, is the familiar (scaled) chi-square distribution. The problem here
is to find all functions f(v) such that for n > 1
(3) E(f(v)) = Go "/ v/ le™ 3/ °f(v)dv = N, f(o).

Here we denote E, ; by E,,A, ; by A,,0;; by ¢ and G, | by C, = 1/(2"/*T(n/2)).

THEOREM 3. The functions f(v) = Cv*(Rea > — %) are the only eigenfunctions of
the expected value operators E, of the (scaled) chi-square distributions n > 1. Their
associated eigenvalues are

_ 2°T(a+n/2)
" I(n/2)

PrOOF. Multiply equation (3) by ¢”/2 and differentiate with respect to o.

Comparing the resulting equation with (3) with n replaced by n + 2 yields

C
o) 2‘+2>\n0-"/2+l(0n/2f(0)), = An+2f(o')

n

which simplifies to
Now

independent of n, implying
4) f(o) = Co*

To prove sufficiency, i.e., that equation (4) actually is an EP function and also to
calculate A,, substitute f(v) = v* into equation (3). We note that a can also be
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complex in which case

f(v) = v%cosbln v + i(sinbln v) a=a+ib
A = 2 (cosbln 2 + i(sinbln 2))T(a + n/2)
§ I(n/2)
Since E,(v*) exists only when Rea + %— 1> —1ie, when Rea > —n/2, we

require Rea > — % if f(v) is to be an EP function for all the expectation operators
{E,} n > 1. This completes the proof of Theorem 3.

In conclusion, we note that.the sufficiency proof establishes that the eigenfunc-
tions Cv* are also EP functions for all the expectation operators corresponding to
w(l,»,0). )

4. Some necessary conditions for EP functions (k = 2). For the case £k = 2, the
problem is to find all functions f(¥) of the symmetric positive definite matrix

variable V,
_ (Un 012)
U2+ U

such that
(5) E(f(V)) = G|/ |V[Te s *"*Df(¥)av = ), f(2)
Here, again we denote E, , by E,, A, , by A, and C, , by C, = 1/47T'(n — 1). We
note the following two computational lemmas.
2 62

LemMmA 1. Let D be the operator 4 0 - . Then
9v?? 9o 3(012)2

D(FG) = GDF + FDG + 2(2 OF 3G 3G 3F  9F 3G )

oo'! v ov'! 9022 B dv'? 9o'?
where F = F(v',0'2,v%) and G = G(v",0"?,v%).

LEMMA 2. (a) The partial derivatives of |V |* with respect to v/ are given by the
expressions

aEI)Vlll = _avn|V|a+l,

v

i)zinl2 = —adl|7|e*,
v

a|v|« o

———;Ollz = 2a0|V|**!,

®) D(V|*) = Qa)2a — 1)|V|**! where D is defined in Lemma 1.

THEOREM 4. Let D be the operator defined in Lemma 1 and let f(V') be an EP
Sunction with eigenvalues \,. Then f satisfies the partial differential equations

D(VI()) = 222n(n = DY) > g,
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ProOF. Multiply equation (5) by |=|"/2? and operate with D (with respect to o'/ )
on the left and right hand sides of equation (5). We get
(6) CIIVIFDe ¥V f(V)av = \,D(|Z|"*(3)).
Now De™#"¥=™) = || ¢~V implies that the left hand side of equation (6) is
C, [V F e 2D (V) av.

Comparing this expression to equation (5) in which n is replaced by n + 2 we
obtain

Cn
ND(ZIMA(D)) = =IO, 40 f(3),

n+2

from which the result follows. []

A homogeneous function of the three variables v,;, v,,,0,, is a function satisfy-
ing the equation f(tV') = t*f(V) for all ¢t > 0, where d is the degree of homogene-
ity. By viewing f as a function of v'!,v'2, 0%, fis seen to be homogeneous of degree
—d.

As a key consequence of Theorem 4, we prove three necessary conditions, two
that an EP function must satisfy and the other that its eigenvalues must satisfy.

THEOREM 5. Let f(V') be an EP function and {\,} its associated eigenvalues. Then

(a) an EP function is homogeneous, i.e., f(tV) = t%f(V). Here, d, the degree of
homogeneity of f (with respect to V') can be complex.

(b) Df = A|V| f for some constant

(c) The eigenvalues of an EP function satisfy the relation

—A}'(—”(n)(n —1) =n(n—1) + 2nd + A.

ProOF. From Theorem 4,
A, ne2 .
(7) 2 (n)(n = DIV[Ff = DIVIS n > no(f)

By Lemma 1, the right side of this equation is
of dv|m2  , of V| df V[
gl 02 02 a0t oo 9ot

which, using Lemma 2 simplifies to

®) fD|V|"?* + |V|"/2Df + 2(2

15y o By ),

n(n — D|V|**+2/2f 4 |V |*/2D —2nV"/2+'(o
(n = DIV|®*272f + |V |"/Df = 20V Tt

Equating this to the left side of (7) we get
A, -
2n(n = DAV) = n(n = DFV) + |V|~'Df

2 3y )

8012 8022 :

of
11
YT +v

- 2n(v
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For a fixed V, this is a quadratic polynomial equation in n. Since the polynomi-
als {1,n,n(n — 1)} are linearly independent we then must have
A(V) = |V|~'Df

and

af af af
11 12 22
avll +o 8012 +o 8022

for constants A and d. The first of these equations establishes (b). The last equation
is Euler’s differential expression and shows that f(¥) is homogeneous (w.r.t. v"/)
with degree of homogeneity —d; equivalently, f(V) is homogeneous (w.r.t. v;;) with
degree of homogeneity d, proving (a). Finally, with these constants 4 and A, one
clearly has (c).

—df(Vv) = v

5. Polynomial EP functions. In this section we characterize, when k = 2, the
polynomial EP functions. According to the results of Section 4, we can restrict
ourselves to homogeneous EP polynomials.

THEOREM 6. Consider the subspace H,, of homogeneous polynomials of degree d
spanned by

{|V|’p,’s(V)} —s<r<s

where s and t are nonnegative integers such that 2t + s =d and p, (V') are the
coefficients of a**" in the expansion of (v,,a* + 20,a + vy, )°. Then

(a) fis an EP polynomial of degree d if and only if f € H,, for some s and t.

(b) The space of homogeneous polynomials of degree d is a direct sum of the “EP”
subspaces {H,;} where s and t run through all nonnegative integers s and t satisfying
2t + s =d.

() The eigenvalues of |V |'p, (V) are X, = Tl5_2s + 2t + n— 2 ) [[L,2t + n
- 1-k).

ProorF. We know that f(V') = v}, is EP when s is any nonnegative integer.
Also, since
-5 Y
1 0

is a nonsingular 2 X 2 matrix, the function f.(V) = (T'VT) = (v,,a* + 20,0 +
vy,)’ is also, by Theorem 1, an EP function. Now define 25 + 1 polynomials p, (V)
by means of the equation

(010 + 200 + v,)" = @S _p, (V).

Arguing as at the end of Section 2, we deduce that {p, (V)} —s <r <s are
2s + 1 EP polynomials of degree s, and conclude that if # and s are nonnegative
integers such that 2¢ + s = d, then

{lVI’pr,s(V)}’_s <r<s
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are 25 + 1 homogeneous EP polynomials of degree d. The total number of such
polynomials is (4 + 1)(d + 2)/2 which is also just the number of linearly indepen-
dent homogeneous polynomials (in three variables) of degree d.

The linear independence of these EP homogeneous polynomials may be proved
by identifying them with the spherical harmonics defined, for example, by equation
(120), page 540 of Courant-Hilbert [2]. In particular, make the formal change of
variables

oy = — (x+ i)
v, = —2Z
Uy = X — iy

Then |V | = v,,0 — v}, = —(x? + y* + 2z?) and so, according to (121) and (122)
of Courant, our EP functions |V |’p, (V) are equal to a constant multiple of the
harmonic polynomial r?P/(cos@)e® —s < I <s where P! is the associated
Legendre function and r,8,¢ are the spherical coordinates of x,y,z. Since, as is
proved in Courant’s discussion, the functions r?'P/(cos@)e’* are linearly indepen-
dent, the same is true for the polynomials |V'|’P, (V). This concludes the proof of
(a) and (b).

The connection between EP functions and harmonic functions, observed above,
will reappear in the sequel (Theorem 9) although in an apparently different form.
For the present, we note that p, (V') satisfies the equation

Ap. (V) =0,
where A is the partial differential operator
2 2
A=4 9 _ 2 .
dvpdoy 90l

(This equation is easily verified by applying the operator to the function ( v,,0> +
20, + 0y,)°, the generating function of p, ((¥)). The operator A can be viewed as
an analogue of the classical Laplacian operator. The connection between the
operators A and D will be noted in Section 6.

To prove (c), we observe that, for fixed s, the eigenvalues of p, (V') are, by
Theorem 1 and by equating coefficients of powers of a, the same as the eigenvalues
of v3,. The eigenvalues of |V |'p, (V) are obtained using Theorem 3 and Theorem
2; they are given by the expression

_2T(s+t+n/2)T(n+2t—1)

A=
" I'(t +n/2)T(n—1)
Using the relation I'(x + 1) = xI'(x), and multiplying though by 2° yields
A, = I5_,(2s+ 2t +n—2)I}L,2t +n—1-k). 0

6. Equivalent necessary and sufficient conditions for EP functions. In this
section we conclude the study of eigenfunctions for the case k = 2. Our goal is to
establish a certain set of equivalent conditions, each necessary and sufficient for a
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function to be an EP function. More specifically, we prove the equivalence of the
following statements.

I. fis an EP function with eigenvalues {A,,}.
A
©) II. f satisfies D(|V |"/2f) = —;\+—2n(n — Y|V |+D/2,
(10) II1. a) fis homogeneous of degree d.
an b) Df = A|V| f.

Iv. f has the series representation given in Theorem 8.

Equation (11), which involves differentiation with respect to v/, can be expressed
in an equivalent form, using the operator A where
32 3?
0090 Jod,

(12) A=4

namely, (computation omitted) for any homogeneous function, of degree d, the
equation

(13) Af = (A+2d)V|7Yf

is equivalent to equation (11). Thus IIIb. can be replaced by the equivalent
condition given in equation (13).

Theorem 4 of the previous section establishes that I implies II; the proof of
Theorem 5 establishes that II implies III. Theorem 7 proves the series representa-
tion of f, i.e., III implies IV. The implication IV implies I is established by Theorem
8 which shows that any f given by equation (16) is an EP function. This section
concludes with miscellaneous results and remarks.

The results of this section may be considered a generalization of those in Section
5. There we proved that any polynomial EP function must belong to exactly one of
the “EP subspaces,” H,,. To arrive at the analogue of H,, subspaces we proceed as
follows. From IIla and IIIb two numbers, A and d are associated with any EP
function. A is determined by the eigenvalues of the EP function and d is the degree
of homogeneity. Let s be determined by equation (15) and ¢ by the equation,
s + 2t = d. Let the subspace H,, consist of all functions having the representation
given in Theorem 8 or, equivalently, satisfying IIla and IIIb (in this last formula-
tion the parameters A and d play the role of s and ¢). Then: fis EP iff f € H,, for
some (unique) s and ¢.

At this point, we have reduced the problem of solving the set of partial
differential equations (9), to the solution of the single equation (11). We now
further reduce equation (11) to a homogeneous partial differential equation.

LeEMMA 3. Let f(V'), homogeneous of degree d satisfy the equation
Df = AV |f.
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Define g(V') by the equation f(V) = |V |'g(V'), where t satisfies
2+ (i—d)t+2r/4=0.

Then g(V') satisfies the homogeneous equation
Dg = 0.

PrROOF. Apply Lemma 1 to the product FG where F = |V ', G = g(V') yielding
D(f) = D(IV|%g) = gD(IV|) + |V|'Dg

av|' g , ,lv|' g _alVl dg
a0l 002 |~ o2 30 902 002/

+3[2

Evaluating terms by Lemma 2, and using the fact that g(¥") is homogeneous of
degree, say s, with respect to v;; and therefore of degree —s with respect to v,
where s = d — 2¢, we obtain the equation,

Df = (2t)Q2t — Vg|V|"*' + |V|'Dg — a\V|"*12t - d)g.
Further, equation (11) indicates that ‘
Df = \[V|""g.
If we now choose ¢ so that
Q)2t—1) — 42t —d) = A

we obtain Dg = 0, i.e., the homogeneous case of equation (11). The quadratic
equation which 7 must satisfy simplifies to

(14) 2+ (—d)t+2r/4=0.

This concludes the proof of Lemma 3.

Written in terms of s, the degree of g(}) with respect to v,;, this quadratic
equation is, (since s = d — 2¢)
(15) s2—s+A—-dd-1) =0
The solution of this homogeneous partial differential equation may be obtained by
classical methods, and is outlined in the proof of Theorem 7. Further, we shall

show that the two different choices of ¢, i.e., the two solutions of equation (14), will
give rise to the same representation of f.

THEOREM 7. Let D be the partial differential operator defined in Lemma 1. Let f be
homogeneous of degree d with respect to v,;. Then the solution of the equation
Df = \|V'| f is given by a sum of linearly independent functions

vy — Uy — 2ivy

((On - '-722)2 + 4”%2)%

o, + ”22)

f(vll’012’022) = |V|3 ZofooAmPTs( 2|V|%
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where A, are constants and P™_ is the associated Legendre function of the first kind.
Here s is any root of the quadratic s> —s + A\ —d(d — 1) =0

ProOOF. Applying Lemma 3, we search for g, the solution of the homogeneous

equation.

Put
vy, = r~'(cosh@ — sinh@cos¢)

v, = —r 'sinhfsin¢
vy = r~'(cosh@ + sinh@cos¢)
wherer?> = |V|7,0 < r < 0,0 < § < 0,0 < ¢ < 27.
The differential equation for g becomes )
a (8,)
3¢ sinh @
This is a potential equation for the sphere with sinh @ in place of sin#. Using the
homogeneity of g(V') we have
g(r,9,0) = r—n(0,9)
where 7(0, ¢) satisfies the p.d.e.

s(1 — s)sinhn(8, ) + (sinh87,(0,9)), + ¢stflh;) =0

By using the separation of variables technique, and recalling that g(¥) must be
well behaved, one finds that
n(0,¢) = =24, P"(coshf)e™?.

To obtain the solution to the nonhomogeneous equation Df = A|V|f, recall
f(V) = |V|’g(V). Thus we have, using the v,; variables,

=0

a .
57(—r2s1nh0g,) + (s1nh0 9) +

. m
Oy — Uy — 2ivy,

((v“ —vp) + 4”%2)%

Note that f(V') is essentially unique in equation (16) in the sense that both solutions
t of the quadratic equation (14) will give rise to equation (16). This follows since the
two roots of equation (15), which is the lower index of the associated Legendre
function, sum to +1 and P” = P”. if s + s* = 1. This completes the proof of
Theorem 7, establishing that III implies IV.

f(V) may be expressed in terms of the invariants of V. Let (£, 1) be an
eigenvector of V. Then (omitting the computations) we have

42 trV)g 2m
a7) (V) = V|54, P (I o)

Before proving the next theorem, we state and prove a lemma which concerns in
a sense the “prototype” of EP function for k = 2.

16 50) = V125, 4,pm,( 2 L)
| e
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LEMMA 4. For Re(b) > —ny/2 and Re(a + b) > —ny/2, E,(v],|V|®) exists for

n> ngy, and f(V) = v§,|V|® is an EP function, with associated eigenvalues given by
J(@+b+n/2)T(n+2b-1)

A, =2
" T'(b+n/2)T(n—-1)
: a b Cn
Proor. Since E (vf,|V]°) = E_-E” +25(0];), the result follows from Theo-
n+2b
rem 3.

We now conclude with the proof that IV implies I, establishing the equivalence
of the four statements.

THEOREM 8. For any {A,,}, let f(V') be given by the equation

oy + 022)

vy — Uy — 2ivy,
2V

((Uu - 022)2 + 4'—’%2)%

where Re-d_;—-'-1 > —ny/2 and Red++—1 > —ngy/2, so that, by Lemma 4,

E(UT|V|*5") exists. Then: f(V) is an EP function.

V) = |V|"/22mAmPrs(

Proor. Consider the identity

|V|d/ZEBmPTs( o, + 1.722)

2V

m
vy — Uy + 2ivg, } p2ime

((Uu —vp) + 40%2)%

d—s+1

= |V|7 (v, c08?w + 20, coswsinw + vnsinzw):_'.

By the hypotheses of Theorem 8, Lemma 4, and the transformation theorem
(Theorem 1) the left-hand side of this last equation is an EP function for each w.
Arguing as in Section 3, we deduce that the coefficients

|V|d/2PT_,( o + 1:22)[ vy — vy + 2iv, ]
2V ((Un —vy,)" + 4012)i

are also EP functions. This concludes the proof of the theorem and establishes the
implication IV — I. Thus, all four statements I, II, III, IV have been shown to be
equivalent.

The restriction « an integer or half integer in Theorem 2, which stated that an EP
function multiplied by |V |* results in an EP function, may now be removed for
k = 2. This extension of Theorem 2 follows readily from Theorem 8 since |V'|%/? is
a factor in the representation of f.

The connection between EP functions of the variables v,;, v,,, v,, and harmonic
functions of three variables x,y,z has been noted in the present and preceding
sections. The following theorem is an analogue of a theorem in Courant-Hilbert [2],
page 515.
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THEOREM 9. If f(V') is an EP function, then so is f(V™").

PRrOOF. Since

-1 _ 1 U
=1V (_'-’21 On

012 — I/ —lT/IfT ( 01)
== =
) Vi » T -10/

we then have, since f(V') is homogeneous of degree d
f=N = V7% (V).
The assertion of the theorem now follows from Theorem 1 and Theorem 2

(extended above to arbitrary a).
James’ zonal polynomials Cy ,,(V') [6] are also related to harmonic polynomi-

als. For k = 2, G 4, (V) = constx|V|?P, _,. tr ¥V ) where k, + k, = d. (This

1
2

also follows from (17).) Indeed, for k = 2, one can easily show that EP functions
depending only on the eigenvalues of V, are eigenfunctions of the Laplace-Beltrami
operator.

The concluding theorem gives the distribution of the prototype EP function
Ve

THEOREM 10. 0|V |® is distributed as of||Z|°2°+24Z,%Z,*** where Z, and Z,

n; l)ande~G(%).

are independent gamma variates, Z, ~ G(

ProoF. Immediate, using Wilks’ moment method [8].
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