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AN EDGEWORTH CURIOSUM!

BY STEPHEN M. STIGLER
University of Chicago

Taking the sample mean of a set of measurements need not be uniformly
advantageous, even when n =2 and all moments are finite. The examples
presented include one given by Edgeworth in 1883.

Let X, X,, - - - be independent, identically distributed random variables each
with density f(x — ), where f(x) is assumed continuous and symmetric about zero.
It has been “known” for centuries that in such a situation the sample mean
X, =(X,+--- +X,)/n will give a better estimate, of § than will a single
measurement X;; this was proved as long ago as 1755, and, barring heavy
Cauchy-like tails, it is often taken for granted today. (Simpson, 1755; Plackett,
1958). This widely held belief is apparently based on the assumption that the
relationship Var(X,) = Var(X,)/n extends at least qualitatively to reasonable loss
functions other than squared error, but it is not strictly true, even for distributions
with finite variances. In 1883 Edgeworth showed that one reasonable loss function
where it may fail is that which assigns unit loss to errors larger than a given € > 0,
zero loss to smaller errors. In this case the criterion by which an estimate 6 is to be
judged is Pr{|§ — 8| < ¢}; the larger this probability is, the better.

Edgeworth’s example concerned the case n = 2. The fact that a single observa-
tion from a regular unimodal symmetric continuous density with finite moments of
any order, could be preferred to the mean of two, may come as a surprise to some
modern statisticians; it would have seemed particularly paradoxical in 1883. The
nineteenth century had seen many inductive “proofs” of the superiority of the
sample mean that were entirely independent of probability considerations, and they
all began with the assumption that the mean of two measurements was the best
combination of the two. Other steps in these “proofs” had been questioned, but the
starting point had gone unchallenged. “But in Chance, as in other provinces of
speculation which have been invaded by mathematics, common sense must yield to
symbol.” (Edgeworth, 1883). The symbols we employ are only slightly more
modern than Edgeworth’s.

If two competing estimators 67, and 672 have continuous symmetric densities
Si(x — 0) and f)(x — @), then a simple sufficient condition that Pr{|¢9Al — 0| £ ¢}
> Pr{|d, — 0| < &} for some & > 0 is that £,(0) > f,(0). The density of X, = (X, +
X,)/2 at 8 is 2[/%_ f*(x) dx, and the ratio of the density of X, at # to that of X, is
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D = 2(f(0))"'/f*(x) dx. After Edgeworth we call D a coefficient of “divergence”:
if D <1, then Pr{|X, — 8| < &} > Pr{|X, — 0| < ¢} for some ¢ > 0. If X, —
has characteristic function ¢(u) we may also write D =
SR @/ 2 d] [ () du.

Now if each X; has a Cauchy distribution, then, as has been known since 1824
(see Stigler 1974), X, and X, have the same distribution, and of course D = 1.
Consideration of two families to which the Cauchy distribution belongs, the
symmetric stable laws and the Student’s ¢ distributions, shows that “divergence”
(ie., D < 1) cannot be commonly expected with regular densities with shorter tails
than the Cauchy. For a Student’s ¢ density with m degrees of freedom, an easy

calculation shows
m+1 1
2r( . )F(m + -2-)

r(—’;)r(m +1)

D =

Form =1, D =1;form =2, D = 1.18, and as m — o0, D increases toward 2%, its
value for normal densities. Similarly, for symmetric stable distributions, ¢(u) =
exp{ —|u4|*}, and an easy calculation gives D = 27~/ Here for a = 1, the
Cauchy case, D = 1, and D < 1 only for a < 1, distributions with tails heavier
than the Cauchy. Other examples which do not exhibit divergence include the
symmetric beta distributions or Pearson’s Type IL, f(x) = [ 8(p, p)2%~'17'(1 -
x%P~Y, for which D = 2¥~'T(2p)I'2p — DP/{T@p — DIT(p)’} decreases
toward 2% as p — oo, the logistic distribution f(x) = e™*/(1 + e~*)?, for which

=%, and the Laplace or double exponential f(x) = 27! exp(—|x|), for which
D=1

Edgeworth (1883) gave a simple example that emphasizes that divergence is not
dependent upon heavy tails. Take f(x) = (k — 1)(1 + |x|)™%/2, a sort of two-sided
Pareto distribution. For this density, D = 1 — 2k — 1)"! < 1 for any k > 1, yet
all moments up to and including the (kK — 2)nd are finite. This distribution arises
naturally as a gamma mixture of Laplace distributions (see Johnson and Kotz,
1970, page 32), and has played a role in Bayesian analyses (e.g., Box and Tiao,
1962). The one-sided version of this distribution was discussed by Pareto in 1896.

The potential difference between the accuracies of X, and X, can be seen by
considering the barely tractable case k = 4, where f(x) = 1.5(1 + |x|)~*. Table 1
gives A = P(X, — 0| 2 ¢), B= P(|X, — 8| 2 ¢), and B/A for this case. 4 < B
for 0 < e < ¢* = .1315 while 4 > B for ¢ > ¢*. B/ A achieves its maximum value
of 1.012 at ¢ = .06. Since the quartiles of the distribution of X, are *.26 and those
of the distribution of X, are + .24, the dominance of X, over X, is seen to extend to
half the “probable error” of a single measurement. The efficiency of X, relative to
X, as measured by B/ A remains above .95 up to & = .25.

Another family of distributions which contains divergent members is the family
of power densities

fx) =[2270(B "+ 1)] 7" exp| —31xI#]
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TABLE 1

The relative performance of X, and X, when f(x — 0) = 1.5(1 + |x — §[)~*
A= P(X, — 0] 2 ¢), and B = P(X, ~ 8] 2 ¢)

e A B B/A
0.00 1.000 1.000 1.000
0.02 942 950 1.009
0.04 889 898 1.011
0.06 840 849 1.012
0.08 794 802 1.010
0.10 751 757 1.007
0.1315 690 690 1.000
0.20 579 564 975
0.2416 52 500 - 957
02599 500 474 948
0.30 455 423 929
0.40 364 321 880
0.50 29 246 832
1.00 125 081 648
2.00 037 018 473
4.00 .008 , .003 360

o .000 .000 250

(Box and Tiao, 1962; Johnson and Kotz, 1970, page 33). This family contains the
Laplace distribution (8 = 1), the normal (8 = 2), and as a limiting case as 8 — oo,
the rectangular distribution. It is easy to show that for this family, D = 2!~#"", so
that D < 1 for B < 1. For these densities, all moments are finite. Here, as is also
true with Edgeworth’s examples, X. , is a relative minimum of the likelihood
function. For these examples, Bayesian or conditional confidence (conditioning on
X, — X,) procedures can produce reasonable interval estimates of § that consist of
unions of two disjoint intervals. From the point of view of robustness, however, this
serves to emphasize a dependence on distributional assumptions that cannot be
checked with samples of size n = 2.

The behavior exhibited by the examples given may seem counterintuitive be-
cause of a vague feeling that averaging two measurements should improve the
accuracy of the estimate over that available from one measurement alone, particu-
larly if we recall that for » = 2 the mean, median, midrange, and almost any other
“average” agree! It is, however, easy to show that the value at zero of the density of
the median of a sample from a symmetric population is never less than the
corresponding value of the population density, if a true median exists, as will be the
case when n is odd or fractional order statistics (Stigler, 1977) are allowed. The
behavior noted also seems to run counter to Chebychev’s inequality, which tells us
that if Var(X,) < co, Pr{|X — 8| < e} 2 1 — Var(X,)/(ne?. The fact that this
lower bound increases monotonically is, as the examples show, not a guarantee that
the probability bounded does also.

One final curiosity may be noted: if £ denotes the Pitman efficiency of the
Wilcoxon test relative to the sign test (see Lehmann, 1975, page 380, for example),
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then E = 3D?/4. At first glance this is totally unexpected; we have an asymptotic
efficiency, E, expressed as a constant (with respect to f) multiple of a small sample
measure of efficiency, D2 In a personal communication R. R. Bahadur has
suggested a way of viewing D that may remove some of the mystery, however. Let
X/, X}, X3, - - - be an independent copy of the sequence X, X,, - - -, let §, =
median {X,, X,, - - -, X,} and let 7, = median {(X, + X))/2, (X, +
X3)/2,- -+, (X, + X))/2}. Now D? is just thAe asymptotic relative efficiency (ratio
of reciprocal asymptotic variances) of 7, to §,. The bearing of this fact upon the
puzzling relationship E = 3D?/4 is that the Pitman efficiency of the Wilcoxon test
relative to the sign test equals the asymptotic efficiency of the related estimates of
location, the Hodges-Lehmann estimate 7* = inedian {in + X))/2; i =)} (see
Hodges and Lehmann, 1963) and the sample median 6,. That is, E equals the
asymptotic efficiency of 7* relative to 0:,. Thus we see that the relationship in
question is an expression of the fact that the relative efficiency of 7* to 7, is 3 for
any continuous, symmetric f! Thus, at least in the sense of asymptotic variances, 7}
(a median of n(n + 1)/2 dependent pairwise averages) is asymptotically equivalent
to 7 45, (a median of 3n/4 independent pairwise averages). The full implications of
this fact remain to be explored.

Acknowledgment. I thank R. R. Bahadur, Robert Bell, Gouri Bhattacharyya,
John W. Tukey, and Chien-Fu Wu for comments. The reader interested in other
aspects of Edgeworth’s 1883 paper may consult Stigler (1978).
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