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OPTIMUM KERNEL ESTIMATORS
OF THE MODE'

By WiLLiaM F. EDDY
Carnegie-Mellon University

Let X,, - - -+, X, be independent observations with common density f. A
kernel estimate of the mode is any value of ¢ which maximizes the kernel
estimate of the density f,. Conditions are given restricting the density, the
kernel, and the bandwidth under which this estimate of the mode has an
asymptotic normal distribution. By imposing sufficient restrictions, the rate at
which the mean squared error of the estimator converges to zero can be
decreased from n~7 to n=!** for any positive . Also, by bounding the support
of the kernel it is shown that for any particular bandwidth sequence the
asymptotic mean squared error is minimized by a certain.truncated polynomial
kernel.

1. Introduction. A mode of a probability density f(¢) is a value of ¢ which
maximizes f. Relatively little attention has been paid to estimating the mode
perhaps because of the delicacy of the problem: any method for estimating the
mode must estimate a density, either explicitly or implicitly, and this is itself a
difficult problem. An excellent review of nonparametric density estimation
methods may be found in Wegman (1972). Here, attention is focused on the class
of kernel estimators introduced by Rosenblatt (1956).

Let X}, - - -, X,, be independent observations with common (unknown) density
J. Rosenblatt proposed estimating f(¢) by

1 o, t— X
(L) 70 = 3k 5)

a,

where the kernel K is a bounded measurable function and the bandwidth g, is a
positive constant. It is desirable that

and that

lim, , a, = 0

so that observations which are far from ¢ will have little influence on f,(¢); but if
{a,} converges to zero too quickly { f,(#)} will not be a consistent estimator of f(7).

Parzen (1962) proposed using the location of the maximum of the density
estimate (1.1) to estimate the mode of f. More precisely, let

(1.2) M(f) = inf{£|f(¢) = sup, f(s)}.
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Then the mode 4 of a density fis M(f) and Parzen’s estimate is §, = M(,). Parzen
(1962, Theorem 3A) gave conditions under which {,} is a consistent estimator of
0. Nadaraya (1965) and Van Ryzin (1969) have derived stronger consistency
results.

Parzen (1962, Theorem 5A) also gave conditions under which 8, (appropriately
normalized) has an asymptotic normal distribution. Samanta (1973) and Konakov
(1974) have given multivariate versions of Parzen’s results.

THEOREM 1.1 (Parzen). Let K(x) be a probability density with characteristic
Junction k(u) and let the density f(t) have a characteristic function o(u). If, for some
r>2

(13) tim, o2 > o,

and if, for some 8, 3 <8 < 1,

(1.9) Ju**o|p(u)|du < oo,

(1.5) Ju? 8| k(u)|du < oo,

(1.6) lim,,_,oona,f”& =0, and
(1.7) lim,_, na® = oo,

then

3 3 f(é)
na;)*(0 ) —)D(.’)L O, —_—F
( n) ( n ) ( [f(z)(o)]z )

where f®(0) is the second derivative of the density at § and V = [[KDV(x)]* dx.

(All integrals here and elsewhere are taken over the whole real line unless
specified otherwise. Also, for all i,i = 1,2, - - - , g(x) = d'g(x)/dx".

Parzen’s result has two serious drawbacks. First, condition (1.5) requires the
kernel to have two uniformly continuous derivatives; the kernels satisfying the
optimality property of Section 3 do not have even one continuous derivative.
Second, (1.6) and (1.7) require that for some constant d > 0 and n large enough

n=s < da, < n~'/C+20),

For any kernel the mean squared error usually converges to zero at the fastest rate
when the asymptotic variance and the square of the asymptotic mean are of the
same order. Since 8 < 1, the interesting case a, = (1/d)n”7 is excluded by
Parzen’s theorem; that is, {a,} must converge to zero so rapidly that the asymptotic
mean is negligible compared to the asymptotic variance. As Chernoff (1964) has
pointed out, the infimum of the mean squared error under Theorem 1.1 is

E®, — 67 = O(n‘%); but this limiting case is specifically excluded by (1.6). By
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imposing sufficient restrictions on K, it is possible to achieve not only O(n“;), but
in fact 0(n~'**) for any positive e.

A theorem is given in Section 2 which overcomes these drawbacks by using the
classical techniques of weak convergence (Billingsley (1968)). It will be shown that
in a decreasing interval of ¢ values near the mode the (appropriately normalized)
kernel estimator f,(#) converges to a randomly located parabola in z. Since M,
defined in (1.2), is continuous at the set of parabolas with fixed second derivative,
the asymptotic distribution of the kernel estimator of the mode can be determined

(c.f. Corollary 2.2).
For each sequence {a,} there is no kernel satisfying the conditions of Corollary

2.2 which minimizes the mean squared error of the asymptotic distribution. When
the tail behavior of the kernel is restricted sufficiently it is possible to find an
optimal kernel. If the kernel is restricted to be zero outside the interval [x| < 1 then
for each rate at which {a,} converges to zero the calculus of variations yields an
optimal kernel. Also it is noted that for each kernel there is an optimal rate for {a,}
to approach zero. Unfortunately, for a particular optimal kernel the optimal rate is
not the rate for which the kernel is optimal; this will be discussed in Section 3.

2. Asymptotic normality of 0,. Letb = (na3)“% (the dependence of a and b on
n will be suppressed henceforth) and define the random process

Z,(1) = b2 f,(0 + br) = f,(0)],t €[ - T, T]

for some T < 0. The essential point in the proof of asymptotic normality of 6, is
that the process Z, converges weakly to a limit process Z and with probability one
the sample functions of the limit process are parabolas with fixed second derivative
satisfying Z(0) = 0. Hence the parabolas are determined by a single random

variable. Specifically, the result is
THeOREM 2.1. Let p > 2 be an integer. Let K be a bounded, absolutely continuous
function with bounded derivative K o, If

2.1) JK(x)dx = By = 1,
(22) [x'K(x)dx = B, = 0, i=1,---,p—1,
(23) [xPK(x) dx = B, < o,

(24) [xP*IK(x) dx < oo,

(2.5) [[KO(x)] dx = V < oo,

(2.6) [X[KD(x)]* dx < oo,

and if {a} is a sequence of positive constants which satisfies

2.7) . lim, na® = oo,

(2.8) lim,_(na®*%) = d < o,
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and if the density f is bounded, has an absolutely continuous (p + st derivative, and
satisfies

(2.9) sup,|f (¢)] < oo, i=1---,p+2
then

Z,(t) »wZ(t) = &;@tu (—1)"“.1%@403,,-” Y-t

where Y is a random variable having the normal distribution (0, f(8) - V).

The proof of the theorem shows first that EZ, converges to a parabola, then that
Z, — EZ, converges in probability to a straight line, Z,(1) — EZ,(1) converges in
distribution to a normal distribution, and finally that {Z,} is tight. The detailed
proof is in Section 4.

The asymptotic normality of , is an immediate consequence.

COROLLARY 2.2. If the conditions of Theorem 2.1 are satisfied and if f®(6) # 0
then ’

4 Joe) o fe)
P! f@) 7 [f(z)(o)]z

(na®)i(9, — 0) >pP|(~1)7-

PRrOOF. Since
0,—6

—— = (na)3(9, - 0).

M(f,) = 0, M(Z,) =

Also
..fd_. f(p+l)(g) B Y
AR OO

M(Z) = (-1)7-

where Y ~,90(0, f() - V). So the corollary just states that M(Z,)—, M(Z).
From Billingsley (Theorem 5.1), if Z, —,,Z and if M is a measurable function such
that its discontinuities have Z-measure zero then M(Z,) —,,M(Z). Since M is a
measurable function (see Section 5) and continuous at the set of parabolas with
fixed second derivative (with probability one), the proof is complete.

At this point an examination of the assumptions of Theorem 2.1 and comparison
(for p = 2) with those of Theorem 1.1 is in order. The moment conditions on K,
(2.1)-(2.4), or the slightly weaker (1.3), are necessary so that Ef, will be close to 8.
They do not imply that 8, — 8 = Op((na3)‘%) which would be necessary to insure
that f, has a unique maximum (with probability approaching one as n — o). The
smoothness conditions (2.5) and (2.6) are about the weakest possible (however, see
Le Cam (1970), page 805 ff.) and are much weaker than (1.5); in the next section
the importance of weakening (1.5) will become clear. Table 2.1 contains several
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TABLE 2.1
Selected Kernels
K(x) B, 14
bhl<t 3 0
0, otherwise
—,—1 Texp(—x%/2) 1 ——-1-1 T
(2m)? 2(27)?
1= |x), x| < 1 : 2
0, otherwise
1 15
50~ 2P | < 1 : 2
0, otherwise
1 3
3 — 2 — =
30 -x%, x| <1 5 3
0, otherwise
75
B - x)H3 - TxY), x| < 1 0 16
0, otherwise

kernels together with their values of B, and V. All satisfy (2.5) and (2.6) and none
except the second satisfy (1.5); of couse, the first kernel in Table 2.1 is not
continuous. Condition .(2.7) is needed so that f®() is consistently estimated;
consistency of f@(¢) uniformly in ¢ requires (1.7). Evaluation of the asymptotic bias
of 8, is possible under (2.8) but not under (1.6); the accuracy of a normal
approximation for moderate sample sizes would be severely affected. Under (2.8)
the infinum of the mean-squared error is E(f, — 8)* = O0(n~@/%*3); this rate is
achieved when d # 0. Finally, (2.9) allows a Taylor expansion of f with f®*? in
the remainder term and hence allows f, to be locally parabolic; (1.4) is weaker.

3. Optimization of the estimator. Under the conditions of Corollary 2.2 a
formal expansion of the mean-square error of the estimator §, is

(3.1)

E(8, — 0) =

a®- B, -f(PFD(g) 2 f(6)- v
+ —
@) -p! na*- { £ @(9))°

If a” = o(1/na’) then the bias term is negligible. In this case it is desirable to
choose the kernel so that the conditions of Corollary 2.2 are satisfied and V is as
small as possible.

Let p =2 for the moment and notice that K may be chosen so that the
conditions of the corollary are satisfied and V is arbitrarily close to zero, for
example:

+ 0(i + azp”).
na

K(x) = ! )1 exp(— x2/24?).
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There is, however, no X satisfying the conditions with ¥ = 0. If the tail behavior
of the kernel is restricted in some fashion then an optimal kernel can be chosen
from the restricted class. Although there are no compelling choices, the following
restriction seems appropriate:

3.2) K(x) =0, |x| > 1.
Bartlett (1963), Epanechnikov (1969), and"Johns and Van Ryzin (1972) also have
used kernels which are zero outside bounded intervals for estimating densities.

The problem of choosing K satisfying the conditions to mimimize ¥ is an
isoperimetric problem with constraints (see, €.g., Gelfand and Fomin (1963), page 43,
Theorem 1) in the calculus of variations. The solution is given by:

THEOREM 3.1. If K satisfies both the conditions of Theorem 2.1 for p = 2 and
(3.2) then V = [[KD(x)P dx is minimized when
K(x) = Ky(x) = (5)1 =%, |x| <1
= 0, otherwise.

ProoF. Euler’s equation for this problem is (Gelfand and Fomin, page 15,
Theorem 1) :
KO(x)+Ax +A, =0
for some constants A;, A,. The only kernel satisfying the conditions and Euler’s

equation is the one given in the statement of the theorem.

This same kernel was found by Epanechnikov to minimize [E[f,(f) — f({)P dt.
This optimal kernel does not satisfy condition (1.5) of Theorem 1.1.

Recall that it was assumed that na” — 0. Notice that if instead it is assumed that
K = K, then (3.1) is minimized when

na’ - _2R6) .
41O

However, when na’ — d*> > 0 choosing a kernel with B, = 0 allows {a} to con-
verge to zero even more slowly, i.e., d2 = oo. Specifically, suppose na’ — co and
na'' -0, i.e., p = 4. Again K may be chosen to satisfy the conditions of Theorem
2.1 and to minimize V. The solution is given by:

THEOREM 3.2. If K satisfies the conditions of theorem 2.1 for p = 4 and satisfies
(3.2) then V is minimized when

K(x) = K(x) = (£)3-10x2+7x%, |x| <1

=0, otherwise.
Again notice that if it is assumed that K = K, then (3.1) is minimized when

na'l — 9f(9)‘V .
B FOO)]
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A curious phenomenon is occurring. If {a} converges to zero at a certain rate then
it is possible to find an optimum K for that rate. On the other hand if that optimum
K is chosen then the optimum rate for {a} to converge to zero is slower than the
rate which gave rise to the kernel in the first place.

It is possible to continue in this fashion setting B, =0, i < p — 1 and letting
na**% — 0. The optimal kernel is a polynomial of degree p. These polynomials
have variation increasing in p; this is necessary to satisfy the bias constraints (2.2),
but there is no kernel which satisfies the bias constraints for all p. Bartlett (1963)
and Johns and Van Ryzin (1972) have also used kernels satisfying the constraints
{B; = 0} to reduce the order of the bias in density estimates. For small and
moderate sample sizes it seems risky to use high degree polynomial kernels
although they are asymptotically better. Limited Monte-Carlo experiments have
suggested that the kernel of K, of Theorem 3.2 does reduce the mean squared error
of §, when compared with the kernel K, of Theorem 3.1 for sample sizes as small as
n = 20 for a variety of densities.

4. Proof of Theorem 2.1. The first step is to show that EZ (¢) converges to a
parabola. Since X, - - - , X, are independent with common density f,

EZ,(t) = ;;;f[K(M%) - K(o ; x)]f(x) dx.

Changing variables once for each term in square brackets yields

EZ (1) = %f[f(o + ax + br) — f(6 + ax)]| K(~x) dx.
Expanding f at 8 + ax by Taylor’s theorem, this becomes

(4.1) EZ (1) = bl [btf(‘)w + ax) + ———f<2)(0 + ax)

#2706 |K(-0) as

where £, lies between 8 + ax and 8 + ax + bt
Expanding f at , the first term in (4.1) becomes

pr1 (@) T O0) | (axy O,
f[z"‘ (i— 1 + (p + 1)

}K(—x) dx

where ¢, lies between 8 and 8 + ax. Since f9(@) - B,_, = 0, 1 < i < p, this reduces
to

%[fi(;:l)ﬂ JxPK(—x) dx +

(—:Tl_)' Jf D) xP+ K (— x) dx]
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Because a” /b — d, the first of these two terms converges to

@+
(=1y*t. f__p_'@.Bp.d. 3

The second converges to zero since it is smaller in absolute value than

ap+l
b(p + 1)!
and a?*'/b —0.
Expanding f@ at 0, the second term in (4.1) becomes
2
LI15®0) + af(E) | K(~ ) ds.
The first of these two terms is exactly
) ,
f 2(0) . BO . t2

- sup|f C*D()| - []xP* K (x)|dx

and the second is smaller in absolute value than

at? o
S sup £ O] - [lxK()ldx

which converges to zero since a — 0.
The third term in (4.1) is smaller in absolute value than

be?
% sup)f W) - fIK(~x)dx
which converges to zero since b — 0. Thus
) @ Ce+(g
lim,_, EZ,(t) = f-#mo- 2+ (—1F*. i—;!—(—)-ap d-t.

The second step in the proof of the theorem is to show that the deviations of Z,
from its expected value lie, with probability converging to one, on a straight line. It
sufficies to show that Var[Z (¢) — tZ,(1)] >0 as n— oo. Notice that Z (¢) —
tZ (1) is the average of random variables identically distributed as

() =%{K(0+b;—X)_K(0;X)

(£ )

[ER,(1)]

So

Var[ Z,() — 1Z,(1)] = %Var[R,,(t)] <

S |-
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1 6+ bt — x 6 — x
nazb“f{K( a ) B K( a )
2

G B )| e

n:b4f{K(_l),,_t - x) — K(-x) - t[K(% -~ x) - K(——x)]}zf(B + ax) dx

42 < f(0)12f K(—ba—t— x) - K(—x) B K(s_ x) — K(=x) 2

na’b?

dx.

>
-~
Q| o

a

Let 6 = % and define

1
Then qs(x)=-8-, < X £ §, 0, otherwise

K(8t — x) — K(—x)
ot

= o KOw)
L T

= J2K(=x + p)gs () dy = [® KD(=x + y)gy(y) dv.
Thus

K(8t — x) — K(—x)  K(8 - x) — K(=x) ?
[ 51 5

=[JKO(=x + y1)g5(y) & = [KD(=x + »)g(») ]’
= (J[KO(=x +y1) = KO(=x + »)]as(») )
< J[KD(=x +yt) = KO(=x + y) a5(») B
by Jensen’s inequality. Consequently the integral in (4.2) is smaller than
J{ITED(=x + yt) = KO(=x + »)]"g5(y) & } ax

= J{J[KD(=x + yt) = KD(—x + )] dx}gs(y) &
(by Fubini’s Theorem). By Theorem 13.24 of Hewitt and Stromberg (1965) the
inner integral converges to zero as y converges to zero. Recall that t € [— T, T] is
fixed and choose &(f) > 0. There is a y(¢) so that if |y| < y(¢) then the inner
integral is less than e(#). Choose § < y(¢). Then the integral becomes

S (IZal KO(=x +y1) = KO(=x + )P dx} by < 5860 b = e(0)

Thus (4.2) converges to zero and
Z,(t) — EZ,(1) — [ Z,(1) — EZ,(1)] —,0.
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The next step in the proof of the theorem is to show that the deviation of the
process at ¢ = 1, Z,(1) — EZ,(1), has an asymptotic normal distribution. Z,(1) is
the average of random variables identically distributed as

o ) - (5]

So

-1
n

1

Var[ Z,(1)] = %Var[U,,] E[U2] - —[EU,]"

Since EU, = EZ,(1), as n — oo, %[EU,,]2 converges to zero and

lE[ U] = 1 f[x(f"'_b__i‘_) - K(o‘_ x)rf(x)dx

n nazb4 a a

_ 1 I[K(g_x)—K(—x)rf(0+ax)dx

nab*
1

nab*
+alxf V@) K(5 - x) - K(—x)r dx}

where ¢! lies between @ and 8 + ax.
The second term in (4.3) is smaller in absolute value than

sup £ () - a - flxi K(5 — ) - K(—x)]2 dx.

(43) =

{f<e>f[1<(§ = x) = K(=)] s

This integral is smaller than
b
4 sup KOOI 1 - KGO+ (1K)l

which is bounded. Since a — 0 and b — 0 the entire term may be neglected.
Letting 8 = b/a and using an argument similar to the one used at (4.2)

e (i x)s_ KEX) o k(= x + )00
and ,
KO(=x) = [KO(=x)g5(») d,
so that
I K(§ — x)s— K(—x) K(‘)(—x)r dx

< J{I[EO(=x + ) — KO(=x)]* dx} g5(») .
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Choose ¢ > 0. Again there is a y so that |y| < y implies the inner integral is less
than . Choose § < y. Then the whole expression is less than &. Consequently the
integral in the first term in (4.3) converges to

J[KO(= x)]2 dx
and thus

Var[Z,(1)] = f(8) - V.

Since Z,(1) is the average of n random variables with the same distribution as
U,, Lindeberg’s condition for asymptotic normality of Z (1) (Billingsley (1968),
Theorem 7.2) requires that

ne [

as n — oo for every ¢ > 0. Since KX is bounded, say sup,|K(x)| < D,

_I_[K(ii_’f_‘_’i)_x(oz")“ <2-D-na

b%a a

f(x)dx -0

U, — EU, )2
S

U,— EU,
n

|U,| =

Since a — 0, for each & > 0 there is an n(e) so that for all n > n(e), |U, — EU,| <
en. Hence, for n > n(e)

—rl;flU,l—EU,J)m[ U, - EUn]zf(x)dx =0

and Lindeberg’s condition is easily satisfied. Thus,

At this point it has been shown that the finite-dimensional distributions of Z,
converge to those of Z. Since K is continuous (and hence Z, is continuous), from
Billingsley Theorem 8.1) it only remains to show that {Z,} is a tight sequence to
complete the proof of the theorem. From Billingsley (Theorem 12.3), a sufficient
condition that {Z,} be tight is that {Z,(0)} is tight and there exist y > 0, a > 1,
and a continuous nondecreasing function H so that for all s, t €[~ T, T] and
n>1

E{|Z,(s) = Z,(9I"} < [H(s) = H()I*

Now Z,(0) = 0 and hence is tight. So choose y = a = 2 and H(s) = A4 - s for some
constant A < oo so that if

E{ Zn(sz - tZ,.(t) }2 < 42
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then {Z,} is tight. But
A - Z(1)2
p( 20 20)

s—t
0+bs—x)_K(0+bt—x) 2

= a1 [ K( a a f(x) dx

s—1

2

K(é(s—a——t—)- - x) — K(—x)

b(s — 1)
a
K@ - x) — K(—x) T2
<f(0).f[ (0 =) - K )] o

letting 8 = b(s — r)/a. From the argument applied to the first term of (4.3), this
integral is bounded (uniformly in s and ¢); hence {Z,} is tight. The proof of
Theorem 2.1 is complete.

It should be noted that the proof was carried through for t € [— T, T']. However,
since T was arbitrary, by Theorem 5 of Whitt (1970), the proof is valid for all
t € (— o0, 0).

/ (0 + bt + ax) dx

5. Measurability of the Functional M. Because there is apparently no previous
proof of the fact that M, defined in (1.2), is a measurable function on C[0, 1] = C,
a proof is included here. Define, for each ¢ € C,

. I I
M,(c) = mmo<,<2,.{7 6(7) > supoc,<1c(?) — 3}

or M, = 1 if the inequality is never satisfied. Since M,, is a measurable function
on C, if it can be shown that
1ime—>0umn—>ooMen(C) = M(C)
for each ¢ € C, then M is a measurable function. Notice that for fixed ¢, M,, is a
nonincreasing function of n. Also notice that continuity of ¢ guarantees, for
sufficiently small ¢, the existence of an n(e) such that for all n > n(e), M, (c) <
M(c). Now define
M,(c) = info,c {f]c(?) > supoc,<ic(s) — €}
For each n, M,,(c) > M,(c). Thus for € small and n large M, (c) < M, (c) < M(c)
and it only remains to show that
lime—»OMz(c) = M(C).
Observe that M, is a nonincreasing function of e. Since M(c) is the smallest ¢ which
maximizes c¢(f), for each § > 0 the maximum value of ¢(¢), 0 < ¢t < M(c) — 6, is



882 WILLIAM F. EDDY

smaller than c(M(c)) (or M(c) = 0 = M,(c)). That is, there exists an ¢ > 0 so that
c(t) < c¢(M(c)) — e for 0 <t < M(c) — 8. Thus, M,(c) < M(c) — & so that M,(c)
increases to M(c) as ¢ decreases to 0. Therefore M is measurable.
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