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EXPLICIT MAXIMUM LIKELIHOOD ESTIMATES FROM
BALANCED DATA IN THE MIXED MODEL OF THE ANALYSIS OF
VARIANCE

By Tep H. SzaTROWSKI' AND JOHN J. MILLER
Rutgers University

A result of Szatrowski, giving necessary and sufficient conditions for the
existence of explicit maximum likelihood estimates for multivariate normal
means and covariances with linear structure, can be applied to the problem of
obtaining explicit maximum likelihood estimates in the mixed model of the
analysis of variance. This application yields a simple procedure for checking
whether or not explicit maximum likelihood estimates exist for the parameters
in the balanced mixed model of the analysis of variante. Examples of this
procedure as well as a discussion on finding the explicit maximum likelihood
estimates are given.

1. Introduction. Results in the literature on when the parameters of the mixed
model of the analysis of variance have explicit maximum likelihood estimates are
sparse and in general consist of solving the likelihood equations for specific
balanced models. It has been shown that the balanced two-way nested ANOVA
model has explicit maximum likelihood estimates, while the balanced two-way
crossed random effects ANOVA model with interaction does not have explicit
maximum likelihood estimators (e.g., Herbach (1959), Hartley and Rao (1967),
Miller (1973, 1977)). Harville (1977) reviews maximum likelihood approaches to
variance component estimation. Miller (1973) gives sufficient conditions for the
existence of explicit maximum likelihood estimates for the balanced mixed model
of the analysis of variance. Szatrowski (1980) gives necessary and sufficient
conditions for the existence of explicit maximum likelihood estimates for multi-
variate normal means and covariances with linear structure. In the present study,
the result of Szatrowski (1980) is applied to the problem of finding explicit
maximum likelihood estimators in the mixed model of the analysis of variance.
This application yields a simple procedure for determining whether or not explicit
maximum likelihood estimates exist.

In Section 2, the basic model in the mixed model of the analysis of variance is
reviewed along with the simplifications in the form of this model in the balanced
case. In Section 3, Szatrowski’s (1980) result is given along with a simple procedure
for determining whether or not a balanced model has explicit maximum likelihood
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estimates and examples of this procedure. The forms of the explicit estimators and
several examples of explicit estimators are given in Section 4.

2. The basic model.

2.1 The general form. The basic model we shall use in the mixed model
analysis of variance is that given by Hartley and Rao (1967) and Miller (1977). It
can be written as

2.1) y=Xa+Upb, +Ub,+---4+Ub, +e

Pr P

where y is an n X 1 vector of observations; X is an n X p, matrix of known
constant (the design matrix for the fixed effects); a is a p, X 1 vector of unknown
constants; U; is an n X m; matrix of known constants (a design matrix for a
random effect), i = 1,2, - - -, p;; b; is an m; X 1 randorh vector, b, ~ 9, (0, 61), i
=1,2,---,p;; eis an n X 1 random vector, € ~ I(0, g,l). Let G, = U,U,, i =
1,2,---,p, and Gy = I,. Given the model (2.1) we make the following assump-
tions: X has full rank p,; n > p, + p, + 1; [X : U;] has rank greater than py, i =
1,2,- - -, p;, so that the fixed effects are not confounded with the random effects;
the matrices Gy =L, G, =U,U,i=1,2,- - -, p, are linearly independent (i.e.,
2PLo7,G; = 0 implies that 7, = 0,i = 0, 1, - - - , p,.) so that the random effects are
not confounded with each other; U, consists of only zeroes and ones with exactly
one 1 in each row and at least one 1 in each column, i =1,2,- - - , p,.

It follows that y ~ 9, (Xa, Z(0)) where X(o) = Z%L,0,G,. The parameter space
is defined as follows: Let p =p, + p; + 1 and let o = (0g, 0y, - -, 6,)". Then
® C R? is the parameter space, where

(22) ® = {0 € R?|0 = (a, &);
a € RP; X(0) >0;00>0;0, >0,i=1,2,---,p,}.

The requirement o; > 0 is referred to as the “variance component constraint.” The
objective is to observe y and estimate a, 6y, 6;, - * * , 0, by the method of maxi-
mum likelihood. (See Miller (1977) for additional details on the general model.)

2.2 Simplifications for balanced models. In this section we show that for
balanced models, X is diagonalizable, and that the fixed effects have explicit
maximum likelihood estimates that do not depend upon X. To do this, we
investigate properties of X and X in the general model (2.1). Consider the balanced
model written out in the form

(2°3) ){iljz".jr =pt ajl +-e +ej|jz"'jr’jk = 1’. t ’Jk’k = 1’. e h
where + - - - + may consist of crossed and nested, fixed, mixed or random effect
terms. We can rewrite this model in the form

(2.4) y = Xlal + R +Xsas + Ulbl + M +UP|bP| + [

where X; is the design matrix for the ith fixed term in the model and U; is the
design matrix for the jth random term. These X; and U; matrices are of the form
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[A, ®A, ® - - - ®A)] where A, is I, if the term under consideration has the
subscript i, e otherwise, i = 1,2, - -, r. (I, is the n X n identity matrix and e, is
an n X 1 column vector of ones.) Note that we have used the Kronecker product,
A ® B = (g;B) with well-known properties
(2.5) (A, ®B))(A,®B,) = A/A, ® BB, (A®B) = (A’ ®B).
The G; matrix corresponding to U is given by G, = U,U; which by (2.5) is of the
form [B, ® B, ® - - - ®B,] where B, is I, if the term under consideration has the
subscript i, EJI otherwise for i = 1,- - - ,r. (E, is an n X n matrix of ones and
E, =e.e,.)

Let I', be the symmetric orthogonal matrix of dimension » with elements in the
first row being all identically equal to n~ %,
(2.6)

I, =(y) = n_%[cos{qu'%(i - D - l)} + sin{27m_il(i - D - 1)}]

Let P=[I, ® - - - ®T,]. Then G} =P'Gp,i=1,---,r, and Z* = P’ZP are
diagonal, since I'E,T’, is diagonal. Thus for any balanced model, £ can be
diagonalized and the columns of P are eigenvectors of . Each design matrix X,
can be expressed as X; = PZ, where Z, is of the form Z,=[C,®C,®---Q®C,]
where C, is T, if A, = 1,, (J,)f, otherwise, i = 1, - -, r. (f, is a n X 1 column
vector of zeroes with a one in the first position.) Each X; is of full rank and can be
expressed as a linear combination of rank (X;) eigenvectors of . Thus, if we form
the X matrix in (2.1) by deleting linearly dependent columns of the matrix
[X;:X;: - :X] until it is of full rank, we see that X can be expressed as a
linear combination of rank (X) eigenvectors of X. Theorem 1 follows (e.g., Szatrow-
ski (1980), Theorem 2) from this fact.

THEOREM 1. The maximum likelihood estimates for the fixed effects in the
balanced mixed model of the analysis of variance have explicit representations which
do not depend upon X.

3. Explicit maximum likelihood estimates for balanced models. Szatrowski
(1980, Theorem 5) gives the following necessary and sufficient conditions for the
existence of explicit maximum likelihood estimates for the diagonal form of the
balanced model without the variance component constraint. (The diagonal form is
obtained by rotating the data so that X is diagonal, using the transformations in

Section 2.2.)

THEOREM 2. Assume that explicit maximum likelihood estimates exist for the
mean and that X is diagonal. Under these assumptions X has explicit maximum
likelihood estimates if and only if the diagonal elements of Z consist of exactly p, + 1
linearly independent combinations of the o’s.

ReEMARK. Note that by the results of Section 2.2 and Theorem 1, the assump-
tions of Theorem 2 are satisfied for balanced ANOVA models.
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We now develop a procedure for checking directly whether £ has explicit
maximum likelihood estimates when ignoring the variance component constraint.
Suppose there are p; + 1 random effect terms in a model. Define the row vector v,
of dimension r as having a one in the ith position if the jth random effect term has
the ith subscript, zero otherwise. Let v, correspond to the v vector for the random
effect e, (ie, vo=¢;). Let V be the matrix with rows v, v;,- - -, v,. Let
W, * - -, W, be the column vectors of V. We define the product of two column
vectors a * b as the column vector whose ith component is a;b;. Let wy be a column
vector of ones. Define U as the smallest set containing wg, W;, - - - , W, which is
closed under * multiplication and let N(°Uf) be the number of distinct vectors in

u.

THEOREM 3. For the balanced mixed model in the analysis of variance, £ has
explicit maximum likelihood estimates for the model without the variance component
constraint if and only if N(U) = p, + 1.

REMARK. Since the G matrices are linearly independent, N(U) > p, + 1.

Proor. By Theorem 2, it is sufficient to show that N(°U) is the number of
distinct linear combinations of the o’s that are diagonal elements of X. The
diagonal matrix G} = P'G,P = diag[R, ® - - - ®R,] where R, is either ¢ J if the jth

subscript is included in the term, Jf, otherwise, i =0, - - -, p,. Thus G} is of the
form ¢; diag[S, ® - - - ®S,],i =0,- - -, p, where S, is either e, or f,. Without
loss of generality, we may assume J, = J, = - - - = J, = 2 and can ignore ¢; when

counting the number of distinct linear combinations of ¢’s on the diagonal. Under
these assumptions G is of the form

G} = diag[(,l)n) ®(,1)a)® oo ®(11)ir)], i=0---,p.
The 2" elements on the diagonal of G* consist of products of the elements in the 2"
subsets of {v,;, v, * * * , v, } Where the product of no elements is defined as one. If
we let G be a (p, + 1) X 2" dimensional matrix with rows the elements of the
diagonals of Gg, Gf, - - - , G}, i.e, G; = (G}");» we note that each column repre-
sents the * multiplication product of a subset of vectors from wy, - - - , w,. The
number of distinct linear combinations of ¢’s is the same as the numbers of distinct
column vectors of G which is the same as N(°U). []

Five examples follow applying the procedure of Theorem 3. The vectors of U

appear as the columns of W.
1. Two-factor random effects model. (a and b are random effects.)

y,jk=u+a,.+bj+ab,j+eijk,

i=1---,Lj=1---,J;k=1---K
1 1 1 1 1 1 1 1
_|1 0 0 _|/1 1.0 0 0 _ _
V—0 1 O,W 1 01 0 0 N@) = 5>p, + 1,p, = 3.
1 1 0 1 1 1 0 1
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Since N(UW) =5 >p, + 1 =4, there are no explicit maximum likelihood esti-
mates. Note that eliminating the interaction term still does not yield a model with
explicit maximum likelihood estimates.

2. Three-factor nested random effects model. (a, b and ¢ are random effects.)

Vg = B+ a; + by + G + ey
i=1,---,I, J=1---,J

k=1,---,K, 1=1,---,L.
1 1 1 1 1 1 1 1
|1t 00 0 _|1 00 o0
V=1 100/ |1 1o of
1 110 1 1 10

N) =4 =p, + 1,p, = 3.

Since N(UW) = 4 = p, + 1, there are explicit maximum likelihood estimates when
ignoring the variance component constraint. (See Theorem 4 below.)
3. Two-factor mixed effects model. (a is a fixed effect, b is a random effect.)

y,.jk=u+a,.+bj+ab,.j+e,jk;

i=1,---,Lj=1--+,Jik=1---,K
1 1 1 1 1 1

V=(0 1 0 ,W=|1 0 0/,
1 1 0 1 1 O

N(%)=3=pl+1’pl=2‘

Since N(W) = 3 = p, + 1, there are explicit maximum likelihood estimates when

ignoring the variance component constraint.
4. Three-factor model. (Two crossed random effects nested within a third

random effect.)

Yim = B+ a; + by + ey T bey + ey

i=1,--,Lj=1---,J;k =1,--+-,K;1 =1+, L.
1 1 1 1 1 1. 1 1 1
1 0 0 O 1 0 0 0 O
V=11 0 0 ,W=|1 1 0 0 0},
1 0 1 0 1 01 0 O
1 1 1 O 1 1.1 0 1

NEW) =5=p, +1,p, =4

Since N(9U) = 5 = p, + 1, there are explicit maximum likelihood estimates when
ignoring the variance component constraint.
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5. Three-factor model. (Two crossed random effects, one crossed fixed effect; a
is a fixed effect, b and ¢ are random effects.)

Vg = b+ a + bj + ab,.j + ¢ + acy + bcjk + abc,.jk + e
i+1l,---,L;j=1---,J;k=1---,K;1=1,--- L.

—_—_0 00O~
— 0000 O -

<

I
—_O = OO =
bt ek ek et O O
cococococo~

<

Il
e
—_O = OO -
—_—O O
[N e R =
coocococo~
-1
—_O— 00O

1
1
1
0
0
1
1

NE) =9 >p, + 1,p, = 6.

Since N(U) =9 >p, + 1 =7, there are no explicit maximum likelihood esti-
mates. Note that this shows that N(°Uf) may exceed p, + 1 by more than one. If we
introduce another fixed effect into this model which is crossed with all other terms,
we find
N@) =17 >p;+1 = 13,p, = 12.
The result for example two is a special case of the following Theorem.

THEOREM 4. Any balanced mixed model of the analysis of variance in which all
effects, random or fixed, are nested has explicit maximum likelihood estimates with
and without the variance component constraint.

Proor. It is sufficient to show this result for the problem without the variance
component constraint since in the case where the unconstrained maximum likeli-
hood estimates do not satisfy the variance component constraint, we drop the
term(s) that violate the constraint from the model (setting them equal to zero) and
solve the resulting model for the unconstrained maximum likelihood estimates.
Note this new model is still a model in which all effects are nested.

Consider the completely nested random effects model with r subscripts. The V
matrix is of the form given in example two where the first row consists of r ones,
the second row one one followed by zeroes, the third row two ones followed by
zeroes continuing in this fashion down to the last row consisting of » — 1 ones and
one zero. The first column of V consists of all ones and * multiplication of any
two columns yields the column furthest to the right, i.e., if i </j, w;, * w; = w,. Thus
column multiplication yields no new elements and N(°U) = p, + 1.

To obtain the V matrix for a fully nested model with r subscripts, we start with
the fully nested random model with r subscripts and cross out rows of V that
correspond to fixed effect terms. Each time a row is crossed out p, + 1 decreases
by one. However N(9U) also decreases by exactly one since crossing out a row
yields two duplicate column vectors. Thus N(W) = p, + 1. ]

4. Solving for the explicit maximum likelihood estimates. When X =1 is a
possible value for X (as it is for the mixed model of the analysis of variance with
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6o=1,0,=0,i=1,---,p,), and when the mean vector has explicit maximum
likelihood estimates, then these estimates are given by
(5.1) @ = (XX)"'XY.

Define C = (y — X&)(y — X&)'. When both the mean and covariance have explicit
maximum likelihood estimates, the mean estimates are given by (5.1) and the
covariance estimates for X(o) are given by

(5.2) 6 =[tr G,G,] '(tr G,0)
where [tr G,G,] is a (p, + 1) X (p, + 1) matrix whose gh element is tr G,G,, g, h
=0, -,p, and (tr G,C) is a (p; + 1) X 1 column vector whose gth element is

trG,C,g =0, - -, p, (Miller (1973), Szatrowski, (1980)). Anderson (1970) notes
that the matrix [tr G,G,] is positive definite. '

For balanced ANOVA models, G* = PG,P,i =0, - -, p, are diagonal (see
Section 2.2). Letting V = P'CP we can rewrite (5.2) as :

(5.3) 6 =[tr G*G}] \(r G2V).
=* = P'EP = 3. ,0,G} is diagonal and we can represent the p, + 1 distinct linear
combinations on the diagonal by 7y, - - -, 7, and represent X* by Z* = X8 ;. A,

where the A.’s are diagonal matrices of zeroes and ones with the property that
A A, =0 and thus tr A A, = 0 for g #h. We can then rewrite (5.3) as (5.4) or
(5.5) (noting tr Ag =tr A,),

(54) # =[tr A, ] 7 (tr AYV).
55 , = DAY 0,1
() Te = trAg’ g=uL54L D

To find the maximum likelihood estimates for the o’s we need only solve the
equations

(56) 2/’ii»oc'jl"‘lq‘ = ;r\k k=01-"-- s P1s
where the p’s are known coefficients. Note that 7, is just the average of a subset of

the diagonal components of V. Several examples follow.
1. Two-factor nested random effects model. (@ and b are random effects.)

Vi = B+ @ + by + ey,
i=1 Lj=1---,k=1--,K

By Theorem 4, we know that this model has explicit maximum likelihood estimates.
The X matrix is given by X = (e; ® e, ® e,) and thus @ and Care @ = X'X)" X’y
= (WK) 'Sy =5.; C=( — y.ey)y — y.eyx). The diagonal G} and A,
matrices are the 7’s are G = [I[; ® I, ® I}, G = K[I,; ® I, ® F], GF = JK]I,
®F, ® F, A, = G3/JK, A, = (G} — G3/J)/K, A, = G§ — G /K,

7o = 0o + Ko, + JKo,, 7, = 0y + Ko,, 7, = 0), where F, is an n X n matrix of
zeroes, with a one in the (1, 1) position. Note I';F,T, = T,f.f.T, =1e,e,. We
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proceed to find the #’s given in (5.5) in terms of the usual analysis of variance
“means square” terms.

tr AV = trfl;, ® F, @ F]V = tr]l; ® F, @ F(JP'CP = =t ® e, @ exlly — 7.
e )y — 7.ey ), e, eyl = JKS_ (5. — 7.)* = (I — )MS,, where the
last equality is obtained by noting [I, ® €}, ® ekly is an I component vector whose
ith entry is 2; ,y;; = JKy,.. Similarly, we find tr A,V = K=, (7, — 7.)* = I(J —
DMS,,, and tr AV =2, (v — )7,.1.,)2 = JJ(K — 1)MS,. Dividing tr A,V by tr A,
gives us 7, by (5.5) and the equations in (5.6) are o, + Koy, + JKo, = {(I -
1)/IYMS,; 0, + Koy, = MS,,); 0, = MS,; 0, = 0,, 0, = 0p,), 0, = 0,. To get the
explicit maximum likelihood estimates including the variance component con-
straint, we solve these equations for the o’s. If the constraint 0, > 0,0, > 0i =
1, - -, p, is satisfied, we have the maximum likelihood estimates. Otherwise, we
drop the o’s which do not satisfy the constraint from the model, and find the
estimates for the new model.

2. Two-factor mixed effects model. (See Example 3 in Section 3.) Here we have
two fixed effects terms, p with design matrix X, = [e, ® e, ® e,] and g; with
design matrix X, = [I; ® e, ® e,]. The matrix [X, : X,] is not of full rank, but the
matrix with any one column deleted is of full rank. Let X = X,. Then & =
XX) Xy = (1/JK)A, @ €&, @ ey)y = (V1.073..,-++ ¥1.) . Solving for the o’s using
the techniques of Example 1 yields the equations (5.6) in the form o, + Ko, +
IKo, = {(J — 1)/JIMS,; o, + Ko, = MS,,; 6, = MS,; (J — DMS, =
IKZ(5.,.=5.F5 (I = J = DMS, = K3, (5. = 51 = 7. + 7.05 (I = DU -
1K — DMS, = 2, s k()’ijk - )71‘1'-)2-

3. Three-factor model. (Two-crossed random effects, nested within a third ran-
dom effect.) (See Example 4, Section 3.) Solving for the o’s using the techniques of
example 1 yields the equations (5.6) in the form

a, + I‘obc(a) + Jlﬂc(a) + KLob(a) + JKLO'a = {(I - l)/I}MSa;
g, + Lobc(a) + JLO'C(a) = MSc(a); a, + Lobc(a) + KLob(a) = MSb(a);
o, + l‘obc(a) = MSbc(a); o, = MSe.
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