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NECESSARY AND SUFFICIENT CONDITIONS FOR EXPLICIT
SOLUTIONS IN THE MULTIVARIATE NORMAL ESTIMATION
PROBLEM FOR PATTERNED MEANS AND COVARIANCES!

By TeD H. SZATROWSKI
Rutgers University

The problem of finding maximum likelihood estimates for patterned means
and covariance matrices in multivariate analysis is considered. Necessary and
sufficient conditions are presented for the existence of explicit solutions and the
obtaining of these explicit solutions in one iteration of the scoring equations
from any positive definite starting point. Cases in which averaging yields the
explicit maximum likelihood estimates are discussed. These results can be
applied to the problems of finding maximum likelihood estimates for the
parameters in the complete, compound and circular symmetry patterns; mixed
models in the analysis of variance; and for finding asymptotic distributions of
likelihood ratio statistics when the parameters under the null hypothesis have
explicit maximum likelihood estimates.

1. Introduction. We consider the problem of estimation of the mean vector
and covariance matrix of a multivariate normal distribution when the mean vector
and covariance matrix have linear structure. Anderson (1969, 1970, 1973) studies
this problem and in the (1973) paper he presents the likelihood equations and
suggests an iterative algorithm for finding the solutions of the likelihood equations
based on the method of scoring. In the present study, necessary and sufficient
conditions are presented for (1) the existence of explicit maximum likelihood
estimates and (2) the convergence of the iterative procedure proposed by Anderson
(1973) in one iteration from any positive definite starting point and these results are
then applied to some well-known problems.

In Section two, the problem under consideration is described in detail including
the likelihood equations and the scoring algorithm. Also in this section is a
discussion of a canonical form for the problem that is used in the remainder of this
paper and a short discussion on averaging. The results for estimating the mean
vector are given in Section three, those for the covariance matrix in Section four.
Applications are described in Section five for patterned symmetry problems and
asymptotic distributions of likelihood ratio statistics under alternative hypotheses.
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Applications for mixed models of the analysis of variance appear in Szatrowski and
Miller (1980).

2. Likelihood equations, canonical forms and averaging. Let X be a p-compo-
nent column vector with multivariate normal distribution such that the mean
vector p = &X and covariance matrix £ = Cov(X) = & (X — p)(X — m)’ have the
linear structure considered by Anderson (1973). Specifically, p = 37_, Bz; = ZB, Z

JJ

=[z,-,2,B=(By- - ,B), B E R’, where the z’s are known, linearly in-
dependent column vectors and the B’s are unknown scalars. The covariance
matrix, T = X(0) = 27_40,G,, 0 = (0y, * * * , 0,,)', where the G’s are known, lin-

early independent symmetric matrices and the o’s are unknown scalars such that
0 €0,0={0€ R"!Z(0) > 0} where = > 0 denotes T positive definite. We
assume that © is nonempty so that there exists at least one value of o that results in
2(o) being positive definite. Maximum likelihood estimates of p and = in these
forms are desired based on N independent p-dimensional observations
Xp oty Xy

2.1 LIKELIHOOD EQUATIONS. Let [d,,] denote a matrix whose g, 4 element is
d,;, and let (d,) denote a column vector whose gth element is 4,. The likelihood
equations for this problem as given by Anderson (1973) are

2.1 (Z'2-'2)8 = 2%,
(22 [tr £7'G,27'G,]¢ = (r £-'G,2"C),
where [tr £71G,271G,] is an (m + 1) X (m + 1) matrix, (tr £7'G,27'C) is an
(m + 1) X 1 column vector, 8 and & are r X 1 and (m + 1) X 1 column vectors of
unknowns,
X = (1/N)2).;x,and C = (1/N)Z5_i(x, — %) + & — @)X —4)",
forji = 2.

Anderson points out that the likelihood equations written in this form suggest an
iterative scheme (noted by J. N. K. Rao (1973) to correspond to the method of
scoring) wherein from an initial estimate of X, 2, one can solve the linear equations
in B, compute C and then solve the linear equations in & to yield the next estimate

of £. Note that, in general, one should monitor the values of & to insure that
6 € 0, i.e.,, Z(6) > 0. Convergence of this iterative procedure is not guaranteed.

2.2 CANONICAL FORM. We assume, without loss of generality, that the problem
is in the canonical form when there exists a value * € © such that Z(o*) = I, the
identity matrix. If the problem is not in canonical form, it can be trivially rotated
into this form.

2.3 AVERAGING. The likelihood equations (2.1) and (2.2) evaluated at the
initial estimate X = I yield the values

(2.3) B = (Z'2)"'Z%, 6 =[r G,G,] '(tr G,C).
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We note that the value ﬁ minimizes (X — ZB)'(X — ZB) for B € R” and that ¢
(using the value of B for calculating C) minimizes tr(E(e) — C)* for 0 € R”*!. In
general, the estimates in (2.3) do not correspond to the maximum likelihood
estimates and need not even yield a positive definite estimate of . However, in
certain cases we can reparameterize 3 and o so that the z vectors and G matrices
consist only of zeroes and ones. In these cases, the estimates in (2.3) may be
obtained by first estimating each of the r distinct elements of the mean vector p by
the average of their corresponding values in X, using these estimates to compute C,
and finally estimating each of the m + 1 distinct elements of X by the average of
their corresponding values in C. Thus, when (2.3) yields the explicit maximum
likelihood estimates (see Theorem 4 and Corollary 1) and the above reparameteri-
zation holds, the explicit maximum likelihood estimates can be obtained directly by

averaging.

3. Mean vector results. In this section results are derived for the maximum
likelihood estimates of the unknown parameters B8 of the mean vector p. The
following result, with A = Z and B = I is used for showing when the least squares
and Markov estimates for the mean vector coincide. The more general form is used
for showing when the “least squares” and “Markov estimates™ for the covariance
matrix coincide.

THEOREM 1. Let A and B be p X p, symmetric, positive definite matrices and let
X be pXr, r<p of full rank. A necessary and sufficient condition for
XATIX) " IX'A™! = X'B™!X) " IX‘B~! is that the columns of X are linear combina-
tions of r characteristic vectors of AB™!.

ProOF. The proof uses techniques that may be found in Anderson (1971) in the
proofs of Theorem 2.4.1 and Theorem 10.2.1. This proof is deferred to the
Appendix.

Before stating the theorem giving necessary and sufficient conditions for explicit
solutions and one iteration convergence for the maximum likelihood estimates of
the mean vector, we define what we mean by an “allowable starting point™ and an
explicit representation for the mean. An “allowable starting point” is any value
= 3(¢) which is positive definite. It is used in equation (2.1) to start the iterative
procedure. An explicit representation for the mean is one in which the maximum
likelihood estimate for B, B, can be expressed as § = AX where A is a function only
of the z’s and G’s. Results similar to conditions 1, 2 and 5 of Theorem 2 have been
obtained by several authors including Zyskind (1967), Thomas (1968) and Mitra
and Moore (1973).

THEOREM 2. The following five conditions are equivalent for the problem described
in Section two in its canonical form:

1. (Z'£7'2)~" = (Z'Z)~'Z for all allowable starting points.

2. The r columns of Z are spanned by r eigenvectors of Z.
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3. The likelihood estimate of B (and thus of p) has an explicit representation.

4. Equation (2.1) in the scoring algorithm converges in one iteration from any
allowable starting point to the maximum likelihood estimate of B.

5. The least squares and Markov estimators of B coincide.

Note it is assumed for conditions 3, 4 and 5 that they do not depend on the
specific data values obtained. Specifically, we ignore the cases (except when Z is
p X p) in which X can be expressed in the form Zg for some 8. Such events, of
probability zero, yield trivial counterexamples of Theorem 2.

Proor. Conditions 1 and 2 are equivalent using Theorem 1 with A =2, B =1
and X = Z. Conditions 2 and 5 are equivalent by Theorem 1 of Zyskind (1967).
From our definition of explicit solutions, we observe that an explicit maximum
likelihood estimate of B must be independent of allowable values of o, thus 1 and 3
are equivalent. The equivalence of 1 and 4 follows by noting the form of likelihood
equation (2.1). ]

4. Results for the covariance matrix. In this section results are derived for the
maximum likelihood estimates of the covariance matrix X. The elements in the
upper triangle of X are written as a vector. The likelihood equation (2.2) is
rewritten in this vector form using an extension of a result of Anderson (1969)
given in Theorem 3. The necessary and sufficient conditions for explicit maximum
likelihood estimates of £ and one iteration convergence of the likelihood equation
(2.2) are given in Corollary 1 of Theorem 4. Theorem 5 gives necessary and
sufficient conditions for explicit maximum likelihood estimates of = when it is
diagonalizable. Both Corollary 1 and Theorem 5 assume explicit maximum likeli-
hood estimates for B exist.

DErFINITION 1. Let A be a symmetric p X p matrix. (A) is defined to be a
column vector consisting of the upper triangle of elements of A, i.e.,

t
A = (ay,ap, - - -, Qs> Q125 Q135 * ° 5 Qppy A3, * ° ° ap—l,p) .

DEFINITION 2. The maximum likelihood estimate of o, &, has an explicit repre-
sentation if and only if 6 = B({C) for some matrix B which is a function only of
the G’s. (Note C is the sample covariance matrix defined in Section 2.1.)

DEFINITION 3 (Anderson, 1969). Define @ as the {p(p + 1)/2} X {p(p X
1)/2} symmetric matrix with elements ® = ®(Z) = (¢, ) = (0,0, + 0,0;), i <
J> k <. The notation ¢; ,, represents the element of ® with row in the same
position as the element g;; in (A) where A is a p X p symmetric matrix and column
in the same position as g, in <A )".

We observe that if the p X p matrix R > 0 has a Wishart distribution with
parameters £ > 0 and a(E(R) = W, n)), then n®(E) = Cov(<{R)), (e.g.,
Szatrowski (1979, Lemma 1)).
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Taeorem 3. IfE and F are P X p symmetric matrices, then
(4.1) CEY® Y(Z)(F) = 1tr =~'EX"'F.

ProoF. The proof is a straightforward extension of Anderson’s (1969, page 61)
proof with G, replaced by E and C replaced by F. []

Five examples of possible E and/or F matrices that can be used in Theorem 3
are (@) Z, (b) G,, g =0, 1, - - - , m, (c) C, the sample covariance defined in Section
21, d K Ea_, x, — X)(x, — X)', K a positive constant, (¢) (X — @)X — fi)’, useful
with mixed models in the analysis of variance when N = 1.

Using Theorem 3, we note the followmg identities useful in rewriting the
likelihood equation (2.2), with &= <I>(2),

(4’2) <Gg>'(l’_'<C> = Etl' E_IGSZ_IC, g = 0, 1, <, m,
(43) (G YD KG,> = itr f‘.“Ggﬁ‘lGh, gh=01"---,m.
Using (4.2) and (4.3) and letting W = [{G,), - - - , {G,,>], a matrix with the vector
forms of the G’s as columns, we can rewrite likelihood equation (2.2) as

(4.4) G = (w'&-IW)‘-'w'@-l<c>.

Let @, be defined by ®; = ®(I) = diag(2L,, L, _1)/2)-

In addition, following Seely (1971), we define a quadratic subspace (more
appropriately termed a Jordan algebra) to be a subspace B of the vector space of
p X p real symmetric matrices @ with the property that B € % implies B> € %.

THEOREM 4. When B is known, the following seven conditions are equivalent for
the problem described in Section two in its canonical form:

1. (W™ 'W) "W~ ! = (W, 'W)"'Wd® ! for ®=a(T) generated by all
allowable starting points.

2. The m + 1 columns of W are spanned by m + 1 eigenvectors of ®(Z)®~'(]).

3. The maximum likelihood estimates of o (and thus of X) have explicit representa-
tions.

4. Equation (2.2) in the scoring algorithm converges in one iteration from any
allowable starting point to the maximum likelihood estimate of o.

5. The set of T given by {Z : <) = Wo, @ € R™*'} forms a quadratic subspace.

6. For any 6 € R™*! such that (X(0)) ! exists, there exists ay € R™*! such that
(Z@)~") =Wy

7. For any a € R™*!, a'é are uniformly minimum variance unbiased estimates of
a’‘oc where & is the MLE for o. \

Note that it is assumed that conditions 3 and 4 do not depend upon the specific
data values obtained. We ignore the trivial counterexamples which occur when {C)
can be expressed as Wo for some o since (except in the case when W is square) this
event occurs with probability zero.
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Proor. Conditions 1 and 2 are equivalent by Theorem 1 with A = ®X), B =
®,, X = W. The equivalence of 1-4 parallels the proof of Theorem 2. Condition 1
implies Condition 7 since the Cramér-Rao lower bound matrix is
(W@~ !(Z*)W)~! /N, where T* is the true value, which agrees with Cov & since

Cov é = (W /(Z)W) ™ 'W O~ (£)Cov(C)®~ (Z)W(Wd - (Z)W) !,

for any allowable X. Thus the result follows by choosing £ = Z* and using
Cov{C) = ®(=*)/N by the comment after Definition 3. Conditions 7 and 5 are
equivalent by Seely (1971), Theorem 1. Condition 5 implies 6 by the discussion
after Theorem 1 in Seely (1971). Condition 6 allows the likelihood function to be
reparameterized with £~! = 3™ v.G, which yields explicit MLE thus implying
condition 3. [] )

In the case where 8 is not known, we have

COROLLARY 1. If the maximum likelihood estimate of B has an explicit repre-
sentation, then statements 1 — 6 of Theorem 4 are equivalent for the problem
described in Section two in its canonical form.

We note that in the case where B is not known, statement 7 of Theorem 4 does
not hold because the MLE of o is not unbiased.

A simplified version of Corollary 1 is given in Theorem 5 for the case where the
G’s are simultaneously diagonalizable. Well-known necessary and sufficient condi-
tions for the G’s being simultaneously diagonalizable are given in Lemma 1.

LEMMA. The following statements are equivalent.

a. There exists an orthogonal matrix, P, independent of the o’s such that PEP' is
diagonal. :

b. The G matrices commute.

C. G,.Gj is symmetric, i,j=0,1,- - ,m.

THEOREM 5. Assume that the maximum likelihood estimate of B has an explicit
representation and that the G’s in & = 37 _,0,G, are all diagonal in the canonical
Sform. Then the maximum likelihood estimate of o has an explicit representation if and
only if the diagonal elements of T consist of exactly m + 1 linearly independent
combinations of the o’s.

Proor. First note that there must be at least m + 1 linear combinations since
the G’s are linearly independent. If there are exactly m + 1 combinations, then by

representing these combinations by 7, 7, - - - , 7,, where ¢ = A7 for some nonsin-
gular A and by grouping the same linear combinations together, we see that ¥ can
be put in the form Z = diag(7ol,, /L, , - - - , 7,1, ). Here 27_op, = p and L is the
s X s identity matrix. In this form, ®®; ' = diag(r3L,, 77L,, - - - , 721, , b) where

b is a row vector of various positive elements representing variances of off-diagonal
elements of the form o;,0;. The {G)’s of X in this form are themselves eigenvectors
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of ®®; !, thus by Theorem 4, there are explicit maximum likelihood estimates of =
and thus for o.

Suppose there are more than m + 1 combinations. Then one can represent
m + 1 combinations by 7, - - - , 7,, where & = A7, A nonsingular, and the remain-
ing different combinations by y,, - - - , v, where the y’s are linear combinations of
two or more 7’s. Again, rearranging the order of the diagonal elements yields = of
the form ¥ = diag(rol,, - = * , L, ik, - - -, v, where 27_or, + 2 _is, = p,
f > 1. In this form, ®®; ' = diag(rgL,, - - -, 721, , ¥iL,, - * =, ¥/1,, b) where bis a
row vector of the form described earlier in the proof. Clearly more than m + 1
eigenvectors of @®; ! are needed in this case to span the (G)’s. Thus by Theorem
4, the 7’s do not have explicit maximum likelihood estimators and thus neither do
the o’s.

5. Applications and examples.

5.1 COMPLETE, COMPOUND AND CIRCULAR SYMMETRY. The block and nonblock
forms of complete (Wilks, (1946)), compound (Votaw (1948), Arnold (1973), (1976),
Szatrowski (1976), (1977)) and circular symmetry (Olkin and Press (1969), Olkin
(1972)) are all known to have explicit maximum likelihood estimates for the
patterned means and covariances considered by these authors. Since all these forms
include £ =1, we know by Theorems 2 and 4 that the maximum likelihood
estimates are given by the likelihood equations (2.1) and (2.2) with =L In
addition, since the z’s and G’s may be parameterized to consist of only zeroes and
ones, we known that the maximum likelihood estimates for the elements of the
patterned mean vector may be found by averaging corresponding elements of the
sample mean vector X, and the maximum likelihood estimates for the patterned
covariance matrix may be found by averaging corresponding elements in the
sample covariance matrix C. This last result has not been previously reported for
block compound symmetry and for circular symmetry.

5.2. ASYMPTOTIC NONNULL DISTRIBUTIONS. Szatrowski (1979) obtains the
asymptotic nonnull distribution of the likelihood ratio statistic for the problem of
testing which of two nested models with patterned means and covariances matrices
is appropriate. When we have explicit maximum likelihood estimates under the null
hypothesis, one can use the likelihood equations (2.1) and (2.2) to give a simple
expression for the maximum likelihood estimates as a function of the data since £
in these expressions can be any allowable starting point and thus is independent of
the data. This greatly simplifies taking derivatives needed for the standard delta
method as does the use of several versions of Theorem 3.

APPENDIX

'PROOF OF THEOREM 1

Necessity. Taking the transpose and multiplying by A on the left yields
XX'A™'X)"! = AB7X(X’‘B~'X) . There exists a nonsingular matrix P with the
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properties PP(X'B™!X)P = I and P‘(X'A™'X)P = D~! where D is a nonsingular
diagonal matrix. Multiplying on the right by (X’'B~!X)P yields, after freely insert-
ing PP~! = I in several places,

XP[P"(X‘A“X)"P“][P‘(X’B"X)P] = AB™'XP.

By properties of P, we note the first expression in [ J’s is D and the second I
yielding (XP)D = AB~!(XP). From this last expression we see that the columns of
XP are eigenvectors of AB™!, thus the columns of X are linear combinations of
eigenvectors of AB™ !,

Sufficiency. Assuming the columns of X are linear combinations of the char-
acteristic vectors of AB™!, then X = QF where F is nonsingular and AB™!Q =
QA, A diagonal with positive elements. Substitution of X = QF yields (X'A™'X)
X'A™!'=F (Q'A7'Q)"'QA™! and a similar expression with A replaced by B.
Thus we need to show (Q'A™'Q) 'QA~! = (Q'B~!Q)"'Q’B~. This follows by
noting (Q'A™'Q)7'Q" = (AQ'AT'Q)7'AQ' = (Q'BT'AAT'Q)T'AQ" =
(QB'Q)7'AQ = (Q'BT'Q)'Q'B'A.
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