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A NOTE ON CONVERGENCE RATES
FOR THE PRODUCT LIMIT ESTIMATOR

By E. G. PHADIA! AND J. VAN RyzIN?
William Paterson College and Columbia University

In this note, we give a lemma which shows that the expected squared
difference between the Bayes estimator with a Dirichlet process prior and the
Kaplan-Meier product limit (PL) estimator for a survival function based on
censored data is O(n~2). This lemma, together with already proven pointwise
consistency properties of the Bayes estimator, is used to establish two properties
of the PL estimator; namely, the mean square consistency of the PL estimator
with rate O(n~!) and strong consistency of the PL estimator with rate o(n‘%
log n).

1. Introduction. The purpose of this note is to establish, as a tool for arriving
at the main results, that, based on censored data, the Bayes estimator ﬁ‘a(u) of the
survival curve F(u) = P(X > u) given by Susarla and Van Ryzin [9] is pointwise
asymptotically close in expected squared distance to the familiar product limit (PL)
estimator ﬁo(u) of Kaplan and Meier [7] as modified by Efron [3]; more precisely
that E(ﬁ (u) — Fo(u))2 O(n~?). This lemma, together with the known asymp-
totic propertles of F " (1), is used to show two asymptotic propertles of the PL
estlmator E(Fo(u) — F(u))? = O(n™") (Theorem 1 in Section 2) and Fo(u) F(u)
=o(n~ B log n) with probability one (Theorem 2 in Section 2). These highly
desirable large sample properties complement and extend the asymptotic normality
and weak consistency for the PL estimator established by Breslow and Crowley [2]
and the strong consistency of the PL estimator shown by Peterson [8].

Also related to this work are two recent articles called to our attention by a
referee. Aalen ([1] Theorem 1) has proved the strong consistency of the PL
estimator uniformly on a closed and bounded interval [0, a], a > 0 of the real line,
with rate o(n”% log n) when the hazard rate f(u)/(1 — F(u)) is continuous. This
uniform result on [0, a] obviously subsumes our Theorem 2 (Section 2) on [0, a] in
the continuous hazard rate case, but does not in the case when the hazard rate is
discontinuous since we make no such assumption on F. Foldes, Rejto, and Winter
[6] have proven uniform strong convergence results of orders o(n_%(log n)%) for
the PL estimator on the interval [0, a], @ > 0 and o(n_%(log n)%) on the whole real
line respectively under various restrictions on the underlying distributions of the
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survival and censoring times. Although their results are stronger than ours unifor-
mity wise (ours being a pointwise result), the rates of convergences are considerably
slower than ours. Moreover, neither of these two papers addresses the mean square
consistency topic.

The proofs of Theorems 1 and 2 are immediate applications of the lemma in
Section 2 by using already proven analogous large sample results for the Bayes
estimator under squared error loss given in Susarla and Van Ryzin [10, 11]. Thus
the essence of this note is to state and prove the lemma, and to use the lemma to
show that the PL and Bayes estimators have essentially identical large sample
properties in terms of convergence rate for mean squared error and strong con-
sistency.

2. Results. Let X, - -, X, be a random sample from a right-sided distribu-
tion function (df) F(u) = P(X > u) (also known as the survival function) on
(0, ), and let Y, - -, Y, be another random sample (of censoring variables)
from a right-sided continuous df G(u) = P(Y > u) on (0, o) such that
X, -+ ,X,and Y|, - - -, Y, are mutually independent. The df’s F and G may be
defined on the real line. However, in keeping with the context of survival analysis,
we prefer to restrict them to the positive half of the real line. Also, independence of
X;’s and Y;s may be replaced by a weaker condition P(min(X;, Y;) > 1) = F(¢) -
G(f). Let 8, = [X; < Y], where [ ] stands for the indicator function. Define Z; =
min(X;, Y;), fori = 1,2,- - - , n. Based on the observable random variables §; and
Z,;, consider two estimators. First, the familiar PL estimator of F due to Kaplan
and Meier [7], as modified by Efron [3] to be “self-consistent,” may be written as

A n—i_{n—j+1\fo=%
(1) Fy(u) = . H( — ) fZ, <u<Z;,

i=012-:---,n—-1
= 0 ifu>2Z,,

where the symbol II (and hereafter) stands for the product taken over j =
1,2,---,i, 2, for the ith order statistic of the Z’s, and §;, for the indicator
corresponding to Z. Next, consider the Bayes estimator (under an integrated
squared error loss function) obtained by Susarla and Van Ryzin [9], where 1-F is
assumed to be distributed with a Dirichlet process prior [4] with parameter a(-):

2 '

A n—i+a(u (n—Ji+a[Zy)+ 1\
Fa(u) = T a(O) ( " _j ¥ a[Z( )) if Z(,) Su< Z(‘-+1)
J

i=0,1,---n
where a(u) = a((u, ©)) > 0, a[u) = a([u, ©)), and Z, ) = oo. This result has
also been extended to a more general class of priors, processes neutral to the right,
by Ferguson and Phadia [5], and they have shown that the estimator (2) is also the
posterior mode using the Dirichlet process prior.
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In [10], ﬁa(u) was shown to be mean square consistent with rate O(n~") and
strongly consistent with rate o(n_% log n) (see also [11]), provided u is such that
a(u) > 0, F(u) > 0 and G(u) > 0. Our strategy is to show that under these same
conditions E|F, (u) — Fy(u)]? is O(n~?) in the lemma which follows and whose
proof is in the Appendix. With this lemma, the similar properties for the PL
estimator ﬁo(u) requiring only that G(u) > 0 follow easily and are given as
Theorems 1 and 2.

Before stating and proving our results in detail we discuss the implications of our
assumptions.

The assumption of continuity of G rules out ties among the Z,’s for which
84 = 0 in the definitions (1) and (2). For a more general definition of (2) allowing
ties, see [9]. The main motivation for not allowing ties is to use the large sample
results of Susarla and Van Ryzin [10, 11] wherein they assume G is continuous.

The assumption that G(¥) > 0 in Theorems 1 and 2 is necessary to identify F(u)
uniquely nonparametrically from the data. To see this, observe that if u is such that
G(u) =0, then 0 = F(u)G(u) = P(Z, > u), i =1,---,n, no matter what the
value of F(u).

The assumption that a(#) > 0 in the definition of ﬁa(u) in (2) and in the proof of
the lemma is required to guarantee that ﬁa(u) is well definedﬂwhenever Z,<u
and §,, = 0. However, if the convention were made to define F,(«) = 0 whenever
Z,y <wuand §,, = 0, then a(u) could be taken as zero in (2) and the proof of the
lemma (see Appendix). This convention would be similar to the suggestion of Efron
[3] for the PL estimator whenever the largest observation is censored. However, we
retain the assumption a(#) > 0 in our lemma, since this condition was imposed by
Susarla and Van Ryzin ([10] page 757) to keep the logarithmic term in their
expansion (2.1) well-defined for the largest observation when it is censored. If we
adopted the above convention for ﬁa(u), it is clear from the results of this note that
a(u) could be taken as zero in the rate results given in Theorems 2.1 and 2.2 of [10,
11]. Furthermore, in regard to Theorem 1 and 2 of this note whose statements do
not involve a, it does not matter how strong an assumption is made on « since «
only enters in their proofs through the intermediate use of the following lemma.

LEMMA. For every u for which a(u) > 0, F(u) > 0 and G(u) > 0,
E|E(u) = Fy(u)P? = O(n~?).
From this lemma, we easily establish the following two theorems.

THEOREM 1. For every u for which G(u) > 0, the PL estimator ﬁ'o(u) is mean
square consistent with rate O(n™").

Proor. With F(u) > 0 and a(u) > 0, the result follows immediately from the
above lemma and the fact that ﬁa(u) is mean square consistent with rate O(n~")
(Theorem 2.2 of [10]) by applying the Minkowski inequality. If F(u) = 0, then
Z, <wuand ﬁo(u) = 0 with probability one and the result is trivially true.
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THEOREM 2. For every u for which G(u) > 0, the PL estimator ﬁo(u) is almost
1
surely consistent with rate o(n~ 2 log n).

ProoF. By applying the Chebyshev inequality and the above lemma we obtain,
fore > 0,

n2
logn

C*

|Fp(u) — Fo(u)] >e| < W

where C* is a constant. Now since 3%_,n " '(log n)~2? < oo, (log n)”'n%Iﬁa(u) -
ﬁo(u)l — 0 almost surely by the Borel-Cantelli lemma. The theorem now follows
from the triangle inequality and the fact that ﬁa(u) is almost surely consistent with
rate o(n“% log n) whenever F(u) > 0 and a(v) > 0 as shown in Theorem 3.1 of

[10] and the note [11]. The case F(u) = O follows trivially as in Theorem 1.

REMARK. It is easy to see that when all the observations are uncensored, the PL
estimator reduces to the empirical distribution function (EDF). Thus it would be
natural to compare the asymptotic results obtained here for the censored case with
that for the uncensored case. It can easily be verified that the EDF is mean square
consistent with best rate O(n~'). Also it is well known by the law of the iterated
logarithm that the EDF is almost surely pointwise consistent with best rate
O(n~ %(log log n)%). Thus in the case of mean square consistency we have the same
rates for the censored as in the uncensored case. However, it is not known whether
the same is true for almost sure pointwise consistency. The rate obtained here for
the PL estimator is slightly slower than the best corresponding rate for the EDF.
Whether our results for the PL estimator and the Bayes estimator can be improved
to satisfy the law of the iterated logarithm rate is an open question.

APPENDIX
PROOF OF LEMMA. For Z, Su <Z;,,i=0,1,2,- - -, n— 1, with Zg =0,
A A —i —i+a(u) |
F — F 2 |10 A — n—ivaly) B
[Fo(w) = £o(w) 4, — 2 B,

where

4= (" —-j+1 [8¢)~0] [ -j+ a[Z(j)) + 1\By=0
= | —"— and B. = -
n—j n—j+a[Zg,)

J

forj=1,2,---,i Hence,
(3)

n

n—i n—i+ a(u
n

|Fo(w) = B, (0P < 2 O]

— 2 2
p (4, — 11B;) +2(|HB,| )
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n—i n—i+ a(u) .
p I14; and 7+ a(0) IIB; are < 1fori=0,1, s

n—1; B <4 forj—l 2, -, i; 114, — [IB; = Z5_\IWZ1B(A; — B)l}o;s1As;
and (2 =1a) < i%%_,a}, we obtain after S1mp11flcatlon of (3),

Using the facts that

(n — )a(0) — na(u) |*

; _ P 2 NG — 2 .
(4 |F(w) = F(u)l” < 2iZj_|4; — B + 2 n(n — i + a())

But
Z,) 2
(5) i2’= IA l T8 ( [ ()
! =10 =\ =5 =7 + o[y
< 2i a?(0) < 2ia?(0)
(n — i) "'(n —Nn=ji+1) (i)
fori=1,2,---,n— L In the last inequality we have used the fact that the sum

forms a telescoping series. Therefore, from (4) and (5) and the fact that

(n = Da(0) — na(u) \* _ 2a%(0)
( )

nn—i+a@w) | " (n-iP
we have

(6) |Fo(u) — E(u)? < ﬂ{ i+ 1] _ 4na’(0)

(=i ln=i (n=i)
Now, with E; = {Z, <u <Z,,,} and Z,, ) = + oo, we have

(7 E{|Fy(u) — F(w)P} = Zi20E {|Fo(w) — E,(wP|E} - P(E)
+E{|Fy(u) — F(WP|E,} - P(E,).

The necessity of considering the case Z, < u separately follows from the fact
that the PL estimator is zero for u > Z,,. However, since

E{|Fy(u) = FWPIE,} < E|F(Zw)P < 1,

the second term in (7) is bounded by P(Z, <u) = (1 - Fu)Gw)" =
exp[— n log(l — F(u)G(u))~']. Under the assumption that F(x)G(u) > 0, this term
goes to zero exponentially fast. Here we have used the fact that Z,,- - - , Z, are
1id. with P(Z; > u) = F(u)G(u).
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Also, it follows that the first term in (7) using (6) is

<25 g"j(g% (") - F)Gw) (Fw)Gw)™™
< 4 - 41na%(0)
(8) (n + 1)(n + 2)(n + 3)(F(u)G(u))*
xZ2(" 3 ) - FWGW) (FwGw) ™
4 - 41a%(0)

< .
(n+2)(n+ 3)(F(u)G(u))3

With F(u)G(u) > 0, the inequality (8) implies that the first term in (7) is O(n ~?).
Hence the lemma is proved.
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