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ALGORITHMS IN ORDER RESTRICTED STATISTICAL
INFERENCE AND THE CAUCHY MEAN VALUE PROPERTY!

By TiM ROBERTSON AND F. T. WRIGHT
University of Iowa, University of Missouri-Rolla

Most algorithms in order restricted statistical inference express the esti-
mates in terms of certain summary statistics computed from pooled samples.
These algorithms may or may not yield optimal estimates depending on
whether or not the Cauchy mean value property holds strictly for the summary
statistics. In this paper a minimum lower sets algorithm, which holds generally,
is described and used to prove the optimality of estimates described by a
max-min formula.

1. Introduction. A number of estimates studied in order restricted statistical
inference can be expressed using “max-min” formulas. These formulas are, per-
haps, the most succinct way of describing these estimates and are used extensively
in consistency proofs. However, these formulas are not very handy for the actual
computation of the estimates. Moreover, optimality is generally argued by induc-
tion and other algorithms have proven to be more useful here. If the ordering is not
linear a minimum lower sets algorithm (cf. Barlow et al. (1972)) has often been
used for proving optimality. Such an algorithm was incorrectly stated in Theorem
2.4 of Robertson and Wright (1973) for a least absolute deviations problem. The
proof given there implicitly uses the incorrect assumption that the median is a strict
Cauchy mean value function. In this note we prove the optimality of estimates
given by a max-min formula by developing an alternative (and much more
complicated) minimum lower sets algorithm which is valid in a general setting,
which includes the least absolute deviations problem and several other problems
discussed in the literature.

2. Algorithms. Assume that we have samples from k distributions; that these
distributions are indexed by what we shall refer to as observation points, s,,
Sy * ° +, 8, and that we wish to estimate a real valued parameter from each
distribution, say 0(s;), i = 1,2 - - - ,k. We also assume that it is known a priori that
each of the parameters belongs to a nondegenerate interval I and these parameters
satisfy a certain order restriction such-as, 8(s,) < 0(s)) < - - - < 0(s,). Thus, we
are interested in estimates which satisfy these conditions.

We consider order restrictions that can be specified in terms of a partial order. In
particular, with < a partial order on § = {s,, 55, - -, 5.}, we consider the order
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restrictions 8(s;) < 0(s)) if 5; < ;. (Such a function, 6(-) on S, is said to be isotone
with respect to <.)

For i=1, 2,- -,k we denote the sample items at s5; by x; with j =1,
2, - -, n. Thus, for each nonempty subset 4 of S, let M(A) be a statistic based on
the collection of observations x;; with j = 1, 2, - - -, n, and i such that s, € 4. For
instance, M(A4) could be the mean, midrange, median or some other percentile of
this collection of observations. If for each 4, M(A) is the median of the appropriate
collection we refer to M as the median function. The description of these estimates
also involves the collection of upper layers of S. A subset L of S is called an upper
layer if and only if 5; € L whenever S; € L and s; < 5. We use the symbol L with
or without subscripts, etc., to denote an upper layer and £ to denote the collection
of upper layers.

It is easy to see that

(2.1 0(s,) = max(,.geryMing . ey M(L — L')

is an isotone function on S and hence could be used as an estimate of §. In many
situations, if the estimates M(A4) are chosen to minimize certain objective functions
then # minimizes a closely related objective function subject to the isotonic
constraint. Typically, this is established using algorithms other than (2.1). A
minimum lower sets algorithm (MLSA) is discussed in Barlow, et al., (1972) and it
is not difficult to see that it provides the same estimates as  provided M is a strict
Cauchy mean value function, which we now define. (A generalized version of the
MLSA will be described later.)

DErFINITION. A function M defined on the nonempty subsets of S is said to be a
Cauchy mean value function provided M(4 + B) is between M(A4) and M(B) (i.e.,
M(A) \ M(B) < M(A + B) < M(A)\/ M(B)) whenever 4 and B are nonempty,
disjoint subsets of S. If, in addition, M(4 + B) is strictly between M(A4) and M(B)
for such 4 and B with M(A) # M(B) then we say M is a strict Cauchy mean value
function.

In Theorem 2.4 of Robertson and Wright (1973) it was claimed that the MLSA
provides the same estimates as the max-min formula if M is the median function. It
is not difficult to construct examples to show that this is not correct and, in fact,
one can construct examples for which the algorithm can not be implemented. This
is due to the fact that the median is not a strict Cauchy mean value function. They
have noted that if the median is defined by averaging the two middle ordered
observations for even sample sizes then it is a Cauchy mean value function.

We now describe the modifications needed for this algorithm in the case of
general Cauchy mean value functions. Since a lower layer is the complement of an
upper layer the algorithm could be described in terms of either. We have found
upper layers more convenient to work with, but will still refer to the algorithm as
the MLSA and, in fact, we will refer to the modified version as the minimum lower
sets algorithm with the understanding that the simplified version (the one discussed



ISOTONIZED CAUCHY MEANS 647

in Barlow, et al., (1972)) should be used if M(-) is a strict Cauchy mean value
function.

Minimum lower set algorithm. Let L, = S and let LY, LP, - - - | LY@ be the
upper layers which are proper subsets of L, and which minimize M(L, — L). It will
be shown later that for at least one i, L satisfies

M(LY ~ L§) < M(L, - LY) for allj with LY ¢ L.

Set L, equal to the smallest (intersection) of the L) which satisfy this inequality. If
L,# ¢let LP, LY, - - -, LPO) be the upper layers which are proper subsets of L,
and minimize M(L, — L). Again there is at least one i for which L§? satisfies
M(LY’ — L) < M(L, — L) for all j with L) ¢ L{? and we set L, equal to the
smallest (intersection) of the L{? which satisfies;&this inequality. Continuing this
process, we obtain S = L, D L, D - - - D Ly, , = ¢ with L, the smallest of the
upper layers LY, |, which are proper subsets of L, which minimize M(L, — L) and
satisfy

(22)
M(LD, — LY,)) < M(L, — LY, ) forall1 < j < b(a + 1) with L), | gLH,

where L) ,, - - -, L®@&*D are the upper layers that are proper subsets of L, and
minimize M(L, — L).

THEOREM 2.1. At each step in the MLSA there exists an upper layer L, | which
is a proper subset of L,, which minimizes M(L, — L) and satisfies 2.2). If s; € L, —
L,,, then

a

0(s) = M(L, — L,,1)-

The L, also satisfy
(2.32) M((L, — L) N L) < M((L, = Loy) = L) f (Ly — Lep) N L # ¢

and(La - La+l) —-L#*¢
and
(2.3b) M(L, — Lyyy) <M(L,,, —L)ifLyyy — L#*¢.
The latter implies that M(L, — L,) <M(L, — Ly) < - -+ <M(Ly — Ly, ,) and
that the L, — L, are the level sets.

a

It should be noted that if M(-) is a strict Cauchy mean value function then (2.2)
holds for all LY, ,. For if not there is a LY, , 1g LY with M(LY,, — LY, ) > M(L,
Y D), which 1mp11es that M(L, — LY ) < M(L, — LY, ) < M(L(’) - LY ).
This contradicts the assumption that L®, , and LY), both minimize M(L, — L).
Thus this MLSA reduces to the one given in Barlow, et al., (1972) if M(-) is a strict
Cauchy mean value function.
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If the order is linear, say 8(s,) < 0(s,) < - - - < 8(s;) then these estimates are
most easily computed using a pool adjacent violators algorithm (PAVA) (c.f.
Barlow, et al., (1972)). The fact that the PAVA gives the same estimates as (2.1) is
proved in Robertson and Waltman (1968) assuming M is the median function. It is
easily seen that the proof only requires that M is a Cauchy mean value function;
however, it contains a slight error and needs to be modified. In the second full
paragraph on page 1033, it is claimed that M(R, i) > M(R, i + 1) implies that
MR, i+ 1) > M., (M(R,S) is the median of the sample obtained by pooling
samples R, R + 1, - - -, S and M, is the median of the ith sample). This is true if
M(-) is a strict Cauchy mean value function, but the median is not such a function.
We now give the modifications needed in that paragraph. The @ should be defined
as there and then note that if R <i and if

maxgcscpr1tM(R, ) # maxgescpsn; S;ﬁiM(R’ S)

then M(R, i) > M(R, i + 1). It follows from the Cauchy mean value property that
M(R, i) > M(R, i + 1) > M, , > M, Using the fact that M(R, i) > M, and the
Cauchy mean value property again, we conclude that M(R, i — 1) > M(R, i). This
contradiction establishes the next claim in the proof given for Theorem 3.1 and the
remainder of the proof is correct as it stands.

Theorem 2.7 of Robertson and Wright (1973) states that § minimizes =%_,
3%_1lx; — #(s,)| subject to the restriction that ¢ is isotone on S provided M is the
median function. While the result is correct, the proof needs to be modified since it
is based on the version of the MLSA which does not apply to medians. We now
state a general result which includes this /; problem as a special case.

Suppose that for each A4, a nonempty subset of S, there is an objective function
D(¢|A) defined for ¢: S — R. For each real number x, let ¢, be constant on S with
o (s)=xfori=1,2,---,k and let d(x|4) = D(¢,|4). We also suppose that
M(A) minimizes d(x|A4). In the /, problem

D@ld) = S 3 Ix, - o(s)l

{i:s5;,€4} j=1

FEVIED D P
{i:s,€A4} j=1

and M is the median function. We make the following assumptions:

A-1.1f A C S, then M(A) € I and d(-|A) is nonincreasing on I N (— oo, M(A)]
and nondecreasing on I N [M(A4), o0).

A-2. If ¢ and o are functions on S such that ¢(s;) = o(s;) for each s; € A4, then
D(|4) = D(o]A).

A-3. If Ac B CS, if ¢(s) = a(s;) for s, € B — A, and if D(¢|A) < D(o|A4),
then D(¢|B) < D(o|B).

For each L € £ let V(L) denote the collection of all upper layers for which
L — L’ is nonempty.
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THEOREM 2.2. Suppose D(-|A), d(-|A) and M(-) satisfy conditions A-1, A-2 and
A-3 and that M(-) is a Cauchy mean value function. Then fori = 1,2, - - , k

5(.9,.) = maX(L: ,IGL)minL,E‘V(L)M(L - L’)
= min(L’: seLrymaxgy. s,.eL)M(L - L)
and 0 minimizes D(¢) = D(¢|S) subject to the restriction that ¢ is isotone.

Barlow, et al., (1972) discuss the /, problem and the ordered proportions problem
giving the original references. Barlow and Ubhaya (1971) and Ubhaya (1974 a, b)
consider the /, problems 1 <p < oo. Robertson and Wright (1975) treat the I3
problem as well as some other ordered estimation problems.

3. Proofs (outlines). We first prove Theorem 2.1 by showing that the MLSA
may be used to obtain the representation given in Equation 2.1. Then Theorem 2.2
is proved by showing that the function obtained from the minimum lower sets
algorithm is a minimizing function and that these three representations for é(-) are
equivalent.

PrOOF OF THEOREM 2.1. We suppose that the first a upper layers, L,
L,,- - -, L, have been determined and show how L_,, is obtained. Since S is
finite, L, | satisfies (2.2) for some i and if LY, , satisfies (2.2) it can be shown by
contradiction that it also satisfies the following strengthened version of (2.2):

3.1)

M(L, = (Lu LO,)) > M(L = LY, ) for L ¢ L, with L, — (L U LY,,) # ¢

and L — LY, # ¢.

Because the algorithm chooses L, , to satisfy (2.2), it will also satisfy (3.1) and
replacing L by L N L, (3.1) yields (2.3a).

The first part of this proof is completed by showing that if L®) | and L¢) | satisfy
(22) then L), N LE), is one of the minimizing upper layers and satisfies (2.2).
Clearly L, — (L0, n LE))) = (L, — LE),)) + (LY., — LY) ), where + denotes a
disjoint union. Either LY}, — LY, =¢, L — (LY, U LY).)) = ¢ or both are
nonempty. In all three cases M(L, — (LY, n L)) = M(L, — LY).)). The first
two cases are obvious and for the third case use the Cauchy mean value property
and (3.1) with L = L{),. Next it is shown that L®), n L&), satisfies (2.2). For
LA 2 LY, n LY, we need to show that M(LY), — (L&), n LY ) < ML, -
LY ). Since
(32) LA, = (LY 0 L) = (LY, - L) n LD,) + (LD, - LYY)),
we show that each term on the right-hand side of (3.2) is empty or has M value less
than or equal to M(L, — LY)). For LY), — L&), + ¢ consider separately the two
possibilities, L, — (L{); U LY,) is empty or nonempty. In both cases, M(LY) , —
L)) < M(L, — LY),). This is obvious in the former case and in the latter case,
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first apply (3.1) to L), with L = LY) | and then apply the averaging property. The
other term in (3.2) is treated similarly. So the L, can be chosen as specified in the
algorithm and they satisfy (2.3a).

We next show that they satisfy (2.3b). If not, there is an integer a € [1, H] and
an upper layer L, a proper subset of L, ;, with

(33) M(L, ~ Lyyy) > M(Lyy, — L).

It follows from the Cauchy mean value property that L = LY?, for some j, and

LY9, does not satisfy (2.2). This means there is a LY) 2 LY, with

(34) M(LY, — LEQ)) > M(L, — LE).

Considering separately the two cases LY), — L, is empty or nonempty, we see
that L* = L., n LY), is one of the LY, say LYP,. In the latter case, use
Ly — Ly, =Ly = LD, U L) + (LY — Loyy) and for L, — (LA, U

L,,,) # ¢ apply (3.1) with L = L), and LY, = L., and the averaging prop-
erty. For future reference note that it has been shown that

(3'5) M(Lg-)O-l - La+l) < M(La - La+l)'

If LYP, — LYY, = ¢, then LY), — LY, = LY, — L,,, and so M(LZ), — L,.y)
= M(LY), — LY?) > M(L, — LY))). This contradicts (3.5), and hence LY, is a
proper subset of LYY,

Next we show that (3.4) holds with LY} | replaced by LYP,. This can be seen by
considering separately the two cases LY), — L, , is empty or nonempty. In the
latter case, use M(LY), — LYP,) < max(M(LYY, — L), M(LY), — L,, ), 34)
and (3.5).

So LYY, 5 LY?, and either LYY, = L, or it does not satisfy (2.2). Continuing
this process, it must stop after a finite number of iterations with

LY?, g L% g -+ g L% = Loy, and M(LYY — LE) > M(L, — L,,,) for
i=0,1,---,8 — 1. Using the average property we have

M(L,,, — L$y) > M(L, — L,,,),
which contradicts (3.3). So the L, satisfy (2.3b).

The last part of the proof of Theorem 2.1 is to show that this algorithm provides
the same estimate as Equation (2.1). Fixs; € L, — L, and the proof is the same
as the one given for Theorem 2.4 in Robertson and Wright (1973). Inequality (2.3a)
is used to establish (2.4) given there (those 4’s for which (L N L,) — L,,, = ¢ may
be ignored). Also (2.3b) is used to establish (2.8).

PrROOF OF THEOREM 2.2. To show that § is optimum one only needs to modify
the proof of Theorem 2.7 of Robertson and Wright (1973). We do not use their
Lemma 2.6 and we employ the general MLSA presented here. The first part of
their proof shows that if H = 1 and g is any isotone function on S then there is a
constant function on S, say, g, with D(g) < D(g). In that proof it is claimed that



ISOTONIZED CAUCHY MEANS 651

M(L)) < M(L, — L) and the Cauchy mean value property imply that M(L}) <
M(L,) < M(L, — L)). This need not be true if M(L,) = M(L, — L)) and M is not
a strict Cauchy mean value function, however if M(L,) = M(L, — L,) then L; =
LY for some j and applying (2.2) with LY, | = ¢, we have M(L}) < M(L, — L3).
So the desired inequalities follow.

Next an induction on H is performed. As in their proof, the observation points in
L, — L, and those in L, are considered separately. The proof that @ is optimum is
completed by applying the case H = 1, the induction hypothesis, and the definition
of the MLSA.

The proof of Theorem 2.2 is completed by showing that the three representations
given there are equal. Clearly fors, € L, — L,

min(L’:sieL’)max(L:s,-eL)M(L - L/) > maxy. s,eL)min{L’: s,-eL'}M(L - L,)
> max(,.,eyming eqyM(L — L) = M(L, — L,,,)-

So we need only show that the first expression above is less than or equal to
M(L, — L,,,), but this is established by the argument beginning at the last line of

a

page 425 of Robertson and Wright (1973).
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