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EXAMPLES OF BERGER’S PHENOMENON IN THE ESTIMATION
OF INDEPENDENT NORMAL MEANS!

By L. BROWN
Rutgers University and Cornell University

Two examples are presented. In each, p independent normal random
variables having unit variance are observed. It is desired to estimate the
unknown means, §;, and the loss is of the form L(0, a) =
C2.,0(6)) " 122 ,0(8)X8; — a))*. The usual estimator, §y(x) = x, is minimax
with constant risk.

In the first example v(7) = e”. It is shown that when r 5= 0, §, is inadmissible
if and only if p > 2 whereas when r = 0 it is known to be inadmissible if and
only if p > 3.

In the second example v(7) = (1 + #2y/2 It is shown that 8, is inadmissible if
P> @ —r)/( — r) and admissible if p < (2 — r)/(1 — r). (In particular §, is
admissible for all p when r > 1 and only for p = 1 when r < 0.) In the first
example the first order qualitative description of the better estimator when § is
inadmissible depends on r, while in the second example it does not.

An example which is closely related to the first example, and which has more
significance in applications, has been described by J. Berger.

1. Introduction. J. Berger (1980) has discovered a surprising phenomenon con-
nected with the simultaneous estimation of two or more coordinate parameters.
This phenomenon is more fully described below. Berger’s illustration of this
phenomenon involved the simultaneous estimation of gamma scale parameters. We
show in Example 1 that the same unexpected behavior can occur in the context of
simultaneous estimation of normal means. It will thus be seen that the phenome-
non is caused by the form of the loss function, and does not rely for its existence
on the type of coordinate distribution (e.g. gamma distribution).

The calculations for our normal example are simpler and more generally familiar
than those for Berger’s gamma example. Because of this our example makes it
easier to understand Berger’s phenomenon. It also makes it possible to discuss
some peripheral aspects of this phenomenon which are not addressed in Berger’s
paper. Especially, Example 2 exhibits a form of this phenomenon which was not
previously observed in the context of estimating scale parameters, but may have
been observed in the simultaneous estimation of Poisson parameters.

On the other hand, the loss functions which appeared in Berger (1980) were
fairly natural for his gamma problem whereas the loss functions we use below are,
of necessity, artificial from a practical point of view. The results below are offered
as mathematically simple illustrations and explanations of a phenomenon whose
statistical importance is found in other contexts.
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ON BERGER’S PHENOMENON 573

Berger’s phenomenon. Let X, i =1,- - - ,p be independent random variables
having distributions Fp, i =1, - -, p, 0, € ®* C R. For the moment consider the
ith coordinate problem of estimating 6,, on the basis of X, with loss function
L*(@, a), L* > 0. Let §* : X; —> @, denote an admissible constant-risk estimator
(nonrandomized) for this problem. (Thus §* is minimax.)

Now, consider the problem of estimating § = (6, - -, §,), on the basis of
X =(Xy, -, X,) with loss function
(1) : L(8, a) = (22-,0(8)) " 'Z2_,0(8)L*(8, a).

The function v is a given positive weight function. (The initial normalization factor
(Zv(6,))" ! has no bearing on admissibility considerations.) A reasonable procedure
for such a problem is the coordinatewise procedure §, = (8}, - -, 8y). This
procedure will have constant risk (because of the normalization in (1)). In most
situations, including all those discussed below, it will be minimax. But—is it
admissible?

It is now well known that the answer to this question may be no. This is Stein’s
phenomenon. Stein’s original example (Stein (1956), James and Stein (1960))
concerned the normal means problem in which Fj is the normal distribution with
mean # and variance one, ®* = R, and the loss is squared error—that is, L*(9;, q;)
= (6, — a,)%, and v = 1. The procedure §, is given by §,(x) = x. This procedure is
inadmissible if (and only if) p > 3. If p > 3 §, is dominated by another procedure,
8, say. A first order description of the behavior of 8’ is that §’ pulls the estimate of
8, in towards a specific point (e.g., the origin).

In Berger’s example (Berger (1980)) {F,} is a gamma scale family with scale

parameter 1/ and
(2) L*(6,a)=(1- aioi)z'
Berger found that (i) the critical dimension for inadmissibility of 8, may be either
p = 2 or p = 3 depending on the choice of v, and (ii) the first order description of the
8’ which improves on 8, also depends on the choice of v. More specifically, Berger
found that when v(¢) = ¢™ the critical dimension p = 2 when m # 0 and p = 3
when m = 0. Considering only first order terms we may describe 8’ as an estimator
obtained from §, by pulling towards 0 when m > 0, towards a specific point, say
1=(,:--,1), when m = 0, and towards e0 = (00, - - + , 00) when m < 0.

Example 1, below, exhibits both of these characteristics of Berger’s phenomenon
in the context of estimating several normal means. Part of the discussion which
follows the example explains the intimate relationship between Berger’s example
and our own.

Example 2 exhibits the first general characteristic above in an exaggerated form.
The critical dimension for inadmissibility of &, may be any value of p > 2,
depending on the choice of v. It is even possible to choose v so that §; is admissible
for any value of p. Example 2 does not exhibit the second general characteristic
found in both Berger’s example and Example 1.
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2. Berger’s phenomenon in the normal means problem. The following example
shows that in the normal means problem the critical dimension for inadmissibility
may be p = 2 instead of the value p = 3 which is familiar from Stein’s example.
The following example differs from Stein’s familiar one only in the choice of the
weight function, v. Furthermore the competing estimators have different first order
descriptions. It is thus an instance of Berger’s phenomenon.

ExampLE 1. Consider the normal means problem with L*(4; a) = (6, — a)*
and L defined by (1) and with v(¢) = e”. If r 0 then §, is inadmissible if and
only if p > 2. A better estimator is §' = (8}, - - - , §,) with

’ — e_rx‘
(3) 8/(x) = x; + (sgn(r))c——zj,,_1 per
where 0 < ¢ < 2|r|(p — 1)/€*".

PrOOF. Write y(x) = §’(x) — x. Then Stein’s unbiased estimator of the risk
yields
4) A(9) = (Ze™)[ R(8, 8,) — R(6,8")]

= E,(—Ze™(2v{(x) + ¥}(x)))

where ) = 3/(3x,)y;. See Stein (1973).
Now, let g : R — R! and let e denote the ith coordinate vector in R”. Suppose
Ey(g) exists. Then

(5) [eig(x)e W =01/2 gy = [e™ig(x)e =) =Ix=0IF/2 gy
= ferx,g(x)erz/Ze—||x+re'—0||2/2 dx

e™[er=Ng(y — re')e~I¥=0I"/2 gy

= e~ "/2[e™g(y — re')e”?=0I/2 gy,
Hence, (4) may be rewritten as
(6) A(B) = e "By (= ZP_ 1™ (27 (x — re’) + vH(x — re))

A direct calculation yields

‘ _ —rx,
00 = - L2 (22 2
Ze ™ | 2e™™

so that (for ¢ > 0)

2 -
e e

(e—rx,-#r2 + 2,-:,&,-6‘ "’57)2

@) — 2e™y{)(x — re') = 2c|r|

2c|r|Z; e ™"
e”(Ze~)



ON BERGER’S PHENOMENON 575

while
—rx, 4297
(8) —e™y}(x — re')y = —¢? i
(e—rx,~+rz + 2 e—rxj)2
JEi
>4 —czez’z———:—ri——.
(e )
It follows that
=772 (2clr|(p — 1)
e clr|(p 22
9) A(9) > Eo( Ee"x/( = c’e ) .

When 0 <c¢ <2|rj(p — 1)/ e*” then the expectand in (7) is always positive and
hence A(#) > O for all 4. This completes the proof that §' is better than §;,. [J

Note that the inequalities (7) and (8) are somewhat crude. Thus it may be that an
estimator of the form of §’ (see (3)) dominates §, even when ¢ is somewhat larger
than 2|r|(p — 1)/ e¥". It is also true therefore that the inequality in (9) will be
rather crude for many values of § € R?. However, note that the expression on the
right of (9) does at least give the correct order of magnitude for A(f) when
¢ < 2|r|(p = 1)/€* since for any ¢ > 0

e—r2/2
A(O) < E,(W(Zdﬂ(p - 1) - 02)).

(This can be seen by writing reverse inequalities analogous to (7), (8).)

The behavior of 6’. Berger’s phenomenon, as we previously described it, also
involves the dependence on the choice of v of the qualitative behavior of §’. The
procedure 8’ of the above example exhibits this type of dependence. When r > 0
then y,(x) = §/(x) — 8p;(x) > Oforall x and alli =1, - - -, p. Thus the first order
description of &’ is that it pulls &, toward oco. Similarly when r < O the first order
description of 8’ is that it pulls §, toward —oo. And, again, when r = 0 §, is
inadmissible only when p > 3, and then the dominating 8’ pulls §, toward a given
point, e.g., 0.

This first order description does not explain why 8’ dominates §,. To see this it is
necessary to examine more closely the behavior of §’. Consider the case p = 2 and
r > 0. Transform coordinates to z;, = (x; + x;)/ 2%, z, = (x;— x)/ 27 and make
the same transformation in the decision space. In these new coordinates y becomes
v(z) = c(Z“%, 273 tanh(rz,/ 2%)). Note that in this system the first coordinate of
v is a constant while the second is a strictly decreasing odd function of z, only, and
the magnitude of the second coordinate is smaller than of the first. In particular,
v(z) depends only on z, (i.e,, the distance of x from the line x; = x,).

It is now possible to better understand from some calculations similar to those in
the proof of Example 1 why §’ dominates 8, (The calculations are left for the
reader.) Qualitatively the situation is as follows: when 8, = , the loss, L, is just a
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multiple of the usual squared error loss. Considering the behavior of y in the
z-system we see a constant bias (2~ %c) in the z, direction and a pulling inward of y
in the z, direction toward the true second coordinate value of zero. Breaking the
risk into a z; and a z, coordinate shows a deterioration of risk in the z, direction
when using §’ and an improvement in the z, direction which outweighs this
deterioration. Qualitatively the same idea holds when |8, — 8,| is (very) small,
although, of course, it is not strictly possible to break the risk into z, and z,
coordinates since the loss is no longer a multiple of squared error.

When |6, — 6, is large 8’ improves on §, for a different reason. To be specific,
consider the case where 0, is large and 6, is not. Then the x, coordinate of y (in the
original coordinate system) is approximately a constant (c¢) and this results in a
considerable deterioration of quadratic risk in the x, coordinate direction. However
in computing the contribution to L this deterioration is weighted by e™2/(e™ +
e™), which is extremely small. The coordinate risk in the x, direction gives most of
the contribution to the overall risk under L. This coordinate risk is more complex
to analyze. Briefly, there is a small first order positive bias in the x, coordinate of
8’ (i.e., v, is small and positive near x = §) but there is also a second order bias
toward the true value of 8,. This second order bias is also small, but it is enough so
that in the computation of risk it lends enough improvement to outweigh the
deterioration due to the small first order bias in the x,-direction and it also
outweighs the deterioration of risk in the x,-direction because the weight factor
e /(e + ™) is very small.

Relation to Berger’s gamma example. Example 1 is intimately related to
Berger’s example involving simultaneous estimation of gamma scale parameters
(Berger (1980)). If x; is gamma with scale parameter 1/6; then y;, = In x; has
distribution from a location family “centered” on § = — In §,. Berger’s loss func-
tions are

Ly(8,a) = 267"(1 — «,6)’

for various values of m.
In the transformed problem these become

(10) L(& b) = Se~"(1 — eb~&)?
where b, = In ag;. The weight functions hqre are v(£) = e ™ which are the same as
those in our Example 1 with » = — m. The other part of the loss (10) (namely

(1 — e%~£9?) is, of course, not the same as the quadratic term in our Example 1,
(nor is »; a normal variable). But there is considerable evidence that terms of the
form (1 — e%~¢)? in the loss function of a location problem have the same
admissibility characteristics as simple quadratic terms. See, for example, Farrell
(1964), Brown (1966), and especially Brown (1979).

Not only are the settings of Berger’s example and ours closely related in this way,
but the results bear the corresponding relation, as should be expected. In particu-
lar, when m # 0 (corresponding to r # 0) the usual coordinatewise estimator is
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inadmissible if and only if p > 2 while the critical dimension isp = 3 when m = 0
(corresponding to r = 0). The first order description of the improving &’ in the
original coordinate system is that it pulls §, toward oo, 1, or 0 depending on
whether m < 0, = 0, or > 0 (corresponding to pulls toward eo, 0, —e0 when
r>0, =0, <0).

Relation to the Poisson example. A form of Berger’s phenomenon has also been
observed when the X; are independent Poisson (A,) variables and

L, a) = Z5_ N "(a; — }‘:)2

When r = the critical dimension for inadmissibility is p = 2. (See Clevenson and
Zidek (1977) and Tsui and Press (1978).) When r = 0 the critical dimension
appears to be p = 3. (Inadmissibility for p > 3 is proved in Peng (1975). See also
Hudson (1978) and Tsui (1978). Admissibility for p = 2 is conjectured in Brown
(1979, Section 2.3) and proved in Peng (1975).) The estimators §’ which have been
found to improve on §y(x) = x in the two cases are functionally different, but this
difference cannot be described as a difference in their first order behavior. Brown
(1979, Section 2.3) contains a detailed heuristic discussion of this problem. The
type of heuristics used there are related to the heuristics used above for the
discussion of Berger’s example, but the situation appears to be more complex to
explain. (Perhaps it is only that we do not understand it as well.) We will not
attempt to paraphrase that discussion here. However, it has led us to feel that this
Poisson example is more closely related to our Example 2, to follow, than to
Example 1.

3. A second phenomenon. As previously noted, the Poisson example exhibits
the first characteristic of Berger’s phenomenon (the dividing dimension for in-
admissibility depends on v) but not the second (a change in the first order
description of the improved estimators). Example 2, below, shows that this same
behavior can be exhibited in a normal means problem. By heuristic extension it
should, therefore, be observable in various other contexts as well.

The most novel feature of Example 2, moreover, is that the dividing dimension
for inadmissibility may be any value of p (including p = o0) depending on the
norming exponent in the definition of v. .

ExampLE 2. Consider the normal means problem with L*(, a) = (4, — )’
and L defined by (1) with v(¢) = (1 + £2/2 Then, the usual estimator, §y(x) = x,
is admissible if r < 1and 1 < p <2 -1r)/(1 —r). If r > 1 §, is admissible for
any p. Conversely, when r < 1 and p > (2 — r)/(1 — r) then §, is inadmissible.

(Some aspects of the above example should be noted. The loss functions used
above were chosen for illustrative purposes only. Although loss functions of this
nature may not be realistic in practical applications they do at least appear more
reasonable than those used in Example 1.
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An estimator, §’, is described in (29), below, which dominates §, when 0 < r < 1
and p > (2 — r)/(1 — r). However no attempt was made to find an estimator
yielding the greatest improvement in any sense. Indeed, unless the loss functions
above are found to be of practical interest such an endeavor would probably be
pointless, although it might be of some interest to investigate the variety of possible
functional forms for &’.

The statement of the example leaves open the question of admissibility when
p = (@2 —r)/(1 — r). Heuristics, as well as the known result for the case r = 0
(p = 2), suggest that §, is admissible when p = (2 — r)/(1 — r). Since this question
is of secondary importance and would require more complex calculations than
those in the proof below, it has not been investigated.)

Proor. Consider the sequence of priors, H,, 6 = 1,2, - - -, having densities
)] () = SE0B)exp(~110]/20%)
’ To(6,) -

Familiar calculations show that the Bayes procedure for the prior G, is §,(x) =
o> /(1 + 6?). Also,

- 202+ 1 — 02
(12) R(8, 8o) — R(8, 8,) = (Zv(8))) '20(0,-)(0———'—)-
1 + o??

A sufficient condition for admissibility is that
(13) I, = fc;(R(8, 8,) — R(8,8,)h,(0)dd -0 aso— .
See Blyth (1951), Stein (1959), Farrell (1964). Then,

2 _ 92 1

= P(f 20410 w dvi)(f Lo d”j)p
(1+ o?? o(6)
(o] 1 62/20* Pl
14 = e "7 d

9 p1+02(f(1+02)’/2 )

+/2

= p0(sH0((1 + 06?17 50
whenp < (2-7r)/(1 — r)orwhenr > 1.
This proves the admissibility assertion.

Motivation for converse. An argument which motivates the converse result is as
follows: Stein’s unbiased estimator of the risk yields

(15) 5(8) = (2(1 + 62)*)(R(6, 8)) ~ R(8,8"))
= 3(1 + 62 Ey(~2vf(x) — vX(x))

where y(x) = §'(x) — x and y? = (3/9x,)y;. Now, if y, and v are very smooth
functions then one would expect that Ey(y*(x)) =y*(#) and E,(—2y?(x)) =
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— 2v%(8). Hence one would expect that
(16) A(8) = (1 + 3)(~24(8) - ¥X(0))

=A8(0)  (say).
Berger has examined the general differential inequality of the form A, > 0. See

Berger (1980, Theorem 1). He finds that defining y by

_ cg(x;)
(17) Yi(x) - b+ zlg(xi)la—r)/(l—r)
where
(18) g(1) = [§(1 + v*) ™" do

yields A, (8) > O for all § when ¢ > 0 is sufficiently small. The factor b > 0 is
inserted in (17) to (hopefully!) yield the desired smoothness in y when b is
sufficiently large. A crucial hypothesis of Berger’s (1980, Theorem 1) is that

(1 + 696
0.
b+ 3| (8=
This hypothesis is satisfied here since g defined by (18) satisfies |g(?)| ~
(1= r7"""as |t| > .
Unfortunately the choice of y in (17) does not seem to us to be smooth enough
to guarantee the validity of (16) (except when r = 0) no matter how b > 0 is

chosen. (The difficulty with (16) occurs when one, or more, coordinates of é are
near 0.) Hence we use a somewhat different argument.

K(b) = sup

PROOF OF CONVERSE. Consider only the case 0 < r < 1. Let

(19) i) =~
where
D(x) = Z|x,*".

(This is of the form (17) with & = 0 but with g(¢) = [§(v?)~"/2 dv replacing (18).)
Let A(0) be defined by (15). We will first show

(20) lim infyg,_,,D(8)A(9) > 0

where ¢ > 0 is sufficiently small. We will then invoke the necessary condition for
admissibility of Brown (1980) in order to show that §, is inadmissible when
p>Q-n/a-nr.
Now,
-r 2—r | |-
(21) Y(x) = —¢(1 — r)l—;i(l?) + c(2 - r)-IZ—"I(;)— ll);i(lx) .
LetZ,,-- -, z, be independent N(0, 1) variables. Then

2\r/2 |x;| =" — |6; + z,|""D(89)
(1 4) D(g)Eo( D(x)) E( (1+ 63D + z) )
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Note that D(6)/D(0 + z) — 1 as ||#]| — oo for each fixed z. Furthermore
|6; + z|~"D(8)
(1+62)™"D(8 + 2)

= 0(1 + 3z]")

uniformly in 8. Note that E(1 + Z|z|~") < co. Also note that (6; + z,)*/(1 + 62
—1if |§] >!= 00 and - (/ + z)*/(1 + I?) if §, > | < 0. Hence
(1+ 02)’/20(19)5,,,(I 1 )

E (I + z)? /e
D(x) 1+ 1?)
as ||@|| > o0, 6, > I, by the dominated convergence theorem. Another way of
expressing the above is

@) (1+6)7 2D(0)Ea( ',’)‘('x) ) ~ Eo(——'———

Now, |x;| ™" = (x?)~"/? is convex in x?, and E,(x?) = 1 + 6> Hence

(23) Ey(|x|™") > (l + 012)_r/2

by Jensen’s inequality. Combining (22) and (23) yields

(24) lim inf,,, (1 + 62)7/*D(8)E, LA
18— i () D(x)

In a similar fashion it is possible to conclude that if ||#|]| > oo so that
|87/ D(8) — I then

(25) D(0)(1 + 0,'2),/2E0( Ixilz_" Ixil_r) Ioilz__’ _,

D(x) D(x)) ~ D(®) ~
(The cases / = 0 and / > 0 can most conveniently be handled separately.) Also,

2|xi|2_,|xi|_’ ~|0i|2_’
D¥(x) D(8)

(26) D(O)(1 + 02)’/2E,,(y,2(x)) = D(0)(l + 02)’/2 (

when ||8]| — 0.
Combining (15), (24), (25), (26) yields

27 lim inf D(0)A(8) > c[2p(1 = 1) —2(2—1r) —c] >0

18]]—>00
for 0 <c <2(p(1 — r) — (2 — r)). (Here we obviously need the condition p >
(2 — r)/(1 — r).) This verifies (20). A

Now, let G(df) be any nonnegative locally finite measure (generalized prior) on
R?, The corresponding generalized Bayes procedure relative to the loss function L
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is given by 8; = x + y where

= £
¥i( ) é,-(x)

with
gi(x) = f(Z(l + 0j2)r/2)—l(1 + 0,.2)'/2e—"0—x"2/2G(d0)

and g§® = (3/dx,)g;. If 8, is generalized Bayes then (3/dx,) In g, = 0 so that g, is
independent of x;. A standard completeness argument shows that the conditional
distribution of (Z(1 + 63/%)~'(1 + 62)/°G(db) given 6,,- - - , 0,1, 0,1, - - , 6,
must be proportional to Lebesgue measure; i = 1, - - -, p. It follows that G must
have density g(#) = kC(1 + 0,.2)%)(11(1 + 07)7"/?) relative to Lebesgue measure.
To apply the criterion for inadmissibility in Brown (1980) let A(8) = 1 + D(8)Z(1
+ 8%/% so that lim infs,_, h(8)(R(8, &) — R(8,8)) > 0 by (20). Note that
D(OI(1 + §2/* = 0(]|@||*~"*#") when ||@]| > 1. Thus, for G as above,

(28) [h~Y(8)G(d9)

= k(14 DO+ 007) 21+ )7 (1 + 7)o
! > &

D(O)I(1 + 6?)

> k”I||0||>l“0”2—’+p’ d0

= o0

when p > (2 — r)/(1 — r). This implies that §, is inadmissible by Brown (1980).
This concludes the proof for the case 0 < r < 1. (This proof is also valid for
r<-—2)

> K fjg1>1

Note. Considerably more calculations, somewhat similar to those involved in
(24)—(26), suffice to show that if §’ = x + y where

c(sgn x;)|x,|' ™"
29 (x) = - —————,
(29) ¥i(x) b+ S
if 1>r>0, p>Q2-r/A-1r), 0<c<2p—-r—@2-7r) and b is
sufficiently large then 8’ dominates §,. In fact
(30) (b + ZIGP")Z(1 + 67)*(R(8, &) — R(8, 8"))
>c[2p(1=r)—22—-r)—c] foralld.

When —2 < r < 0 it is not true that (x»)~'/2 is convex in x?; and thus the
argument leading to (23) need not be valid. The preceding arguments therefore
need some modification. We sketch a suitable argument below which is valid for all
r<o.
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Let r <r <0 and define y by (19) but with the value ' in place of r.
Computations like the preceding yield

(31) D(0)A(8) ~|2¢(1 - r)=(1 + )" ""E

|xi|_”
(1+6y)7""

|6,~"

—2¢(2 - r)=(1 + 63772 0]

—_ 22 1 02 (’_")/zlgilz_r' 9
CE(L+ 0T TGy | as el o e

so long as ¢ is chosen to make the right side of (31) always positive for large 4.
Now,

E ( |x.~|2)_ ” >e>0 and —1as|f|—> .
1+ 63"
Calculations then show that
- —_ -1
- NV x|~ NV L
lim inf g, . [Z(1 + 67) E —————(1 " 0.2)_”2} (2(1 + 67 D6)
>p

since r — ' < 0. Thus

l6P~"

o r-r)/2
(32) lim mf"o"_m(z(l + 67 D)

-1
) D(6)A(8)
>[2ep(1 = 1) —2c(2-r) -]
>0
for 8 <c <p(1l — r) — (2 — r’). (Thus, incidentally, validating (31) for these val-
ues of c¢.) The inadmissibility criterion of Brown (1980) can be used as before,
except that here, of course, the obvious appropriate definition of 4 is

l6>~"

h() =1+ (2(1 + 0,2)’/2)(2(1 + 1) ) )_lp(a).

With this definition of 4 the proof may be completed using Brown (1980) following
a calculation similar to (28). []

Qualitative explanation. There is a qualitative explanation for the type of
behavior seen in Example 2. Consider the coordinatewise risk in the problem with
v=1 (ie., r =0). Suppose 8 = (||#|,0,- - - ,0) and ||8]| is large. Consider the
usual James-Stein estimator, 8(x) = (1 — (¢/||x|[*))x. It is well known that the
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coordinatewise risk of this estimator is worse than that of §, in the first coordinate
direction, and better in the other directions. (See, e.g., James and Stein (1960) or
Berger (1977, page 29).) Formally, A,(8) = E,(L*(8,, 65;) — L*(8,, 8])) < 0 and
A(0) = Eo(L*(8;, 8y) — L*(,, §)) > 0 for j # 1. Furthermore, when ¢ >0 is
small |A,(9)| ~ |A,(8)|—more precisely

-2 — ¢? 1
A(8) = + 0
(@) Io? (n0n2)

2 1
A = +o0 .
SN ( u0n2)
With the above in mind consider now the problem of this section in dimension
p = 2 and with r < 0. Then v(||8]])/v(0) — 0 as ||#|| — o0. When 8 = (|||, 0) with
||@] large the weight function thus gives greatest weight to the coordinate direction
in which the James-Stein estimator performs well. Asymptotically the James-Stein
estimator is, therefore, better than the usual estimator since

A(8) = (v(0) + o(191)) " (v(1181))A,(8) + v(0)A,(0))

2 1
A(0) = +
=80 =158 °( |wu2)

as ||@|| —» oo. This suggests that the usual estimator is dominated by the James-

Stein estimator when r < 0 and p = 2. Actually, this is not quite so, since for
1 1

0 = (18|/22, ||0]|/22) calculations like the above show that

2
A(B) = — & ( L )
N T TTE

In order to dominate the usual estimator one must, therefore, modify the James-
Stein estimator in order to spread some of the advantage at points near (||4||, 0)
around to points near (||4||/ 2%, 181/ 2%). The preceding proof formally shows this
can be done and suggests a functional form for the modification of the James-Stein
estimator (see above (31)).

The preceding explanation provides less explicit information about the case
r > 0. But it does at least indicate that it should be increasingly harder to dominate
the usual estimator as r increases, since then the weight function puts greater
weight on those coordinate directions for which the James-Stein estimator performs
badly.

4. Concluding remarks. The above results add understanding to apparent
peculiarities discovered in the gamma scale problem by Berger (1980) and in the
Poisson problem by Clevenson and Zidek (1977) and by Peng (1975). It appears
that these results are not at all peculiar, but rather are part of a general pattern to
be anticipated in a wide variety of simultaneous estimation problems.
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These results indicate that the choice of the coordinate loss functions is more
critical for practical applications than had previously been supposed. Alteration of
the weight functions (v) may drastically affect the admissibility of the obvious
minimax estimator (8,). (See Brown (1975) for a discussion of another respect in
which the determination of the loss function is important.)

The above results suggest that when the coordinate losses are weighted so that
E(L*(8,, 7)) = E(L*(8,, ")) Vi,j then one should expect that the critical dimen-
sion for inadmissibility of 8, is 3 (as in Stein’s phenomenon). (By heuristic
extension and the evidence of Brown (1975) this should be the case whenever
0 < inf v(6)R*(;, 6;*)/ v(6)R*(;, }) Vi, j.) However, when the coordinate losses
are not comparably weighted then other types of admissibility phenomena may
occur.

The explanations at the end of Sections 2 and 3 help explain the reasons for the
special admissibility characteristics exposed in Examples 1 and 2, respectively.
Presumably, one should expect similar characteristics from problems possessing
qualitatively similar behaviour of the ratios v(6,)L*(8,, §*)/ o(0)L*(G, 7).

There are undoubtedly qualifications and exceptions to the above heuristic
guidelines. Perhaps there are also some completely different general types of
admissibility behaviour. A more precise (but more complicated) heuristic tool for
discovering such behaviour is described in Brown (1979).
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