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COMPLETE CLASSES FOR SEQUENTIAL TESTS OF
HYPOTHESES'

By L. D. BROWN, ARTHUR COHEN, AND W. E. STRAWDERMAN
Rutgers University

We consider problems of sequential testing when the loss function is the
sum of a component due to an error in the terminal decision and a cost of
observation component. In all cases we establish a characterization of a
complete class or an essentially complete class. In order to obtain such results
for testing a null hypothesis against an alternative hypothesis we establish
complete class results for testing the closure of the null hypothesis against the
closure of the alternative hypothesis. A complete class for testing closure of
null against closure of alternative is an essentially complete class for testing null
against alternative. Furthermore, a complete class for testing closure of null
against closure of alternative is a complete class for testing null against
alternative when the risks have certain continuity properties. Such continuity
properties do hold in many cases.

Three models are treated. The first is when the closure of the null space is
compact and the cost of the first observation is positive. Under very unrestric-
tive conditions it is shown that the Bayes tests form a complete class. This result
differs considerably from most fixed sample analogues that have been studied.

The second model is when the closure of the null space is compact, the
distributions are exponential family, and the cost of the first observation is zero.
The third model is for the one dimensional exponential family case when the
hypotheses are one sided.

1. Introduction and summary. We consider problems of sequential testing
when the loss function is the sum of a component due to an error in the terminal
decision and a cost of observation component. In all cases we establish a char-
acterization of a complete class or an essentially complete class of tests. In order to
obtain such results for testing a null hypothesis against an alternative hypothesis,
we establish complete class results for testing the closure of the null hypothesis
against the closure of the alternative hypothesis. For the problems treated here, a
complete class for testing closure of null against closure of alternative is an
essentially complete class for testing null against alternative. The results
summarized below refer to testing the closure of null against closure of alternative.
At the end of this section, some further remarks will be made about the distinction
and importance of the two problems. .

The first model treated is when the closure of the null hypothesis is compact and
the cost of the first and all other observations is positive. Under very mild
conditions it is proven that the Bayes tests form a complete class. The only
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assumptions required are that the joint density of the observations at every stage is,
for almost every fixed value of the random vector, a well defined continuous
function of the parameter on the closure of the null and closure of alternative
spaces, and tends to zero as the norm of the parameter tends to infinity. We also
assume here and in subsequent problems that the total cost of observations tends to
infinity as the sample size tends to infinity. Multivariate and multiparameter
problems are included in the treatment.

In cases where the Bayes tests are nonrandomized in both the stopping rule and
terminal decision rule, the above complete class result implies that randomization
should be eliminated. This will in fact be the case for problems involving the
normal distribution with unknown mean vector and known covariance matrix.
(More precisely, randomization must be allowed when no observations have yet
been taken, but not thereafter.) Furthermore, in these cases it will follow that
procedures which are not based only on sufficient statistics can be improved on.

The second model treated is when the observations are from an exponential
family dominated by a measure which is absolutely continuous with respect to
Lebesgue measure. The cost of the first observation is zero, although the cost of all
other observations is positive. Again the closure of the null hypothesis space is
assumed compact. If the closures of the null and alternative spaces are contained in
the natural parameter space then each test in the complete class is as follows:
There is a convex set 4, such that if the first observation falls outside A4, reject the
null hypothesis. If the first observation falls inside 4, then proceed according to a
generalized Bayes test of the closure of the null vs. the closure of the alternative,
where the generalized prior distribution is such that the integrated risk of the test is
finite. Again under the normality assumption, randomization can be eliminated. If
the closure of the null space is in the natural parameter space but the closure of the
alternative space is not, then a similar characterization (not quite as above) will be
given for an essentially complete class.

The third model treated is when the observations are from a one dimensional
exponential family dominated by a nonatomic probability measure and the hy-
potheses are one sided and not necessarily bounded. (Precise assumptions will be
given.) For this model we treat both the cases where the cost of the first
observation is positive and where the cost of the first observation is zero. With the
exception of what happens at stage zero, the results for the two cases are similar
when both null and alternative spaces are unbounded. For the case where the cost
of the first observation is zero and the closures of both null and alternative spaces
are contained in the natural parameter space, the complete class is as follows:
There exists an interval (a,, a,) such that if the first observation is less than a,, stop
and accept. If the first observation is greater than a,, stop and reject. If the
observation is in the interior of the interval, then proceed according to a gener-
alized Bayes test of the closure of the null vs. the closure of the alternative.
Randomization can be eliminated in all cases of this one dimensional, one sided
model, where the cost of the first observation is zero and the dominating measure is
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nonatomic.

For the case where either closure of the null hypothesis space or closure of the
alternative hypothesis space, but not both, are contained in the natural parameter
space, a similar characterization will be given for an essentially complete class.

For this third model, it is known that an essentially complete class of tests
consists of the monotone tests. See Sobel [7] and Brown, Cohen, and Strawderman
[2]. The complete class which we describe here is much smaller than the class of
monotone tests.

There are two important respects in which our results for the sequential problem
are qualitatively different and superior to analogous results for the fixed sample
size case. Farrell [4] studied the fixed sample size case. First, he required that the
distributions come from an exponential family. In our first model, where the cost
of the first observation is positive, we do not need such an assumption. Further-
more the Bayes procedures, rather than the generalized Bayes procedures, form the
complete class. Second, he required that the closure of the null space be topologi-
cally separated from the closure of the alternative; and he gave an example to show
why this assumption is needed in order to obtain a useful complete class theorem
of this type. We do not make such an assumption.

At this point we will clarify the distinction between the fixed sample size case
and the first model of the sequential case. In both cases the characterization is
developed by describing the test procedure which is the limit (in some sense) of a
sequence of Bayes tests. This is because it is known that such limits form an
essentially complete class. Suppose (7, I';.(+), T;4(+)) represents a sequence of
prior probability distributions on the parameter space, where 7, represents the
probability that the parameter lies in the null space, I';,(-) represents the condi-
tional probability measure for the parameter given that it lies in the null space, and
T',,(-) is similarly defined for the alternative space. (It will be helpful at this point if
the reader keeps in mind the concrete example of testing a one dimensional normal
mean p when the variance is one and the null hypothesis is |u| < 1, while the
alternative is |u| > 1.) Now in the sequential case, if =, -0 as k — oo, the
procedure which is the limit of the sequence of Bayes procedures stops at stage 0
(before taking any observations) and rejects the null hypothesis. This happens as
soon as m, < ¢;, the cost of the first observation. This fact is true regardless of
what T}, or I, do, and doesn’t depend in any way on what the distribution of the
observable random variables is. This latter fact explains why we need not assume
an exponential family as does Farrell. In the fixed sample size case however, if
T — 0 as k — o0, I';,(-) may be gradually assigning its mass to larger values of
the parameter (think of mass going to u = o0 in the normal example) in such a way
or at a certain rate, so that the limiting procedure does not necessarily always
reject. In fact the sequence of ratios that determine the sequence of Bayes
procedures may in fact be indeterminate in the form 0/0. In such cases the limiting
procedure depends on the distribution of the random variables (hence the exponen-
tial family assumption by Farrell.) Furthermore the limiting procedure need not be
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Bayes, explaining the need for the introduction of non-Bayes procedures such as
generalized Bayes or other non-Bayes procedures. Still further, these non-Bayes
procedures can very well be admissible and must be contained in any complete
class.

Next suppose that 7, =1 and that '}, and T,, send all their mass to a common
boundary point. (In the normal example I';, could put mass 1 atp =1 — 1/k, and
T, could put all its mass at u = 1 + 1/k.) The resulting limiting procedure in the
sequential case would be a Bayes procedure for testing the closure of the null
against the closure of the alternative when the prior puts probability 3 on the
common boundary point as a point in the closure of the null, and probability 3 on
the common boundary point as a point in the closure of the alternative. This
resulting Bayes procedure would stop at stage zero and randomize between
acceptance and rejection of the null hypothesis. This is because the first and future
observations would incur costs while the posterior probabilities of error would
remain at % regardless of additional data points. This type of sequence of priors
and others that send mass to the common boundary explain why we need to study
the problem of testing the closure of the null hypothesis against the closure of the
alternative.

Notice that in the fixed sample size case if one tests closure of null against
closure of alternative and a prior puts all its mass on a common boundary point,
equally as part of the null and as part of the alternative, then all procedures are
Bayes against such a prior. Such a characterization is useless. This explains why
Farrell assumes for the fixed sample size case that the closure of the null and
closure of the alternative spaces are topologically separated. An example is given in
Farrell where closure of null and closure of alternative are not topologically
separated and one tests null against alternative with the result that all procedures
are limits of Bayes procedures. Again this is a useless characterization.

To understand the above distinctions between the fixed sample size and sequen-
tial cases, and to understand the future development of the sequential case, and the
difference in the results for the various sequential models, it may be helpful to
think of a two stage procedure instead of a purely sequential procedure. The
distinctions are true for the two stage case. For the first model the two stage case
consists of stage 0, no observations, and stage 1, a choice of one observation at cost
¢, > 0. For the second model, the two stage case consists of stage 1, one observa-
tion at no cost which must be taken, and stage 2, where there is a choice of a
second observation at a cost ¢, > 0. In the beginning of Section 4 we discuss the
distinction between the first model, where ¢, > 0 and the second model, where
¢y =0.

We now discuss further the significance of obtaining complete class results for
the problem of testing the closure of the null against the closure of the alternative.
As already mentioned, a complete class result for such a problem yields an
essentially complete class for the problem of testing null against alternative.
Furthermore, and most importantly, if the two risk functions, (one for parameter
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values in the closure of the null space and the second for parameter values in the
closure of the alternative space) are continuous at parameter points in the common
boundary, then the complete class for closure of null against closure of alternative
is a complete class for null against alternative. In a subsequent paper, such a
continuity property will be shown to hold under very general conditions. Of course
when null and alternative are closed to begin with, then the complete class is
obtained without further requirements. Also for truncated sequential problems, the
desired continuity of the risks is valid under the conditions given in this paper and
the complete class is obtained.

In some instances we find an essentially complete class for the closure of the null
against the closure of the alternative. This class is also an essentially complete class
for testing null against alternative.

In the next section we need preliminaries and definitions. In Section 3 through 5
we treat each of the three models in the order given above.

2. Definitions and preliminaries. The elements of the problem are as follows:
© is the parameter space with typical element 4. The null space is ®, C ® and the
alternative space is ©, C ©. Assume O, ®,, and ®, are measurable subsets of
Euclidean space, R?. The closures of ©, and ©, are denoted respectively as ©, and
©,. We study the problem of testing the closure of the null hypothesis, § € ©,, vs.
the closure of the alternative hypothesis, # € ©,. The reader may find it helpful to
denote the parameter set of the null hypothesis by {(1, 8)} for # € ©, and the
parameter set of the alternative by {(2, #)} for § € ©,. Then it will be easy to view
the null hypothesis and alternative hypothesis sets as disjoint as is sometimes
desired.

The action space @ consists of pairs (n, 7) where 7 is the stopping time and 7 is 1
or 2, depending on whether ©, is accepted or rejected. The loss function, denoted
by L(0, (n, 7)) is given by

0 ifr=1 _
@.1) Ly(8, (n, 7)) = C(n) + { G r_2 wheno €8,
and

0 ifr=2 _
2.2) Ly(6, (n, 7)) = C(n) + { G,y 1 when0€®,

Equivalently, L(4, (n, 7)) = C(n) if 8 €{(1,0)}, r=1 or § € {(2,0)}, 7=2;
L@, (n,2))=C(n)+d, if 9 €{(1,0)}, and LG, (n, 1)) =C(n)+ d, if 0 €
{(2, 8)}. Here C(n) represents the cost of taking n observations. Let ; represent the

cost of taking the jth observation so that C(n) = Z7_,c;. Also assume ¢; > 0, all

Jj=23,---, and C(n) - o an n — oo.

The observation available to the statistician at stage i is an observation on a
p X 1 vector. This observation is denoted by x;. We let X = (x,, x,, - - - ) denote
the (p X o0) matrix of observations and x(;, = (xy, X,, - - - , x;). The correspond-

ing random variables (measurable mappings) are denoted X, X, and X, respec-
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tively. We assume that there is a o-finite measure p which dominates the family
{Py(-), @ € O} of probability measures for X in the following sense: For each
j=12,---, over the o-field generated by Xy the measure P, is dominated by
p. Write f{2(x ;) = dP,/dpy relative to this o-field. When @ is not closed we will
usually, wish to assume that the family, { P;, § € O} can be extended to a family,
{P,),0 € )} and that the families of densities f{(x ), # € © exist and have
certain continuity properties, etc. to be specified later.

We will have occasion to state assumptions regarding x ,’s. When we write, for
all x; or for every x;, we mean for almost all or almost every, meaning, every x,
except perhaps some x; which comprise a set of p-measure zero.

When observations are independent and identically distributed from an ex-
ponential family, there is a sequence {S;}, where S; is a function of X, such that
{S;} is a sufficient, transitive sequence for 6. (See Ferguson, page 334) for
definition of transitive.) Write S = (S}, S, - + ) so that S lies in an infinite
product space. We define p, Py, f{X(s,) for this sample space as we did for the X
sample space.

A prior probability measure on ©(0), denoted by I'(-), will be represented by a
mixture expressed as «,I';(:) + m,I'5,(+). Here, if T is a random variable with
distribution T, then =, is the probability that T € ©,(®,) and T, represents the
conditional distribution of 7, given T € ©,(0,). Similarly for I',. A prior I'(-) may
be represented as (7, I'y(+), T'5(+)).

A decision function & may be expressed as a set of nonnegative functions
8,(x;>0,(i=0,1,2;j=1,2,- - -) defined for all x; such that 32_,8, (x;)
=.1. The quantities §,;(x.;), i =0, 1, 2, represent respectively, the probability of
taking another observation, accepting H,, and accepting H, when j observations,
X(j» have been taken. This definition of decision function for sequential tests is
given in Sobel [7]. It is equivalent to the usual definition.

The risk function is denoted by R(#, §) = E,L(4, §) and the expected risk is
R(T, 8) = ER(6, 8). A Bayes procedure minimizes ER(f, §). A generalized prior
distribution I'(-) has the properties of a prior distribution except that I'(®) can be
infinite.

Note that when © is a set in ®, N ©,, then any prior (m,, T',(+), T(-)) specifies
the amount of probability assigned to that set as part of ©, or as part of ©,.
For example, if 0 € ®, N ©,, then (I, {0}, T,(+)) is distinguishable from
(3, €{0}, £{0}), where e{a} is a degenerate probability distribution, all of whose
mass is put at the point a. The latter prior assigns probability 3 to 0 as a point in
©,, and probability 3 to 0 as a point in ©,. In the alternative notation the latter
prior assigns probability 3 to parameter points (1, 0) and (2, 0).

We will refer to sequences of tests which converge regularly to a limit. For the
definition of regular convergence we refer to Sobel [7], page 321. It is well known
that tests which converge a.e., converge regularly. It is also well known that the
closure of the class of Bayes tests with respect to regular convergence forms an
essentially complete class. (See Le Cam [6].)
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Some final notations and definitions. Let

(2.3) f((,i))(X(_’)) = félfy)(X(j))F,(do), i= 1, 2;] = 1, 2, e,
Note f(x;) are densities equal to dP,/dp over the o-field generated by X, Uy
where P(-) = [g Py(-)T(d9). Clearly Py(+), Pp(-) are dominated by ()=
T Py(+) + mPp(+), and » represents a marginal probability law for X. Let
O+ (| x,)) denote the conditional distribution under » of x,.,y, given X, =

Xy Further let g(x ;) = dPg/dv,j=1,2,- - -, over the o-field generated by
X (- It can be shown, (see [2], page 5) that

(2.9) 88' )(x(n)) = f((i';)(x(n))/ [Wlffln))(x(n)) + sz((f))(x(n))]-

Note that 7,8} + 7,8 = 1. For the process defined by P, the conditional
density of X, ) given X; = x;, X, = x, - - -, X,, = x, relative to »®*I"(-|x ) is

given by gfs+l)'"(X(n+1)|x(n)) = g%.';* 1)(X(n+l))/ 885)("("))-

3. Complete class for 8, compact and ¢; > 0. In this section we assume O, is
compact, ¢; > 0, for every j, 0 €0,,0 € @_2, JP(x;) is a well defined density, for
every j and x;, fi’(x,) is continuous on ©, and on ®,, and for every j and X
fo(”(x(,)) — 0 as ||@|| — oo. This last requirement is needed for weak convergence
arguments, as, for example, in Lemma 3.1. We obtain an essentially complete class
of tests for ©, vs. ®, by obtaining a complete class of tests for ©, vs. ®, when the
loss function is given by (2.1) and (2.2).

Let (74, I 1x(+), T51(+)) be a sequence of prior distributions. Let 8(k; X) be the
Bayes tests for these priors and assume that the regular limit as k — oo exists.
Denote this limit by &(X). The existence of Bayes tests is a consequence of
compactness of the space of decision rules. (See Le Cam [6].) One objective of this
section is to show that 8 is Bayes. To accomplish this objective we will consider the
sequential testing problem truncated at M. That is, we must stop no later than at
stage M. For this problem, if (m;;, I';;(+), T',,(+)) is a prior distribution, we let
B,f’k(x(,,)) be the minimum conditional expected risk given X () is observed at stage
n and sampling continues at least to stage (n + 1). Forn =0, 1,2, - - , (M — 2),
use (2.3), (2.4) and Fubini’s theorem to find

(3.1) BYi(x(m) = f min [ 1k (Enan)s C(n + 1) + dymy g8t D (x(nr1y)s
C(n + 1) + dymy gyt P ) [V (X g 1y) X )
Forn= M — 1, '
(32) Bw- 1 e(Xr-1)) = C(M) + [ min [dz‘”zkgg{),)k(x(u))’ dl'”lkgg){ ,)k(x(M))]
PMI=D(dx 0| X aa—1y)-

Note that min [ B8%,, 7, d,, Ty d,] is the minimum Bayes risk for the problem
truncated at M. Also note that the Bayes procedure for the truncated problem is
determined by ,B,ff’k(x(,,)) as follows: Consider forn =0,1,- -+, M — 1,

(3.3) Df k(x(n)) = .B,f' k(x(n)) - C(n) - d2'”2kg8)), k(x(n))
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and
(34) En},”k(x(n)) = ,Bf k(x(n)) = C(n) — dl”lkgg')) k(x(n))'

Continue sampling if D, k(x(n)) and EM, «(x() are both negative. Stop and reject if
EM (x4 > 0 and dlqukg(l) k(X)) < dzﬂZkg(z) (%) while the null hypothesis is
accepted if D, k(x(,,)) > 0 and d,7, kg(l) k(x(,,)) > dzvrzkg(z) (X)) At stage M, stop
and accept 1f dlvrlkg(,) k(x(M)) > dzﬂzkg(z) k(x(M)) and stop and reject if
dlvr,kg(,) k(x(M)) < dszkg(z) k(x(M)) If equalities occur at any stage from 0 to M,
randomizations can be done.

For the untruncated sequential problem we define S, , k(X)) in an analogous
way to B,, «(X(») and note that (3.1) is appropriate, as well as (3.3) and (34) in
defining the Bayes procedure.

Next consider the modified truncated problem, which is the problem where we
must stop no later than at stage M and if stage M is reached the loss is put equal to
zero. For this modified truncated problem let B «(X(y) be the minimum condi-
tional expected risk given X,) = x,) is observed at stage n and sampling continues
at least to stage (n + 1). Forn = M — 1,

(3.5) ﬂ%—l, k(x(M—l)) = C(M),

while forn=0,1,2,- - - , (M — 2), BM «(X() is defined recursively as B,, «(X () 18
in (3.1), with g, YLk replacmg /3,,,,_1 « The Bayes procedure for this modified
truncated problem is determined by the analogues of (3.3) and (3.4) which we label
as D}f (x(,) and EY (x,).

To show § is Bayes will entail some lemmas. Before stating the first lemma let us
treat a special case. Suppose the sequence (7, I';4(+), [5:(-)) is such that the
sequence {,, } has a subsequence {,,.} which converges to 0. Since ¢, > 0, for all
sufficiently large k', it follows that &§(k’; X) and hence 8(X) will reject the null
hypothesis with probability one without taking any observation. Thus in this
special case, § is trivially Bayes. In what follows then we will assume that any
convergent subsequence of {,} goes to a positive limit. Now we give

LemMA 3.1.  Given the sequence (my;, I'1;(+), Tyi(+)), there exists a subsequence
(14 T1aA*), Tou(+)) and a prior distribution specified by (s, T1u(+), Tpu(+)), such
that for every fixed n and x,, my. gg;) x (X)) converges to . gg;?.(x(")), i=12.

ProOOF. The space of probability distributions is weakly compact where weak
convergence is in the sense that, I';, a sequence of probability distributions
converges to I, if lim,_, . [h(0)[,(df) = [ h(8)['(dh), for all h such that, 4 is
continuous and A(#) >0 as ||#|| — co. The limit distribution need not be a
probability distribution since I'(®) < 1. Hence, there exists a convergent sub-
sequence whose limit distribution we denote by (#,,I',(*), I‘2( ). Note that since ©,
is compact, I‘,( ) is in fact a probablhty measure but 1"2( ) need not be. Defme
(710, T1a(+), Tpa(+)) as follows: If T,(@,) = 0, let 7,. = 1. Otherwise T = 7, /[%F +
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Ty l5(©,)], Tge = 1 — 7pe, T1u(+) = T1(+), Toe(+) = Ty(+)/T5(©,). Recall that for ev-
ery j and x;, fi(x;) is continuous and tends to zero as ||@|| — oo. Now use this
fact, (2.3), (2.4), the definition of ., I';.(+), and T',.(-), and weak convergence to
compete the proof of the lemma.

Note that the subsequence and limiting distribution in Lemma 3.1 did not
depend on x, or n. Now we prove

LEMMA 3.2. For fixed X, each n=0,1,2,- -+, M — 1, each M, D,f’k,(x(,,))
converges 10 DMu(X()s EMi(X,y) converges to EN(x(,), Dy i(x,) converges to
DY.(x () and EY ,.(x,) converges to EJf(x,).

ProoF. Note that B,f'k,(x(,,)), defined by (3.1) and (3.2) converges to ,B,ﬁf(x(,,)),
forn=0,1,2,---, M — 1, by virtue of Lemma 3.1 and the dominated conver-
gence theorem. Now use this fact, (3.3), (3.4) and Lemma 3.1 again to complete the
proof for DY, and EJ,.. The proof for DY, and EY,. is similar. This completes
the proof of the lemma.

Before stating the next lemma we note expressions for B, ,(x,), ,B,ﬁ’k(x(,,)), and
BY (X () as follows: Let 8(k; X), 8¥(k; X), and 8¥(k; X) be the Bayes tests for the
untruncated problem, truncated problem, and modified truncated problem respec-
tively. Forr =n+ 1,n + 2,- - - lety, ,(x,_y|x,) be the conditional probability
that the Bayes procedure goes to siage r, given that it has gone at least to stage
(n+1).Thusforr=n+2,n+3, -, 4 ((Xe_p|*w) = Iz} 18(k; x ;) and
‘Pn+l,k =1 Thus

(3'6) Bn, k(x(n)) = 2:0=n+1f\pr, k(x(r-—l)lx(n))(l - 80r(k; X(,.)))
- (C(r) + min, dim, g8 1(x())P"(aX|x (),

where »* denotes the conditional measure,

(3‘7) Bn],”k(x(n)) = 2y=n+1f r?’c(x(r—-l)lx(n))(l - 8&'(’(; x(f)))
- (C(r) + min dm,g{f), k(x(r)))Vh(dilx(n))
(3.8) Bfk(x(n)) = 21:!——711-0-1 r,k(x(r—l)lx(n))(l - 53:("; x(r)))

- (C(r) + min di'”igg)), k(x(r)))”ln(d’_‘lx(n))
+ C(M) [ g, o (xXaa- 1| X(my) " (aX| X))
We now give '
LeEMMA 3.3. For each M, eachn =0, 1, - - - , M, each fixed X (my each k',
(3.9) Dy i (xm) > DRt (xmy) >« + > DYilxmy) > D, 1o(Xmy)

> DY (xmy) > - - - 2 DR (x(m) > D) (X(my)-
Also

(3.10) D’:.(X(n)) > D’::- I(X(n)) 22 Dnl,b{(x(”)) > Dn,‘(x(n)) > D,,A,{(X("))
> - > DT (x(m) 2 Dju(xm)
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As M — o, D’ k(x(n)) = D, i (X(y), Dyl (X (m) = Dy, 1 (X)), DM(x(n)) = D, (%),
and DY, (X)) = D, +(x(,). Furthermore the same statements can be made wzth E
replaczng D.

PrOOF. From the definition of D and E in (3.3) and (3.4) we must prove the
statements with S replacing D. Also the proof for B, «» and B, . are the same. The
inequalities in (3.9) and (3.10) are obvious. See, for example, Ferguson [5], page 318
and page 324. Next we use the arguments which are essentially the same as
Ferguson [5], Theorem 3, page 318 and Theorem 6, page 324. To prove B, ,d(x(,,))
= B, (%), let §M(k’; X) be 8(k’; X) truncated at M with the best terminal
decision at stage M. Then B, . k(X)) 18 less than or equal to the expected risk using
8M(k’; ). Hence using (3.6) we have

(3.11) B, k’(x(n)) B, k’(x(n)) < [¥nma, k'(x(M)Ix(n))[mm dimye 8&) &’ (x(M))]
'Vln(dilx(n))

< B{ [ ¥, e (Fan)| X )P (a%|x () ),

where B = max (d), d,). The bracketed integral in (3.11), when multiplied by
C(M + 1) is certainly less than the conditional Bayes risk, which in turn is less
than or equal to C(n) + B. Hence [y, k(x(M)lx("))v' (dX|x,) < [C(n) +
B]/C(M + 1). Since C(M)— 0 as M — oo, from (3.11) we have BM (Xmy) =
Ba(x(n). (The part of the lemma just proven is also given in Chow, Robbins, and
Siegmund [3], Theorem 4.3, page 68.) To complete the proof of the lemma, note
that 3, k,(x(,,)) is bounded above by the conditional expected risk using the Bayes
procedure corresponding to the modified truncated problem. Hence,

(3.12) ’:u (X)) — fk/(x(n)) < Bf 'I/M(X(M)|x(n))”I"(d’_‘lx(n))-
The expression on the right-hand side of (3.12) tends to zero and thus the proof of
the lemma is complete.

Now we are ready to prove

THEOREM 3.1. The test 8(X), which is the regular limit of the sequence 8(k; X), is
Bayes.

PROOF. Let 6*(X) be the Bayes procedure with respect to the prior
(710 16(+), T4(+)). Hence 8*(x) is determined for each » and each X, by Q, (x(,,))

= (Dps(X (s E,s(X(n)), Ay g(l) .(x(,,)) Ay Tye g(z) .(x(,,))) through the rules given
after (3 3) and (3.4). We show that 8(X) is also Bayes with respect to (s, I';(*),
TI';.(+)). For suppose 8(X) is not Bayes. Then there exists some integer n, and some
set of x,, say U, of positive » measure, such that for these Xy (8o, (x> 61
(X@my)> 824(x(sy) does not obey the rules given after (3.3) and (3.4).

At this point we partition the space of X, into seven sets. These sets include all
the different possible combinations for Q, «(x() that have bearing on
(035(x(y)> O7u(X(n)03,(x (). For each set we also indicate the values of
(832(x(ay), O1a(Xny)s 03,(x (). The sets labeled T,,r =1,2,- - -, 7 are collections
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of x., for which the following hold: Let (1) =D, (X)), Q) = E,(x,), B) =

di714 8B (X () (4) = dymye g8 +(X(,). The letter A4 with a subscript indicates some
arbitrary number between 0 and 1 inclusive.

G13)  1)>0,3) > (@). : (0, 1,0)
G149  (2>003)<@. :(0,0,1)
G5 M>0@>0,3) =M. :0,A,A)A +A,=1,

(3.16)  (1)<0, ) <o. : (1, 0, 0)

Gl M=0,2<0,(3)>®@). :(ApA,0),A,+A =1

(18) (D<0,@D=0,3)<M@. :(Ap0,A,) A,+A,=1
G199 M=02=003)=@). :(ApApA)Aj+A +A,=1

Now suppose »(T; N U) > 0. Note that for any Xm € Ty N U, D, o(x(,) > 0.
By Lemma 3.3 then, we have for M > M, say, D,,M’.(x(,,)) > 0. By Lemma 3.2 then
we have for all X’ > k'(M,), Df*;c,(x(,,)) > 0. By the inequalities (3.9) of Lemma 3.3
then, we have that for all sufficiently large k', D, ;(x,) > 0. Furthermore, for all
sufficiently large &’ we have d,m, 4 8% 1 (xX() < dy7y 1 8 1(%()» by Lemma 3.1.
Hence for each x,) € T\ N U, (8o,(K’; X(n)s 81,(K'; X(n)s 85, (K, X)) — (0, 1, 0),
as kK’ — oo. Since pointwise convergence implies regular convergence, and since
0(x) is the regular limit of 8(k; X), we must therefore have (Bon(Xm)s 81(X(m))s
82.(x)) = (0, 1, 0) a.e. » on (T, N U). This contradicts the claim that § does not
obey the rules for x,, € U.

Next suppose »(T, N U) > 0. Referring to (3.13), the same argument using E
instead of D shows that this cannot be true. Suppose »(7; N U) > 0. Similar
reasoning implies that for all sufficiently large k', 8,,(k’; (X = 0, i.e., the Bayes
procedure must stop, which in turn implies that 8;,(x,) = 0. Since Sn(xgy), i =
1, 2, are arbitrary, clearly'd,,(x,), i = 1, 2, obey the rules given after (3.3) and (3.4)
no matter what they are. Hence this too is a contradiction. Suppose »(T, N U) >
0. Use the same argument as initially used, replacing D by D™ and replacing E¥
by EM, when appropriate. This also leads to a contradiction. Clearly the last three
cases can be treated using the same ideas, which leads to the fact that 8(X) is Bayes.
This completes the proof of the theorem.

Next we prove

THEOREM 3.2. The Bayes tests form a complete class.

PrOOF. It is well known that the closure (regular convergence) of the class of
Bayes procedures is an essentially complete class. (See, Le Cam [6], page 78.) By
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Theorem 3.1 we have that the regular limits of Bayes procedures are Bayes and
hence the Bayes procedures are essentially complete. Now let §(X) be a procedure
outside of this class, such that there is a procedure §’(X) in the class, whose risk
function is the same as the risk of §(X). This would imply that §(X) would be Bayes
with respect to the same prior for which §'(X) is Bayes. This contradicts the claim
that §(X) lies outside of this class. Thus we have demonstrated that whenever the
Bayes tests are essentially complete, they are in fact a complete class. This
completes the proof of the theorem.

We now discuss some of the special cases for which Theorem 3.2 applies. As
remarked earlier the theorem applies in great generality. It is not limited to tests
concerned only with means. For example, all the conditions can be shown to hold
for testing the null hypothesis that 62, the variance of a normal distribution (with
known mean), is such that, 0 < a < 0® < b, b < oo, against the alternative {0 < o>
< a,b < 6*> < }. The conditions are easy to verify when working with the
transformed parameter log o2. Testing the variance of a normal distribution is a
special case of a more general situation that can be handled. Namely a situation
where the closure of the alternative space includes parameter values that do not lie
in the natural parameter space determined by the exponential family, from which
observations are taken. In such cases, if § denotes the parameter then suppose 7(6)
is a transformation from © onto R? such that 7(#) maps points on the boundary of
the natural parameter space to {c0}. Then the theorem will apply provided that for
all j and every x;), imy 7y a0 fi2(x(;) = 0.

Discrete distributions such as binomial and Poisson can be treated. The verifica-
tions of conditions can be made in terms of the original variables and parameters.
Although most nuisance parameter problems cannot be treated, the result will
apply to classes of tests restricted by invariance. For example, in testing a normal
mean with unknown variance, if only scale invariant tests are permitted, then the
Bayes tests based on Student’s ¢-statistic form a complete class among the class of
invariant tests. (At stage one however, we must take two observations in this case.)
Other types of invariance can be used to reduce other problems with nuisance
parameters, so that the theorem would be appropriate for a restricted class of tests.

To shed some light on the result of Theorem 3.2 we give the following example
which is somewhat surprising. Let (X, X,) be bivariate normal with mean vector
(my5 up) and covariance matrix I. Consider the problem of testing (u,, p,) = (0, 0)
against the alternative that (u, py) # (0, 0). Assume ¢, > 0, and c, is large, say
¢, > max (d,, d,). (This assumption on ¢, guarantees that the tests which terminate
by stage 1 form a complete class.) Now consider the fixed sample size procedure,
with sample size 1, which accepts the null hypothesis if |x,| < K, |x,| < K, for
some K > 0. Theorem 3.2 implies that this fixed sample size test, which is
admissible among fixed sample size tests, is inadmissible. The test which is better
must stop at time zero with probability g, where ¢ is strictly between 0 and 1, and
make some terminal decision.

We now give an example which shows that Theorem 3.1 would not necessarily be



SEQUENTIAL TESTS 389

e C(n) # 0. The example is one which violates Lemma 3.3 in the
sense that B} - B,. as M — co. The example is as follows. Let X be N(0, 1). Let
0, =[-10],0, =0, ). Let d; =d, =1. Let lim, , C(n) =1. Choose
(T Ty T ) = (3, e{—1/k}, e{1/k}). Then B, , <3, for every fixed k, since
the Bayes risk is bounded by the expected risk of the procedure which takes an
infinite sample and thereby makes an error in the terminal decision with probabil-
ity zero. (Reject the null hypothesis if X, > 0 after choosing » sufficiently large,
will insure that the risk is bounded by ;.) On the other hand (., I'ys, Tp0) =
(3, €{0}, £{0}) and the Bayes procedure for such a prior is not to sample and
accept the null hypothesis with probability 3. Thus Bos = 3. Thus the regular limit
of the sequence of Bayes procedures would not be Bayes against (7,4, I';e, I',4). In
fact it could be shown that the regular limit of the sequence of Bayes procedures
could not be Bayes.
We now make

true if lim

ReEMARK 3.1. Let X be a one dimensional random variable whose density
belongs to the exponential family, (see (4.1)), and whose density is dominated by
some measure », which is absolutely continuous with respect to Lebesgue measure.
Consider the problem of testing ©, = [a, b), for —o0 < a < b < o, against ©, =
(— 0, ) — (a, b). Under the assumptions of this section the class of Bayes tests is
minimal complete. This follows from Theorem 3.2 and the fact that Bayes tests for
this problem would be unique a.e. ». The uniqueness of the Bayes tests could be
shown by arguments given in Brown, Cohen, and Strawderman [2]. For testing 0,
as above, against ©, = (— o0, ) — ©,, the result is that the Bayes tests for 9, Vvs.
©, are minimally essentially complete. That is, all Bayes tests in the essentially
complete class are admissible.

We next prove a theorem and a corollary. The theorem is concerned with
elimination of randomization in the stopping rule and terminal decision rule,
except at stage 0. The theorem will be given assuming that we sample from a
multivariate normal distribution. It will be clear however that the proof would
work for many other distributions in the exponential family. It is known that
procedures based on a sufficient statistic are an essentially complete class. (See
Ferguson, page 337). The corollary describes the case where tests based only on a
sufficient statistic form a complete class as opposed to an essentially complete
class.

Now we state

THEOREM 3.3. Let {X;} be independent, identically distributed according to the
multivariate normal distribution with mean vector 8 and covariance matrix 1. Then
any test 8(X), with components (8o,(X (), 01,(X(n))> 824(X(ny) is inadmissible if for any
n>landanyi=0,1,2;0 <8§,(xq) <1 on a set of positive measure.

ProOF. We will show that randomized tests are not Bayes. Once we show this,
the theorem follows from Theorem 3.2.
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Our first step is to recognize that given any test 6(X) there exists a test based on
the transitive sufficient statistic S, = Z7_,X;, say 8(s), which is just as good. (See
Ferguson [5], Theorem 4, page 337). Furthermore 8(s) is a randomized test. This
follows from the fact that S, has a normal distribution and by the construction of
the stopping rule (see Ferguson, page 336, equation (7.24)), and the construction of
the terminal decision rule, (see Ferguson, page 120, equation (3.47)). Hence it
suffices to show that the randomized test 8(s) cannot be Bayes among the class of
all tests based on the transitive sufficient statistic S,,.

Next we note that Bayes tests based on S, are such that the conditional Bayes
risks at stage n, depend solely on s,. That is, B8,(s;, 5,, - - - , s,) can be written as
B,(s,). To see this, observe from Brown, Cohen, Strawderman [2], equation (3.4)
that g{(s), 5, - - - , 5,) can be written as g{(s,). Also from Lemma 3.1 of the
same reference p@*DIN(- |5, 5, - - -, 5,) is @+ DIN(.|s ). Thus from (3.1) and (3.2)
we have that 8 depends only on s,, which in turn implies, by the proof of Lemma
3.3, that B, depends only on s,. Furthermore, from (3.2) (which is appropriate for
B, as well as B¥) the dependence on s, enters the integrand of the expression on
the right-hand side of (3.2), only through the conditional distribution of S, ,|S, =
8,

Suppose we show that 8,(s,)is an analytic function of s,.Then, since g{(s,) is an
analytic function of s,, it will follow that D, and E, are analytic functions of s,.
This in turn will imply that for any fixed » > 1, the set of points for which D, = 0,
or E, = 0, or md, g} = m,d,g(3), is either a set of Lebesgue measure zero or is the
n dimensional real space. See Farrell [4], Lemma 4.2, page 7. Suppose then that
mdy g((s,) = m,d, 85)(s,) for every s,,. Since f{"(s,) are normal densities, it follows
that g{3(s,) = g§°(s,) for every s, and md, = m,d,. In turn this would imply that
I, =T, by the uniqueness of LaPlace transforms. Under these conditions the
Bayes test is to stop at time 0 and randomize between the two possible terminal
decisions. Now suppose D, = 0 for every s,. Note from (3.1) and (3.3) that

D,(s,) = C,4y + [ min [Dn+1(~"n+1)a 0, dym, gff)“)(snﬂ) - dz”zgg)“)(snu)]
DIN(gs, s,

(3200 =C,yy+ [min [Dn+l(sn+l)’ 0, dym 88')“’(3,.“) - dz'”zgg')“)(snﬂ)]
'p(sn+llsn) dyn+l’

where
(321) p(s,ails,) <[e™5/21/ [0 = O/2T(d) ] - %o
s ™ Mha it /20 D) [ = (4 DO (Sar/n+ DY 0= (Saer/ 1+ D)/2T(4f).

From (3.21) we recognize that the distribution of S,,,|S, = s, is exponential
family and is also a complete family. Hence if (3.20) is identically zero it follows
that min [D,, (s,+1), 0, dlﬂngﬁ'f l)(~‘>'n+1) - dezgg)“’(s,.H)] = — ¢,4y- But
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[dym, 85 (s, 41) — dom2 85" V(s,41)] cannot be identically constant on a set of
positive Lebesgue measure as already argued and so D, ,(s,,;) = — ¢,,;- Con-

tinuing by induction this can be true only if D(s) = Z/.,,,c; > — © as j — .
However D(s;) > — d,. This contradiction shows that D, is not identically zero.
Similarly for E,. Thus we have that if I', and T, are distinct, the set of points for
which D, = 0 or E, = 0 or d,m,g{}(s,) = dym,83)(s,), is a set of measure zero.
This in turn implies that any Bayes test cannot be randomized after stage 0.

To complete the proof of the theorem we note that 8,(s,) can be written as

(322) Bn(sn) = fmln [Bn+l(sn+l)’ C(n + 1) + d272g8')+l)(sn+l)’
X C(n + 1) + dl‘”l gff)+l)(sn+l)]p(sn+llsn) dsn+l’

where p(s,,|s,) is given in (3.21). Clearly B,(s,) is an analytic function of s,. This
completes the proof of Theorem 3.3.

Theorem 3.3 yields the following

COROLLARY 3.1. Under the conditions of Theorem 3.3, any test procedure not
based only on a sufficient statistic is inadmissible.

ProOF. Given any test not based on a sufficient statistic there exists one based
on a sufficient statistic which is just as good. As in the proof of Theorem 3.3 the
matching test based on a sufficient statistic is randomized. Hence by Theorem 3.3
such a test is inadmissible, which implies the original test is inadmissible. This
completes the proof of the corollary.

4. Exponential family and ¢, = 0. In this section we assume that the cost of
the first observation is zero and that a first observation must be taken. Again we
study limits of sequences of Bayes tests. We contrast the distinction between this
model and the model of Section 3 where ¢, > 0. If we consider, as in the
Introduction, the possibility that o, — 0 as I',,(+) send mass to {o0}, then since we
now have an observation, the determination of the limit of a sequence of Bayes
tests depends on the distribution of the observable random variables. When ¢, > 0,
this was not the case. Also when ¢, > 0, such a sequence of priors led to a limiting
test which was Bayes. Now however the limiting procedure need not be Bayes (as
in Farrell). Furthermore it is such a sequence of priors, plus the fact that we have
an observation, that now requires o-finite measures (as opposed to probability
measures) and non-Bayes procedures, such as generalized Bayes tests for example,
in the determination of the limiting test. We proceed.

The random (p X 1) vector X is distributed according to the exponential family
if its distribution is
4.1) Py(dx) = C(0) exp 0’ xu(dx),

where 8 is (p X 1). In this section we assume that the natural observations X, are
independent and identically distributed with distribution of the form (4.1). The
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sufficient transitive sequence S, = 27_,X, at stage n, then has distribution
(4.2) P{™(ds,) = C"(0) exp 8's,y"(ds,).

The measure Yy is assumed to be absolutely continuous with respect to Lebesgue
measure. Let 9 denote the natural parameter space. We also assume C(#)e?* — 0
as® —> 0O — 9, or as ||#|| — oo for every ¢ lying in the interior of the convex hull
of the support of p. This implies C*(#)e®* —0as § - 0O — 9, or as ||| — oo for
almost every s, and every n. In accordance with our earlier convention we will
ignore the set of values of s, of measure zero for which the condition may not hold.
These last assumptions are made so that we may treat cases involving distributions
like the exponential, for example, where 9 = (0, o) but ® = [0, o).

Now let the cost of the first observation ¢, = 0. For j =2, 3,- - - however,
assume ¢; > 0 and lim,_,,, C(n) = 0. Let ®, be compact and ©, C 9. As in the
previous section we will test H, : § € O, vs. H, : 0 € O,.

We start with

LeMMA 4.1. Let z be a p X 1 vector and let Q,(:) be a sequence of o-finite
measures on ©. Then there exists a subsequence and a o-finite measure Q on ©, with
the following properties: There exists a convex set A such that for z lying in the
interior of A, and for any bounded continuous function g : (SIS (— o0, o0),

(43) J8(8)e*°Q,(df) — [38(0)e*°Q(db) < oo,
as k' — o0. For z € A°,
4.4) Je€ ”Qk'(da ) = .

PrOOF. The above lemma is known as the continuity theorem for multivariate
LaPlace transforms. A proof is deducible from Brown [1], Theorem 2.2.1, page 864.

Now let (7, I'1.(+), T, (+)) be a sequence of prior distributions. Let 6(k; X) be
the Bayes tests for these priors and let 6(X) be the regular limit of the sequence
{8(k; X)}. Define an absorbing prior distribution on 0 as a pair (¥,(-), ¥,()),
where ¥,(+) is a probability measure on ®, and ¥,(-) is a o-finite measure on ©,.
A “posterior minimizer” test at s,, with respect to ¥ = (¥,, ¥,) is defined as a test
which minimizes for each s,,

(45) S oeL(8, 8(X)) Po(dX*) C(8)e" ¥ (d)
+ 5,/ - L(8, 8(X)) Po(dx*) e ¥ (db),
where X* = (x,, X3, - - - ) € % * and note 5, = x,. If ®, C 9 then the “posterior

minimizer” relative to ¥,, ¥, may also be described as a generalized Bayes test. If
©, is not contained in 9T, then a “posterior minimizer” need not be generalized
Bayes. (See the definition of generalized Bayes test and Remark 4.1 after the proof
of Theorem 4.1 for clarifications.)

Define the class B of tests as follows: If the observed value s, lies in the
complement of the closure of some given convex set A, stop and reject. If the
observed value lies in the interior of the convex set, then the procedure is



SEQUENTIAL TESTS 393

determined as a “posterior minimizer” test at s,, against some (¥,(+), ¥,(*)), where
¥,(*) is a probability measure on ©, and ¥,(+) is a o-finite measure on ©,, such
that for s, € 4,[ge**¥,(df) < oo.

Before we state Theorem 4.1 we note another distinction between the model of
Section 3 and the model of Section 4. In Section 3, if the sequence of priors
converged to a common measure on the boundaries of ®, and ©,, then the
resulting Bayes procedure was to stop at time zero and randomize between
acceptance and rejection of the null hypothesis. In this section such a sequence also
leads to a Bayes procedure, one which is in B, that requires stopping after the first
observation and then doing anything. Hence in this situation, the Bayes test is not
unique. These particular Bayes tests will be part of the essentially complete class
determined by Theorem 4.1. In special cases of course, such as one dimensional
exponential family, many of the tests would be obviously inadmissible and could
be discarded. Nevertheless, this does not alter the statement of Theorem 4.1. In the
proof of Theorem 4.1, when we say we proceed as in Theorem 3.1 it will be
understood that the above distinction is made.

Now we state

THEOREM 4.1. Let X be distributed according to (4.1). Let ¢, = 0. Then the class
B is an essentially complete class.

Let © be a convex cone. Then the convex set A is the intersection of © and half
spaces whose outward normals are in ©.

PrOOF. The closure of the class of Bayes procedures is an essentially complete
class. To establish a characterization of procedures in the essentially complete class
we study §(x) which is the regular limit of the sequence 8(k; X). Hence consider the
sequence [T}, (*), (75 / 71 ) 2. (*)] and the sequence
(4.6)

A\ ) 8,€ JJ'G’C(a )T1(d8)
o€ J""’C(g Wi (d8) + myf 8,¢ AT"G’C'(o)rzk("” )

= d\[5,e°C(O)T () /| /5, C(O)T 11 (d8) + (mase/ T11) [5,€%°C(8)T i (dB) ].

Since @, is compact, I';,(-) has a weakly convergent subsequence to ¥,(-), where
¥, is a probability measure. For the sequence (m,, /7, ), there are two possibili-
ties. One is that there exists a compact subset B C ©,, and a subsequence with the
property that limy, . (75 /%) 5 (B) = oo. In this case, in-light of (4.6), the
limiting §(X) stops at stage one and rejects @,, for every x,. This is in keeping with
the theorem for 4 = {¢} or 4 a convex set of Lebesgue measure zero. If no such
set B exists however, then by setting Q, = (75, /7,,) C(8)T,, we can apply Lemma
4.1. We thus have that for s, lying in the interior of 4, a subsequence of (4.6)
converges pointwise to the limit

A7) difseC(0)¥,(0)/[ [5,6™°C(O)Y () + [o,"W,(dB)],

dl'”lkgéll;, K(sy) =
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where ¥, is the limit of O, over this subsequence. For s, € A—f, the limit of (4.6)
over this subsequence is zero, which implies that for each such s,, there exists a k*
sufficiently large so that for all k¥’ > k*, the expression in (4.6) is bounded by
e, ¢ > 0 a small arbitrary number. Since B,,(s,) > ¢, > ¢ for all k' sufficiently
large, we have for such k’, 8(k’; X) is such that (8y,(k’; 1), 8,,(K’; 51), 85,(K’; 5)) is
(0, 0, 1), which implies that the regular limit is (8y,(s}), 6,,(s), 85,(sy)) = (0, 0, 1).

For s, lying in the interior of 4 we must proceed as was done in Theorem 3.1.
That is, we want to study §(X) which is the regular limit of the sequence 8(k; X).
Note

(4.8) 8¢ S0C™(0) (7o / T14)T s (d8)
- 619(27 -)éCn- '(0)e s,'oc(o)('”zk'/ 71x) Lo ).

Since e®-98C*»-D(@) 0 as § —» O, — N, for s, lying in the interior of 4,
Lemma 4.1 can be applied so that from (4.8) we have for every s,

(4.9) Je,e =°C(8 Y7o/ 1) Cope(d0) — | 8,¢ S0Cn=1(0)¥,(dh).

Also since ©, is compact, the probability measure ¥, is such that for all s,,
(4.10) [6,%°C™"(0)T ;. (df) — [5,%°C"(0)¥,(dB).

If

£5(s,) = [5,%°C™(0)¥,(d8)/[ [5,6%°C™(0)¥(dF) + [5,6%°C"~'(8) ¥ (db) ],
and
£8)(s)) = [5.£%C™ " (8)¥,(dB) /[ [5,6%°C™(0)¥ () + [5,%C"~'(8)¥ (db)],

then for all n=1,2,- - -, (4.9) and (4.10) imply that g{f) ,.(s,) — &(s,) point-
wise, i = 1, 2. Next consider the truncated and modified truncated problems and
proceed exactly as in Theorem 3.1 to argue that if 5; € A4, the regular limit of the
sequence 8(k; X) is determined as a posterior minimizer procedure at s, against
(¥,, ¥,). This completes the proof that B is an essentially complete class.

The fact that A4 is the intersection of ©® and half spaces whose outward normals
in © can be argued as in Farrell [4], page 21. This completes the proof of the
theorem.

Before proceeding with the next theorem we clarify the distinction between
“posterior minimizer” and generalized Bayes test. Note

DEFINITION 4.1. A generalized Bayes test at s,, with respect to I'= (f‘,(-), ING))
is defined as a test which minimizes for each s,,

[ o L(8, 8(R)) Py(dx*) C(0)e T, (dB) + [5,f o+ L(8, 8(R)) Py(dX*) C(8)e T (dB),

where f‘l(~) is a probability measure on ®, and f‘z(-) is a o-finite measure on ©,.

i

REMARK 4.1. Note when ® C 9, then the “posterior minimizer” relative to
(¥,, ¥,) may also be described as the generalized Bayes test relative to (I'}, I')
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where f‘l =¥, and f‘z(d0) = C~!(0)¥,(df). The following is an example of a
“posterior minimizer” which is not obviously generalized Bayes. Let X, be indepen-
dent, identically distributed random variables with an exponential density f,(x) =
e~ x > 0. Let ©, = {1}, ©, = [0, 0), ¥, = £{0}, ¥, = ¢{1} and ¢ ¢; = c where
c is sufficiently small so that the test is truly sequential. The obvious constructlon
of an equivalent generalized Bayes test would involve setting 1‘2(d0)
C~1(8)¥,(dh). Since C(0) = 0 such a I‘2 does not make sense.
Next we prove

THEOREM 4.2. Let X be distributed according to (4.1). Let ¢, =0 and let
@2 C 9. Then the class B is a complete class. The integrated risk of any procedure in
Bis finite.

ProOF. Use the same argument in the proof of Theorem 4.1, letting ¥, = I‘
and ¥,(df) = C(0)I‘2(a'0) (since C(8) is now well defined on all § € O,_) to
establish that B is an essentially complete class. The statement concerning the
shape of A4 also follows from Theorem 4.1. Hence we need to prove that the
integrated risk is finite and B is complete.

We proceed to show that the integrated risk of the limiting procedure is finite.
The integrated risk of the procedure is less than or equal to the integrated risk of
the procedure which stops after observing x, and then rejects if s, € A°, while for
51 € 4, the procedure rejects, accepts, or randomizes between acceptance and
rejection, depending on whether A(s;) > 0, < 0, = 0, where

(4.11) A(sy) = d2f§zesaoc(0)f2(d0) - dlfgle"10C(0)IA‘l(d0).
For this latter procedure the integrated risk is bounded by
(4.12) dlfglfe"’locw)u(dsl)f‘l(d0) + dzfé,f,{ N {A(s;) <0} e""’C(O),u(dyl)f‘z(do).

The first of the two terms in (4.12) is finite since I',(+) is a probability measure. For
the second term use Fubini’s theorem and (4.11) to find

(4.13) [y (aep<0y{Sa,e°C(8)T(dB)) p(ds,)

< (dl/dz)fAn{A(s.)<0}{f§,es"oc(0)f1(d0)} w(ds,) < oo.

Thus (4.12) is finite and so is the integrated risk of the procedure lying in the
closure of the class of Bayes procedures.

We have already established that the procedures described in the theorem form
an essentially complete class. We next show that they form a complete class. Let
0'(X) be a procedure outside the class such that §'(X) is admissible. Then there is a
procedure §(X) in the class, which is admissible, such that

(4.14) R(8,8") = R(6, ).

Furthermore 8(X) is the regular limit of some sequence 8(k; X), where 8(k, X), is
Bayes with respect to ', = (T'yy, (7, / 71x)T,4), and

(4.15) J[R(8, 8) — R(6, 8(k))]T(d8) - 0 as k — co.



396 L. D. BROWN, ARTHUR COHEN AND W. E. STRAWDERMAN

The above assertions follow by arguments similar to those given in the proof of the
Stein-Le Cam Theorem (See Farrell [4].) Consider

(4.16) [[R(9,8") — R(8, 8(k))]T(d8)
= [[s[ L(8, 8") — L(8, 8(k))]T(d8)Py(dx),

the interchange of order of integration being permissible since I', is finite. By (4.14)
and (4.15), (4.16) > 0 as k — oo. Rewrite (4.16) as

(417) [ Sx-fa[ L(8, 8') — L(8, 8(k)) T (d8)Py(dx*)e**C(0) pu(ds,).
Let A be the convex set corresponding to the procedure §(X). That is, if
s1(x;) € 45, féze:,lyc(o)(WZk/Wlk)FZk(do) —> oo.

Let W = {5, :8'(s)) = (80:(51); 811(s1), 31(sp) is such that either 8¢,(s,) > 0, or
811(sp) > 0}. Suppose u(W N A°) > 0. Then note, since d(k; (X)) is Bayes that
(4.17) is greater than or equal to

(4.18) Iwnalasla,[L(8, 8") — L(8, 8(k)) ]T1,(d0) Py(dx*)e*°C(8) u(ds,)
+ anfo%fé,[ L(6,8") — L(b, S(k))](WZk/wlk)FZk(aﬂ)Po(di*)e"‘oC(B)p(ds,).
The first term in (4.18) is bounded for all k. Also
anZ‘f?x'fézL(a, B(k))('”Zk/Wlk)FZk(do)Po(di*)ex,loc(o)"'(dgl)
< fo oS5, L(0; 8(K))T(dB) Py(dx*) e °C(8) p(ds,) < dy,
since one could stop at stage one and reject for every x,. On the other hand
anZ‘f?x'fézL(aa 8,)(72k/771k)r2k(d0)Po(d’—‘*)es,'oc(g)l‘(dgl)
2 &fwnals,S oo( T/ T )T 24 (d0) Py(dX*) e ’,'ac(g u(ds,) — oo.

Thus the second term in (4.18) tends to co. This contradicts the fact that (4.16) — 0
unless §'(X) rejects whenever s, € A°. Hence suppose 8'(X) rejects whenever
s, € A°. Then conditionally on the event {s, : s, € 4}, §’(X) has the same risk as
8(X). Since 6 (X) is generalized Bayes at s, for s; € 4, and since the integrated risk
is finite it follows that §’(X) would also be generalized Bayes at s, for s, € 4. Thus
8’(X) would in fact be in the stated class of procedures. Thus the class of
procedures is in fact a complete class and this completes the proof of the theorem.

ReEMARK 4.2. The analogues of Theorem 3.3 and Corollary 3.1 can be given for
the model of this section.

5. One dimensional exponential family-one-sided hypotheses. In this section X
is a one dimensional random variable whose distribution is (4.1) with g a non-
atomic probability measure. The sufficient transitive sequence has distribution (4.2)
with y absolutely continuous with respect to Lebesgue measure. We no longer
require that @1 be compact. We do assume though that every 8 € 61 is less than or
equal to every € B,. That is, the hypotheses are one-sided. Also we require that
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either ©,, ©, or both are contained in 9. For this model we can study the cases
where ¢, = 0 and ¢, > 0. If ¢; > 0, we do have the option of stopping at time zero,
or of randomizing at time zero, and this is decided for the limit of a sequence of
Bayes procedures, depending on the limiting behavior of (7, 7,,). The treatment
of this case is similar to the case where C; = 0. Hence let us treat the case where
¢, = 0, both ©, and @, are contained in 9, and there exists a positive number K
such that [— K, K] C 9. The following procedures are said to lie in the class B. At
stage 1, there is an interval (a,, a,), (— o < a; < @, < o) such that if 5; < g,, the
procedure stops and accepts H;; if s; < a,, the procedure stops and rejects H,; if
a; <s; < a,, then the procedure is generahzed Bayes at s, with respect to a
distribution T' = (T}, T, where T, i =1, 2, are o-finite measures on ©, respec-
tively. We will show that B is a complete class of procedures. To start, let
Ty = (714 T1(+), Ti(1)) represent a sequence of prior distributions. Let 8(k; X) be
the Bayes tests for these priors and let §(X) be the regular limit of the sequence.
Consider

(.1 783, k(s1) = WZkf'ézesloc(a)FZk(do)/[Wlkf§,esloc(0)rlk(d0)
+ 7[5, °C(0)T (40 )]
Since g((zl)) «(*) is a monotone function, there exists a subsequence for which

limy._, , 73 83} (s)) exists for all s,. Let st be a point for which there exists a
subsequence such that

(52) limy, o, o 883, i(sT) # O or 1.

If no such s} exists, then 8(X) stops at stage 1 and accepts or rejects H1 as the
left-hand side of (5.2) is 0 or 1. In this case, by the monotonicity of 7, g(z) (51> a,
= a,, and the procedure would be in B. Hence let s¥ satisfy (5.2). We state

LEMMA 5.1. There exist numbers a, < a, and subprobability measures (I'f, I'}),
such that if s, < ay, Ty 89 1(5)) >0 as k' — 00 if 5, < @y, Ty 85) 1(5)) > 1 as
k' - o0; ifa; <8, < ay,

(53) T 88, 1(51) > [,V TH(d0) /[ fg,e* DT ()
+ 5, T3(d0) |.

Furthermore if T'Y = 0, then a; = st. If I's = 0, then a, = st.

Proor. The proof is omitted.
Next we state

THEOREM 5.1.  The class of procedures B is a complete class.

ProOF. The proof is omitted.
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REMARK 5.1. In the case where either ®, C 9 or 8, C 9, but not both, an
essentially complete class characterization is obtainable using the ideas of the
proofs in Theorem 4.1 and Theorem 5.1.

REMARK 5.2. The analogues of Theorem 3.3 and Corollary 3.1 can be given for
the models of this section. In fact in this situation the normality assumption can be
dropped and we can simply require that u is a nonatomic measure. The reason is
that procedures in the complete class are uniquely determined. (See Brown, Cohen,
Strawderman [2] or Sobel [7].)

ReEMARK 5.3. In Sobel [7] and Brown, Cohen, Strawderman [2], monotone
procedures were shown to be an essentially complete class. The result here, in
conjunction with those papers, not only proves that the monotone procedures are a
complete class but also gives a complete class which is much smaller than the
monotone procedures.
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