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THE EMPIRICAL DISTRIBUTION FUNCTION OF
RESIDUALS FROM GENERALISED
REGRESSION

By R. M. LOYNEs

University of Sheffield

Generalised residuals, as defined by Cox and Snell, may be thought of as
residuals from generalised regression. Under regularity conditions on the regres-
sion and on the estimator of the unknown parameters, the asymptotic be-
haviour of the empirical distribution of these residuals is determined. The
addition of a random adjustment to the maximum likelihood estimator leads to
the familiar Brownian bridge as the limit.

1. Imtroduction. The use of (estimated) residuals for the general linear regres-
sion model
(1.1) X=B0+e
is well known: defined as e = X — Bf, where § is an estimator of @ (usually the
least squares estimator), they are used to test the adequacy of the model, and, in
case it proves to be not adequate, to suggest modifications.

There are many situations in which the model (1.1) is inappropriate, however,
and a more general model is called for. Cox and Snell (1968) defined ‘generalised
residuals’ for the model

(12) X, = g(s, 0), 1<i<n
by writing
(1.3) e, = h(X, 9),

where 4; is supposed uniquely defined by the requirement that X; = g,(g;, 0) if and
only if ¢ = h(X,, 0), and, taking § = 6 the maximum likelihood estimator (MLE),
found approximations valid for large n to the distribution of the individual e;; see
also Loynes (1969). In (1.2) the ¢ are assumed independent and identically
distributed and for this reason we regard the model as defining a generalised
regression. There is still a lack of precision in the description however, for we may
think of the distribution of ¢ as containing further unknown parameters, such as
the variance in model (1.1) with the usual assumptions, or as being completely
specified. We shall assume the latter, taking any unknown parameter into the 6,
and consider elsewhere the other possibility. With this understanding the model
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286 R. M. LOYNES

(1.2) is essentially equivalent to the assumption
(1.4) X, independent with distribution functions F,(x, 0),

for suitable F;: that (1.2) implies (1.4) is obvious, and the converse is a consequence
of the fact that under weak assumptions X; = F,"'(U, ), where U, = F(X,, 0) are
independent variables, uniform on [0, 1]. Again using the probability integral
transform and its inverse, if the distribution of ¢ in (1.2) is assumed completely
known, it may as well be assumed uniform on [0, 1], and then the definition (1.3)
leads to

(1.5) e = E(‘X;, 6)

where F(x, 0) is the distribution function of X;, as in (1.4).

In this paper our interest is in the use of the ¢, in a test of goodness-of-fit of a
model, and in particular in tests based on the empirical distribution function of the
¢;. Plainly explicit, exact, results are not to be expected in any such general context,
at least for finite n, and we shall in fact prove a limit theorem valid as n — oo; for
this the results of Cox and Snell are not sufficient, since we need some knowledge
of the joint distribution of the e;. In fact we change the details slightly in order to
allow consideration of certain alternative hypotheses. We follow Durbin (1973) by
assuming that @ = [0}, 0;], where 0, is a vector of p, parameters, 0, a vector of p,
parameters; 0, = 0,, is the null hypothesis, and 0, consists of nuisance parameters,
that are estimated from the data, and then 5,, = [0%0, 5’2,,]’. Moreover we consider,
for a given 1y, the sequence of hypotheses H,(y): 0 = 0, = [0,,, 0], where 0,, =
0, + yn‘% and 0,, is fixed; the null hypothesis corresponds to y = 0. With this
feature of varying n we need to replace (1.4) by

(1.6) for1 <i < n, X, are independent with distribution functions F,,(x, 6,),
and (1.5) by

(1'7) ein = F}n(A,in’ 0~n)’

but we shall drop the additional suffix n whenever possible. In contrast to the
identically distributed case, it is here essential to have a ‘triangular array’ in which

the functions F,, indeed depend on n. The empirical distribution of the ¢; is defined
in the standard way as

(1.8) E()=n""S,I(e < 1)
where [ is the indicator function, and the corresponding empirical process by
(19) Fale) = m3(E,() = 1),

Then the main result of this paper (Theorem 1) is that under H,(y) and with
regularity conditions

(1.10) In=V;

i.e., ¥, converges weakly (in distribution) in DJ[O0, 1] to a process y, which will turn
out to be Gaussian. From this result for ¥y = 0, in principle, asymptotically valid
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tests, such as Kolmogorov-Smirnov tests, can be constructed (cf. Hajék and Sidak
(1967)). For y # 0 we can obtain the asymptotic power against H,(y). In general,
unfortunately, in this case of estimated parameter values the distribution of the
limiting process y, under H,, depends on the F; and even on the particular value of
0, = [0},, 0], which makes such tests not nonparametric and thus largely unus-
able for lack of suitable tables of critical values; we show (in Theorem 2, Corollary
2) that by choosing ,, to be the MLE adjusted by a small random quantity, the
limit process y can be made the familiar Brownian bridge. If this is done the tests
using critical values from the standard tables again become asymptotically non-
parametric: the disquiet one feels at using randomised tests has to be balanced
against the fact that if one wishes to use this kind of test, the alternative is to
construct special tables for every model of interest.

The type of result contained in Theorem 1, for the case of identically distributed
X, goes back at least to Darling (1955). A modern treatment, again for this special
case, which in many ways sets the pattern we shall follow, is due to Durbin (1973);
recently newer treatments have become available, e.g., Csorgo et al. (1977). In the
case treated here, in which parameters are estimated and the X; are not identically
distributed, there seems to be no previous work, not even for the linear model (1.1).

The possibility of randomly adjusting the parameter estimate can also be traced
back, and references will be given later.

2. The main results. The basic description of the model and the basic defini-
tions are in (1.6) to (1.10) and thereabouts: the material up to that point is merely
motivational. For clarity the main results are in the present section (at the end),
while the rather long proof of Theorem 1 is deferred to Section 3. First we list a
number of assumptions and definitions.

Al. There is a neighbourhood, 9, of 0, to which attention is confined: if
necessary by choosing n sufficiently large that 8, € 9, and by discarding
an event, whose probability, by A8, is small for large », in the complement
of which 8, € 9.

A2. For fixed i and n, there exist (possibly infinite) a, b independent of @ such
that, for 8 € U, F,, (a, 0) =0, F,(b, 0) = 1, and F,(x, 0) is continuous
and strictly increasing for a < x < b.

A3. If x,(t, &m) = F,(F;'(t, &), n), then there exists a continuous (vector)
function ¥ = (Y}, ¥5)’ such that,

_1
SUPo< <1, |g— < Ln-2|7 23(x,(1, € 0,) — 1)

—n3(§ - 0,)¥(1)| >0,
as n — oo, for every L < oo.

The distance |§ — 0, in A3 may in principle denote any of the usual, equivalent,
distances indifferently; some of the constructions below, however, are more easily
described if it is taken as the maximum of the absolute values of the various
components rather than, say, the Pythagorean distance.
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Ad4. If

1
K, (e) = sup,n 22i5up|g,_&|<m-%, |e.—0°|<zn"zl',|£,—o.,|<ln“%
1% (2 €15 0,) — X, (2, &5, 6,)|

then K, (¢) — 0 as ¢ — 0, uniformly in n, for every L < o0.
AS. If, for A > 0,

Ln(A) = suptn_%Zisup|£—00|<ln‘%(xin(t + M_%’ €’ on) - xin(t’ €’ on))

then L,(A) >0 as A — 0, uniformly in n for every L < oo. Notice that,
since
8xu(ts &) _ Sl Fir (1, £),m)
o In(FNL 8,8
the term whose supremum is required has a derivative in ¢ of constant sign
if the density f,, has monotone likelihood ratio. In that case attention may
be confined to the two end points t =0 and ¢t =1 — An"2,
A6. n% (0, — 0,) = n~S 1, (X, 0,) + Ay + Z, + 1, where
@ EN,X;06,6=20,=0,for all i and n;
() n7'SEM,(X;, 0),(X,,0,)]|0 =0,]—J; afixed matrix;
(iii) A is a fixed finite matrix (of order p, X p,);
(iv) 1, >0, in probability;
(v) Z,is N(0, Z), and is independent of the X;, and Z is constant;
(vi) n7'3h,( 0,) > h(?) for each ¢, where

hin(t’ 0) = fﬁ;o:)(” a)lin(x’ o)dEn(x’ 0)’

and h is arbitrary;
(vii) under H,(Y), n_%z,l,.,,(Xi, 0,) and any finite set of

=23, {I(F,(X,8,) <1) — t)

with varying ¢ have asymptotically a joint multivariate normal distribution,
with parameters equal to the limits of the appropriate first and second
moments.

This condition A6 largely parallels assumptions of Durbin, of course, though the
introduction of Z, is new. Something similar to (vi) seems to be needed in Durbin’s
work, though it is not explicitly there; condition (vii) is given in this form for
generality and simplicity of statement—Lindeberg-type conditions would presum-
ably often be used in particular applications.

A7: (i) For alli, n, F,(x, 0) has a density f,,(x, 6) such that

9 log fi»(X;, 6,)

d log f,(x, 0,) /00, exists, and E[ 20
p)

o=o,,]=o.
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(i) For all n,

d log f,,(X;, 8,) 9 log f,,(X,, 0,)
00, 00,

9@, = n"E,.E[

o=0,,}

exists, and converges to the finite positive-definite matrix ¢ as

n— .
(iif)
- 3 log f,(X;, 8) 9 log f,,(X;, 9)
n) — 1 . in\“"i in\“%i =
951 n E,E[ 902 80,1 0 00
exists, and converges to a finite limit 9,, as n — co.
@iv)
dF;,(x, ) Uin(y, 6)

20, ~JreTag ¥

for all x when 0 = @,

(v) Assumption A3.

(vi) —n"'9/(30,)2,x,,(t, 0, 0)|s- o, converges to the same limit y,(¢), for
each ¢, which appears in A3.

(vi)) Under H,(y),n 2Z,0/(30,) log f,(X;,0,) and any finite set of
n~iS{I(F,(X,0,) < t) — t} with varying ¢ have asymptotically a
joint multivariate normal distribution, with parameters equal to the
limits of the appropriate first and second moments.

DEFINITION.  If A7 holds, 6, is a randomly adjusted efficient estimator of 0,
relative to the sequence of alternatives { H,(y)} when

d log f,(X;, 6,)
30,

where Z, is N(0, Z) independent of the X;, and e, — 0 in probability. If this
condition holds with Z, = 0, then 0,, is efficient.

n%(éz,, - 020) = n_%g_lzi + g_lgzlY'i' Z" + 8",

ProrosITION 1. If A7 holds, a (randomly adjusted) efficient estimator satisfies
A6.

A8. n%(l;,, — 0,) =4T, T being some random variable.
The notation =4 means convergence in distribution; in the present case this is in
Euclidean space, but elsewhere may be in D = DJ[0, 1].

PROPOSITION 2. A6 = AS8.
A9 (a). For any choice of 5, in the neighborhood |§ — 0, < Ln‘%,

a
-1 2
n 2i a,r' xm(t’ s 0,,)

N=",

converges to the continuous function ¢ uniformly in ¢.
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1

A9 (b). For any choices of §,, n,, in the neighbourhood |§ — 6, < Ln~73,
0
= n7IZ = x,(1, & m)
on §=£n 1=,
converges to the continuous function ¢ uniformly in ¢.

ProPOSITION 3. A9 (a) or A9 (b) = A3.

It is superficially attractive to deal with A3 by introducing derivatives as in A9;
unfortunately A9 is in general too restrictive, though there are cases of interest
which it covers. The proof of Proposition 3 follows immediately from the mean
value theorem, since

25t & 0,) = Zx(1,0,,0,) + (€ — 0,) 3 Zx,(5,1.6,)
where 7 lies between § and 0,,; similarly
Bt 6 0) = Tx, (1,69 + (6, — /5 50 6 W)
where 7 is between 0, and §.

THEOREM 1. Under assumptions Al to A6, with the sequence of alternatives
H,(Y), ¥, converges weakly in D to a Gaussian process y, where y has mean function

Ey(1) = (404 — ¥i(O)y

and covariance function
C(y(t)), ¥(1)) = min(2,, ;) — 111, + Yo(1))(Z + T)y(2,)

+¥5(t)h(2y) + ¥a()h(2)).
THEOREM 2. Under assumptions Al to AS and AT, with the sequence of alterna-
tives H, (v), if 52,, is a randomly adjusted efficient estimator then y, converges weakly
in D to a Gaussian process y, where y has mean function

Ey(t) = (¥5()97 "9, — ‘1/1(‘))7

and covariance function

C(y(1),y(1)) = min(t,, 1) — 1,1, + Y(1)(E — ™ N(8y).

‘

COROLLARY 1. If no random adjustment is made, the covariance function of y is
C(y(1)y(ty)) = min(t), ;) — 1,8, — ¥5(1,)97"Yy(2)).

COROLLARY 2. If the covariance matrix of the random adjustment, Z, is chosen
equal to 97", then the covariance function of y is
C(y(tl)’ J’(tz)) = mjn(tl’ t2) - tltZ’
the same as for a Brownian bridge; for the null hypothesis y = 0, y is a Brownian
bridge.
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Provided §~! is continuous at @, we may choose = = §~!(@,) in Corollary 2,
and the result remains valid.

The proofs of the corollaries are of course trivial, while Theorem 2 follows
immediately from Theorem 1 if we note that, under the additional assumptions, the
values 4 = 97'9,,,J = 97!, and h(¢) = — 9~ '¢,(¢), are readily determined.

3. Proof of Theorem 1. It will be plain that the following owes much to
Durbin (1973). However the neat use of random time-change by Durbin cannot be
imitated here, and a much longer proof, adapted from Rao and Sethuraman (1975),
is necessary.

First note that

3.1 Fy(t)=n""37_1(¢, < f) = n'SI(U, < x,(1,9,,6,)
where
(32) Un = Fn(X;, 0,)

and U,, 1 <i < n, are independently and uniformly distributed on [0, 1] under
H, (y). Thus

(33) 5u(0) = 07325 (I(U,, < 1) = 1) + d,(1) + R()
where

(3.4) d,(6) = n~13"_\(x.(1, 6,, 0,) — 1)

and

(35) R,() = n~1Z)(I(U,, < x,(t, 6,,8,)) = I(U,, <©) = x,(s,6,,0,) + 1).
Now under H,(y) the first term in (3.4) converges weakly as usual to the

Brownian bridge, and we shall show that R, is asymptotically negligible, so that it
will then be only the effect of 4, that will need consideration.

LEMMA 1. Under assumptions Al, A2, A4, A5 and A8, R, —,0.

It is of course easy to replace the conditions in Lemma 1 by others involving the
suprema of the derivatives of x,,; it turns out, however, that the end-points, ¢ = 0"
and ¢ = 1, give trouble with the derivatives even for otherwise well-behaved F,,,
and it is often easier to avoid use of the derivatives.

Proor. The method is that of Rao and Sethuraman, although the details are
quite different.
Define

(3.6) R,(t,8=n" T2 {I(U, <x,(6£9,) — I(U, <1) — x,(, £ 0,) + 1},

so that R,(f) = R,(¢, 6,,). Since, given ¢ > 0, we may find L < co such that
P[|6, — 6, > L/n3] < ¢, it is sufficient to show that, for any w > 0 and any fixed
L, P[supyc,<1SUP—gy<r/n|Ra(t, §)] > @] 0. In fact we shall merely deal with
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R (1, §), omitting the modulus sign, but it will be plain that there is no difficulty
completing the argument.

Subdivide the cube centred at @, of side 2L/n3 into (approximately) (2L/¢)?
cubes of side &/ n%, where ¢ > 0, and, labelling them arbitrarily, let the kth such
cube be L}. Let £,.(9), £&,,(¢) be the values of £ € L at which x,,(¢, § 0,) take its
maximum and minimum values respectively. Then

xin(t’ f}cin(t)’ on) - xin(t’ £3cin(t)’ on) < q*in(t’ 8)’

where

3.7
gin*(t, 8) = SUPK,—£2|<e/n§, |€,—00|<L/n%,|&—00|<L/n';'|xin(t’ £,0,) — x,(1, £, 90,

and hence
(38)  supgerR, (1 §) < "_%E{I(U < xu() = I(U;, < 1) — xiu(2) + 1}

+ n'%Eq,.,‘:‘(t, e),
where we have also written x,,(£) = X;,(Z, £kin(1); 0,)-

The second term on the right-hand side is not greater than the K (¢) of A4, and
may thus be made arbitrarily small by suitable ch01ce of e, independently of n, ,
and k. Now subdivide [0, 1] into (approximately) n2 / A intervals of length A/n 3 by
points f,, where ¢, < £, and write T* = {#:f, < t < t,,,}. Then since x,,(¢, § 6)
increases with ¢ it follows that x;,(¢) also does, and thus, for the first term on the
right-hand side of (3.8), if ¢ € T;“

(39) nHE{I(U, < xm(®) = 1(Uyy < 1) = xiu0) + 1)
_iz{l(ljin < Xp(ty41)) — (U, < 1) = Xiu(t,00) + t}
1
+n7 22 {t4 — 4+ Xu(fsr) — Xime(8)}-
The second term here
1
=+ n_zz{ (ts+l9 £km( +l) 0 ) xin(ts+l’ g}a‘n(ts)’ on)
+ xin(ts+l’ £kin(ts)’ on) - xin(ts’ gkin(ts)’ on)}
<A+ n_%zq}:‘,(ts;l, e) + n'%Efin(A, t)
where
1
Iino" t) = sup|£—00|<£l{xin(t + }\/nz, f, 0,,) - xin(t9 g’ on)}
n2
and by suitable choice of A and & this too can be made negligible for all n. The

term that remains is

(3.10 1~ 13 Boks — Pinks ) SE0(inks) = ZW,y,, say
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where p, = |Xim(t4+1) — s Bk, are Bernoulli variables, with expectation p,,,
independent as i varies, and sgn(inks) =1 or —1 according to the sign of

Xm(t,+1) — 1. At this point the argument of Rao and Sethuraman needs a little
adjustment, since the signs concerned are not independent of i. Nevertheless we
can write

ZWis = 1~ Z{E.en( ks — Pinks) — 2ieT_(Binks pmks)}

where T, = {i:sgn(inks) = + 1}, T_ = {i:sgn(inks) = — 1}.
Thus

P[ZW,y, > /2] < P[Eien(&m ~ Pins) > n:w]

n2w
+P[—z,-e,~_( e =) > 52|

Rao and Sethuraman’s argument (from (2.39) on) shows that the first term is not
greater than

(3.11) exp( )HT E exp(t(Byy — Pinks))s t > 0,

and in fact the product, over i € T, may be replaced by the product over all i,
each factor being not less than 1. Moreover
2 Pinks = Z|Xiue(ty41) — 4|
< 2|xm(t.v+1’ fkm( +1)> 0 ) Xin(ty1s 0,5 0,)] + Z]t54y — 1]
< TEQi:(ts+1’ e) + nik

< n%(}\ + 2K,(e)L/e),

< nI(A + 2KLe™Y),
where K = K(¢) = sup,K,(¢) < o, and from this the argument may be completed
as in Rao and Sethuraman: we may choose, for example, ¢ = log (1 + w/(w + 4A
+ 8KLe™ ")), and use the facts that § > log (1 + 8) > 8 — 82/2 to show that the

expression in (3.11) is not greater than exp — an where C = w?/{8(w + 4\ +
8KLe™)}.

LEMMA 2. Under assumptions Al, A2, A3 and A8,
d,»qT'V.
It follows at once that d, — n%(é,, — 0,)y —,0, and the remainder of the proof is
trivial.
The proof now is almost complete. By Lemma 1 we may ignore the last term in

(3.3), and each of the first two terms converges in distribution, and their distribu-
tions are therefore tight; thus their joint distribution is tight. (Billingsley (1968)
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page 41). The joint distribution of these two terms therefore converges weakly
provided their joint finite-dimensional distributions converge, as they do according
to A6 (vii) and Lemma 2. Finally, the map (g, #) > g + h in D is continuous
where g + h are continuous, and the fact that y, converges in distribution is now
obvious. To evaluate the limiting distribution is also straight forward, and the proof
of Theorem 1 is complete.

4. Random adjustment. The technique of making random adjustments has
appeared several times in the literature, though it has usually been thought of as
applying to the residuals, or observations, directly, rather than to the parameter
estimate.

Durbin (1961) replaced the observed value of a sufficient statistic by an indepen-
dent observation from an appropriate distribution in order to remove the effect of
a nuisance parameter. Although this may well be related to the present work, since
the MLE is asymptotically sufficient, it seems very difficult to apply his technique
using the MLE. See also Durbin (1975).

Tiao and Guttman (1967) adjusted the residuals for a sample from N(y, o) in
precisely the same way as the present approach, but without considering it as
involving the use of a new parameter estimate.

Theil (1965, 1968) introduced a definition of BLUS residuals for the general
linear model specifically in order that they should have a scalar covariance matrix.
It turns out that these residuals are closely connected with our adjusted residuals.
For simplicity, consider only the case of a sample from N(pu, 6%), say X,, 0 < i < n.
Although there are n + 1 observations, only n residuals can be defined, and these
will be chosen to correspond to i = 1,2, ..., n. Then we find

e=X,—X—(1+(n+ 1)%)_1(X0—)?),
which to order n~? is equal to
= X, — (T + n~40X - )

where X, is the mean of X,, X, - -, X,, and since as far as the observations
X(i=12---,n) are concerned X, — u is an independent normal random
variable, this is exactly the type of random adjustment dealt with previously.

Rao (1972) exhibited for a simple random sample an adjustment to the process Y,
which behaves as in the case with no nuisance parameters; Durbin (1975) noted
that this is equivalent to the use of 0}, the MLE based on half the sample, rather
than the full sample value . This almost fits the present framework (which could
be extended easily to cover it): if we write 0} = 0 + o, then ¢ is not independent of
the observations, but it is (asymptotically) independent of 6 and of the first term in
(3.3), as is easily seen if the usual asymptotic expansion for the MLE is used, and
this is sufficient. The absence in this case of external randomisation is counterbal-
anced by the need to choose a particular half-sample, as Durbin observed. In fact,
one of the advantages of the formulation of the present paper is that it is made
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clear exactly how much randomisation is needed: a p,-variate normal variable as in
AG. (Strictly speaking this is the maximum amount of randomisation needed,
although in the general case this will indeed be required: if some component of
Y,(?) vanishes for all 7, then no randomisation is required for that component of

0,,. See Section 5 (iii) for an example.)
The use of random adjustments need not of course be confined to the situation

in which empirical distribution functions are studied. One is, however, reluctant to
use them on general philosophical grounds and also because one assumes that their
use must in general lead to a loss of power. The only evidence available on this
latter point is due to Stephens (1978), who shows that this is indeed so, although
the extent of the loss varies from case to case. It is of course worth noting that in
all the cases considered by Stephens, the alternatives belong to quite separate
families from the null hypotheses, in contrast to the kind of alternative allowed in
Theorem 1. But this question of power is in any case not, I think, very important,
for if tables for the correct test were available no one would use the randomised
test.

S. Examples.

(i) Identically distributed observations.  The conditions imposed here are
slightly stronger, but otherwise the results here are, except in allowing random
adjustment, as in Durbin (1973); random adjustment can in fact be carried out
under exactly his conditions.

(i) Linear hypothesis. If no detailed distributional assumptions about ¢ are
made, (1.1) does not provide a model in the sense used here, but it is possible to
discuss random adjustment to a limited extent in terms of first and second
moments. Supposing that B is of full rank for convenience, and as usual supposing
€ to have uncorrelated elements with variance o2, the least squares estimator
6 = (B’B)~'B’X, and the corresponding residual vectore = X — B = (I — M)e,
where M = B(B’B)~'B’; moreover the covariance matrix of e, V(e) = (I — M)o>.
Suppose instead we use an estimator 6 = @ + 8, where § has mean 0 and is
uncorrelated with X, and V(8) = (B’B)”'6?; then the corresponding residuals
f = X — B0 have V(f) = 0’ I—i.e., are uncorrelated and have in fact the same
structure as &. Such an adjustment is approximately equivalent to the use of Theil’s
BLUS residuals, as noted earlier.

If we specialise to the case in which the elements of & are independent N(0, 0?),
and 8 is normal, then f also has independent N(0, %) components; this simple
exact result is only relevant when ¢ is known. Notice that this is a much stronger
result than could be obtained from Theorem 2, Corollary 2: the latter merely shows
how to ensure that a particular function of the adjusted residuals behaves as
though they were independent.

(iii) Simple linear regression. Suppose X,, = a + u, B + ¢,, where the ¢, are
independent N(0, 1) variables; the unknown variance case we leave for the mo-
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ment. Assume for convenience 2,4, = 0, that ay = B, = 0, and that in the earlier
notation p, = 0: there is no question of evaluating power against alternatives.

LEMMA 3. If n~'Su? — b, then conditions A4, AS, A7, AX(a) are satisfied, the
least squares estimator is efficient, and y(t) = [(®~'(#)), 0], § = diag(l, b).
Clearly F,(x, 8) = ®(x — a — Bu,,), and so
Xa(t, &) = (I)(‘D_l(’) + (o — o) + (B - Bq)uin)’
Now
¢((I)—l(t) + (a€ - 0/,,) + (Bﬁ - B‘q)ux’n)
u,.,,¢((I>"(t) + (o — o) + (B, — ,B,,)u,-,,)

so that
K,(e) < 21 + |u,[)sup &,

and A4 follows. Moreover A9(a) is easily proved, if the term ¢(®@~'(¢) + o, +
B,u;,) in the derivative of x,, is replaced by ¢(®~ 1) + (a, + B,u;,)¢'(x.), and the
fact that ¢’ is bounded is recalled; thus A3 is satisfied by Proposition 3. Moving on,
A7 (iii) is here vacuous, and A7 (i), (ii), (iv), (v) and (vi) are immediately verified. It
is just slightly more difficult to deal with A7 (vii): it is easily seen that it is
sufficient, by using the Cramér-Wold device to show that, for any k and m,
(Zu, X, + m3 Y,.)n_% = T, is asymptotically normal with the obvious parameters,
where (X;, Y;) are independent for different i and identically distributed, X, are
N(0, 1), and all moments of Y, exist. Assume for convenience that, for each n, u,,
have been reordered so that u2 increases with i, let A, be a sequence decreasing to
0, and define I, as the maximum value of i for which n~'w? < A,. Then, for
i > 1I,, u?, > nA,, and it follows that for large n (n — I,) < 2b/)\.,, Now T, can be
expressed as the sum of 2 independent components, one involving i < I,, and the
other i > I,; as far as the latter is concerned, the part involving X is already
normal, while the part involving Y; has variance proportional to n~'(n — 1,), and
so is asymptotically negligible provided n\, — co. Now we use Liaponov’s theorem
on the other component, and for this we have to show that I E|lu, X, +
mY,P/[SE(lu,X; + mY)2]2——>0 (Loéve Section 20.1.a(ii)). The numerator is not
greater than a multiple of =, |u,|* + LKE|Y]’, (Loeve Sectlon 9.3, ‘c,-inequal-
ity’), where K is; constant, which, since |u,|> < u,,,}\,,znz is o(n 2) If the denomina-
tor is exactly of order n;, as would usually be the case, the result follows: we can
ensure this by everywhere replacing Y; by Y; + Z, where Z; are independent
N(0, 1), and then proving that 7, + n~iy Z, is asymptotically normal, from which
the required result follows at once.

Finally, since the efficiency of the least squares estimator is easily checked, we
deal with AS. The derivative of the term whose supremum is sought is easily seen to
be of constant sign, and the supremum therefore occurs either at t =0 or ¢t = 1,
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and it is also easily seen that the worst case is either # = 0 and §,, = a; + By, =
1

L( + |4,)n"2 or t = 1 and §,, the negative of this value; clearly it is sufficient to

deal with the former, so we consider

n~7Z,0(07 (A7) + §,)
<n73Z{9(@7(\n77)) + 8,0(27'(An73) + 8,)},

by the mean value theorem and the monotonicity of ¢. The first term equals A and
is consequently well-behaved, while for the second we may note that, since for
large n |u,,| < (2b)%n% and thus §,, is bounded for all i and » by a constant, say K,
it is not greater than

n~3¢(@"'(A\n"7) + K)Z8,,

Again, 3§, < K 'n? for suitable K ’, so that we may consider K'¢p(®~ l(}\n‘%) + K)
< K'¢(®@"'(A\) + K), from which the required result is obvious.

Thus Theorem 1 is valid for any estimator satisfying A6, and Theorem 2 is valid
for the least-squares (ML) estimator, both under the conditions on u,, previously
given. Notice the curious consequence of the fact that the 8 component of ¢
vanishes: the limiting covariance function is unaffected by the particular estimate
of B used, provided it satisfies A6, and thus if we wish to recover the Brownian
bridge as a limit, we have randomly to adjust &, but B needs no adjustment. The
comment at the end of (ii) above is relevant here. (It may also be checked that the
random adjustment to & suggested by Theorem 2 is the same as that in (ii).)

Now suppose the variance is unknown, and write @ = (a, 3, 6)’. Then choosing
0, = (0, 0, 1) for convenience, the analysis goes through much as before, and
Lemma 3 is valid in this case also, except that now () =
[$(@ (7)), 0, ' (H)p(@ (9], and § = diag (1, b, 3). _

(iv) Feigl and Zelen model. Cox and Snell (1968) and Loynes (1969) discussed
a model proposed by Feigl and Zelen (1965), in which the observations have the
structure

X, = a exp (Bd)e
where ¢ are exponentially distributed, with unit mean. Again we shall ignore the
possibility of alternative hypotheses.

LemMa 4. If n~'Sd2 — b, then conditions A4, AS, A7, AX(a) are satisfied, with
W) = (—a~'(1 — Hlog(l — #), 0), I = diag(a 2, b), and the MLE is efficient.

The proof of this is straightforward, but rather long and tedious, and we do no
more than sketch the bare outline. A4 follows without difficulty, by the use of the
derivative of x;,, from the condition that n~'3|d,,| is bounded, if one uses the fact
that ue** is bounded in u < 0 for k > 0. A9(a) follows fairly easily in a similar way
using second derivatives of e**, except that one has to show that

n~!1S(e*%Pe — 1) 50
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provided | 8;| < Ln~3. Now one has
e*%P: = 1 x B.d, +;Bidie%%,

for some § with |9| < 1, and since from n~'Sd2 — b one knows that d,, = 0(n3),
the rest follows. Also that there is no difficulty in dealing with A7, so that A5 alone
remains: the maximum of each term again occurs either at ¢t = 0 or at # = 1, and
approximation in the above spirit suffices to show that the condition is satisfied.
The efficiency of the MLE may also be dealt with.

Thus Theorems 1 and 2 apply under the given conditions.

Note added in proof. Since this work was completed two papers dealing with
the empirical distribution function which are related to it have appeared.
Mukantseva ((1977), Theor. Prob. Appl. 22 591-602) deals only with normal linear
regression, but needs essentially no conditions. The main result of Pierce and
Kopecky ((1979), Biometrika 66 1-6) is similar to that of the present work; no
proofs are given.
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