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CONSISTENT WINDOW ESTIMATION IN
NONPARAMETRIC REGRESSION

BY C. SPIEGELMAN' AND J. SAcks® 3
Florida State University and Northwestern University

Stone proved that nearest neighbor estimates of a nonparametric regression
function are “universally” consistent. We show that the same holds for window
estimates, and we obtain a rate of convergence under some restrictions.

1. Introduction. Let (8, X) be a random pair such that E#2 < oo. For any
estimate 8(X) of @ the statistician incurs loss L(f, §) = (§ — 8)*. The risk to the
statistician is defined by R(§) = EL(#, 8). It is well known that the Bayes estima-
tor 6*(X) = E[6|X] has the property that R(6*) = minzR(§).

The form of the joint distribution of (8, X) is often not known, even approxi-
mately. However, from prior experience, independent and identically distributed
random variables (6, X;),i = 1, - - - , n, having the same distribution as (8, X) are
available. The usual maximum likelihood procedures for estimating 8* are inap-
propriate when the joint distribution of (8, X) does not have a finite number of
unknown parameters. Similar comments apply to ordinary least square procedures.
A number of authors show that certain nonparametric estimates, §,, of 8* have the
property (L,-consistency) that E(§, — 8*)> > 0 as n — co. The most general work
is by Stone (1977) and references to other work may be found therein. In
particular, Stone shows that, under minimal assumptions, nearest neighbor esti-
mates have this L,-consistency property and raises the question about whether
kernel estimates behave similarly. We show here that window estimates do behave
similarly (Theorem 1 in Section 2) and note that the same is true for a class of
kernel estimates.

More generally, Stone treats the class of estimates §, = 3,_,W,.0, where
W+, W, are termed “weights” and gives, in Theorem 1 of his paper,
conditions on { W} (these are restated below in (2.1)) under which §, is L -con-
sistent for all » > 1. (The sequence of estimates {§,} is L,-consistent if, whenever
E|0] < oo, lim,_,  E(|§, — 86*|") = 0.) If {§,} is L,-consistent for all » > 1 regard-
less of the distribution of X (the conditions stated in (2.1) depend on the distribu-
tion of X) then {4§,} or { W} is said (by Stone) to be universally consistent. Stone
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shows that the weights defining nearest neighbor estimates are universally con-
sistent. If {b,} is a sequence of positive numbers with b, — 0 and if

K,=1, if|X; — X[ <&,
(1.1) =0, otherwise,
o = max{0, 21K},

where || - || is a norm on R?, then W,, = K,/ K* defines the weights for a window
estimate of 6*. We will show, under a natural restriction on b,, that K,/ K}
satisfies the conditions of Stone’s Theorem 1 for any probability distribution on X,
thereby establishing the universal consistency of window estimates (see Theorem 1
in Section 2 below). In a comment at the end of Section 2 we point out how this
can be extended to a class of kernel estimates. In Theorem 2 a rate of convergence
is provided when 8* satisfies a Lipschitz condition and the distribution of X has
compact support.

When this paper was originally submitted, a theorem more special than Theorem
1 was stated. During revision the improvement to the present Theorem 1 was
obtained. Independently, Devroye and Wagner (1980) obtained the same result for
a class of kernel estimates. Upon learning of the Devroye-Wagner result we were
able to extend Theorem 1, as indicated in the Remark at the end of Section 2, to
the same class of kernel estimates. There is some similarity between our proof and
that in Devroye-Wagner. By relying on Stone’s result our proof is somewhat more
concise. Both proofs depend on the covering number of a sphere which we define
as follows:

DeFINITION.  If || - || is 2 norm on R? and § is a compact set, let C(S, p) be the
minimum number of closed balls of radius p needed to cover S. If S is a closed ball
of radius 1 then we use the shorter notation C(p) to denote the covering number of
S. _

Similar covering numbers play a crucial role in Stone’s verification of his
conditions for nearest neighbor estimates.

2. Results. Let §,(X) = Z{W,,0, where W,, = K,/ K¥ with K, and K} de-
fined in (1.1). Our goal is to show that the conditions of Theorem 1 of Stone (1977)
are satisfied by W,;. These conditions are:

(a) For some C,, E[Z].,W,8(X)] < C,Eg(X) for all nonnegative g.
(b) For some D, PC}|W,,| < D)=1, foralln.
Q2D (© ZWullyx-xi>a —90 in probability for each a >0 (I =
indicator of the set B.)
@ Zw,->1 in probability.
(e) sup]|W,|—>0 in probability.
It is trivial that (b) and (c) are satisfied. It remains to establish (a), (d) and (e).
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LEMMA 1. Let o(x,y) > O for x,y € R®. Let
D,(x) =E[‘P(X1’ x)! |X; — x| < bn]'
Then,
E[Si0(X, X)W,] < E[D,(X)].
Proor. Since X, X,,- - -, X, are iid., and W,, depends on X, only through
K,;, we obtain
E[‘P(Xi’ X)Wm-|X, X Ximp Xigs s 05 X Km]
2.2) =0, ifK,=0
= W.E[o(X, x)|K, =1, X=x], ifK,=1X=x.

Since W,; = 0 if K,; = 0 and E[p(X,, x)|K,;, = 1, X = x] doesn’t depend on i, the
right side of (2.2) equals W,;D,(x) if X = x. Thus

E[9(X,, X)W, ] = E[ W,;D,(X)],
and summing produces
E[Zo(X, X)W,] = E[SW,D,(X)]
< ED,(x).

LEMMA 2. Let p be a probability measure on R® (p is the distribution of X). Let
| - || be @ norm on R such that all closed bounded balls are compact. Let S(a, b) be
the ball with center at a and radius b. Then

1
SUp, ,er4, p>of ||u—y||<bm p(du) < C(3)

where C(1/2) is defined in Section 1.

ProOF. It is easy to see that, if S = S(a, b), then C(S, b/2) = C(3). Let
S(xy, /2), -+ -, 8S(x,, b/2) (c = C(3)) be balls which cover S(y,b). If u €
S(x;, b/2) then S(x;, b/2) C S(u, b). Hence

1 (%) p(du)

Isr, v y.[S(u, b)] p(du) < Z iil fS(xp 5/2) 1"'[ S(u, b)]

1 du)
< 5¢(3) )
25 S TS e, /)]

- o)
and Lemma 2 is proved.
REMARK. If ||z|| is sup, ;4|2 where z = (z), - - +, z,) (so balls are rectangles

in d-space) then C(3) = 2%

LemMMA 3. (a) If || - || is equivalent to the Euclidean norm then C(b,) = 0(b; %).
(b) In general,
C(b,) = 0(b; 108 (2)/1082),
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PrOOF. By dealing with rectangles (a) is easy to get. In the general case, use
c@™ ) < [

THEOREM 1. If

C(b
(23) ﬁmn_m__(n n) =0
then {K,;/K¥} is universally consistent. Thus, by Lemma 3, if || - || is equivalent to

the Euclidean norm, then nb? — oo implies that the window weights are universally
consistent.

PROOF. As noted after (2.1), we have to show that (a), (d) and (e) of (2.1) hold.
To obtain (a) apply Lemma 1 to ¢(x;, x) = g(x;) and obtain, with p denoting the
distribution of X,

E[S1W,8(X)] < E[ D,(X)]

g(u)u(du)
I"[S(x’ bn)] ’

p(dx)
= Je(W)u(du) [ s by~ cr T -
S6 2 [ S(x, b,)]
Now use Lemma 2 and bound the last expression by C(3)Eg(X) which establishes
(a) of (2.1).

To show that (d) and (e) hold it is enough to show that K} — co in probability.
Let m,(x) = P[|X, — x| < b,] and note that, given X = x, K* is binomial with
parameters 7, m,(x). Then, if B is a positive number < 3nw,(x), use Chebyshev’s
inequality and get
(24) P[K} < B|X = x] = P[K} — nm,(x) < B — nm,(x)|X = x]

1
nm,(x)

= fp‘(dx)fs(x, b,)

Let A be a compact subset of the support of u with u(4) > 0. Then

P[K} < B,X € A] < [ 4n(wmv)/25B) w(dx) + p[4 0 {nm,(X) < 2B}]

n,(x)

1 B
(2.5) < 3B + fAn{M,(x)<ZB)W“(dx)

1 B 1
< E'E + EIA 77,,(x) [.L(dX).
Let x, € R“ Then, from Lemma 2,

Jstx, bpﬁ wdx) < C(3)-
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Since 4 is compact, 4 can be covered by C(4, b,) balls of the type S(x,, b,) with
X, € R So the last term on the right side of (2.5) is bounded by

B 1
3, C4, b,)C(3)-

Since A4 is compact, C(4, b,) = 0(C(b,)), and therefore

* —_— ———
(2.6) P[K} < B,X € A] < 5 + y(4)B—2>.

Since C(b,)/n is assumed to go to 0 we get

1
<28
and this is enough to show that K} — oo in probability. The theorem is proved.

THEOREM 2. Let 8(x) = E[0|X)). Assume
(@) [8(x) — 8(2)| < B,||x — z|| where || - || is equivalent to the Euclidean norm,
(b) u has compact support,
(C) bn = n—l/(2+d)a
@ E[0 — 8(X)X] < 0% < 0.
Let §, = 2. (K,;/ K})0,. Then

E[8, — 8(X)]* = O(n~2/C+d),

2.7 lim sup, ,,P[ K} < B, X € 4]

PROOF. It is straightforward to obtain

E[8, - 8(X)]* = E[3(6, - 8(X)W,,]?
(2.8) +E[3(8(X,) - 8(X)) W, ]’
+ ESA(X)(1 - =W,).

From (a) and (b) we conclude that § is bounded on the support of p so that
29) ESX(X)(1 — 3W,) = () P[K* = 1]

- 0(1)5[%:].

From (a) and Cauchy-Schwarz, we get
E(S(8(X,) - 8(X)W,.)" < E[2(8(X)) — 8(X))’W,,]

< BE[S}IX, — XIPW,,].
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Now use Lemmas 1 and 2 and bound the last term by

llx, — x>

B, [pu(dx,)f s(x,, W ) p(dx)

(2.10) = 0(82)f u(dxy)f s, b,)—‘g(-;-’-)’%

= 0(b2) = 0(n=2/2%9),
Next we note, with the help of (d), that
E(3(8, - 8(X,))W,,)" = E[2(6, - 8(X,))’ W3]

1
< E[ZW2] < oE| — |.
TEE <o [K:]

Let b(j, m,(x), n) be the binomial probability of j heads in n tosses with
probability of heads = =,(x) and get

1
(2.11) E[ =

X = x] = 50, 7,(x). 1) + o, 550, 1, (). )

, 2
< 2j<mr,,(x)/2b(.], 77n(x)9 n) + m .

The first term on the right side of (2.11) is bounded by 1/nw,(x) as shown at (2.4)
(take B = nm,(x)/2). Therefore

1 _3 ()

& <wln

If p has compact support then the argument following (2.5) shows that the second
term on the right side of (2.12) is

(2.12) ' E

O(C(b,,)/n) = O(n - lb”_d) = O(n_z/(z"fd))‘
Then (2.9), (2.10) and this last result establish Theorem 2.

ReEMARK. Theorems 1 and 2 can be extended to some kernel weights. Let J be a
function on [0, o) with 0 < J(¥) < B, J = 0 outside a compact set, J(£) > a > 0
on [0, #,]. For simplicity assume B =1 and the compact set is [0, 1]. Define
Ji = J(|x; — x||/b,), J¥ = max(1l, ZJ,). The only difficulty in extending the
argument to the weights J,;/J¥ lies in confirming (a) of (2.1). To do this, note, as in
Lemma 1, that
(2.13)

J. K.
E —m‘g(X)‘X,X,“‘,/\,‘._,/Yi s '9X”9 Wm" <_—A—-"DnX.
[J; i 1 1 +1 Km‘+2:;ei']m ( )
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Also note that
1 1
—_— = < . = _— = .
R, S X x} E[K,|X x]E[ S X x}

Let g,(x) = P[|X; — x| < t,b,]. As before let E[K,|X = x] = m,(x). Argue as in
(2.11) to conclude that

(2.14) E[

(2.15) E[ 2,;,- X = x] - o( nqnl(x) )
Combine (2.13), (2.14), and (2.15) and get
(2.16) [ (x)' = x] = 0(1) D, (x) =22 ,.((X))
Add up and obtain, as at the beginning of the proof of Theorem 1,
@17) E[ ; g(X)]' - 0(1)5[ g; }

= 001 ()0 20 223,

Since S(u, b,) can be covered by C(¢,) spheres of radius #ob, the inner integral in
(2.17) is bounded by C(t,)C(3)Eg(X)0(1), where, as in the proof of Theorem 1,
Lemma 2 is used. This confirms (a) of (2.1).
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