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ON BAYES SEQUENTIAL TESTS REGARDING
TWO KOOPMAN-DARMOIS DISTRIBUTIONS:
BOUNDS ON THE MAXIMUM SAMPLE SIZE

By J. E. MANN AND T. L. BRATCHER
Virginia Polytechnic Institute and State University
and The University of Southwestern Louisiana

A result due to Ray is extended to cover hypothesis testing problems in
which samples are taken sequentially in pairs from two independeni distribu-
tions of a one-dimensional univariate exponential family. In particular, for
certain reasonable restrictions on losses and costs, an upper bound to the exact
stage of truncation is obtained for a truncated Bayes procedure.

1. Introduction. S. N. Ray (1965) gave conditions for the existence of a
truncated Bayes sequential procedure and developed a criterion for determining
upper bounds to the point of truncation of a sequential test regarding the parame-
ter of a one-dimensional exponential family of distributions. These results are
contained in Theorems 1.1 and 1.2 below.

In this paper Ray’s result, Theorem 1.2, is extended to cover hypothesis testing
problems in which sampling is from two independent distributions belonging to the
same one-dimensional exponential family. This result is given in Theorem 2.2
below. It is also shown that the assumptions for Theorem 1.2, as stated by Ray
(1965), should be modified.

Since the notation to be used is standard, we shall simply identify the symbols
used and refer the reader to Ray (1965) for precise definitions. Thus, let 4 be the
action space; I' the parameter space; L(0, a), # €I, a € A, the loss; and c¢(f) the
cost of a single observation. For any prior distribution, £, of ©, let p(§) be the Bayes
risk over all measurable randomized sequential procedures; let p,(§) be the Bayes
risk over the subclass of such procedures which are truncated at n; and let A(§) be
the expected reduction in the stopping risk by taking one more observation. If ¢(8)
is the cost of an observation then c(§) represents the expected cost with respect to 6.

The motivation for Theorem 4.1 of Ray (1965) and Theorem 2.2 of this paper is
the following well-known proposition which, for the sake of completeness, is stated
here.

THEOREM 1.1. (See Ray (1965, page 861)). If lim,_ . p,(§) = p(§), there is a
Bayes sequential procedure with respect to § that is truncated provided there exists an
integer n’ such that

(L1) essup[MEe)/c(6e)] < 1

for every n > n'.
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Here ¢ is the prior distribution of ©, and £,. is the posterior distribution of ® after
observing the vector x”.

Thus, if it is possible to determine the left-hand side of (1.1) as a function of n,
then (1.1) provides a test of truncation as well as a means of obtaining an upper
bound to the exact stage of truncation.

In the remainder of this paper, our attention will be focused upon the hypothesis
testing problem for which the action space is 4 = {a,, a,}. Before considering our
extension of Theorem 4.1 of Ray (1965), we shall briefly discuss Ray’s assumptions.

Let X have the generalized conditional density, given ® = 4,

(12) A(x|8) = ¥(8) exp[ OP(x)]

with respect to a o-finite measure p on the real line where # € I', an interval of the
real line, and P is monotone in x.
The prior (marginal) distribution, & of © is assumed to admit the density

(1.3) g(8) = K(a, b) exp[ab + bS5(8)]

with respect to 7, the measure induced on I" by Lebesgue measure on the real line,
where exp[S(8)] = ¥(0) as given in (1.2). Note that (1.2) and (1.3) define naturally
conjugate families.

The loss characteristic associated with A4 is defined by

(1.4) L(8) = L(8, a,) — L(8, ay).

Now let X,,- - -, X, be iid. as (1.2). Since the statistic 7, = Z7_,P(X,) is
sufficient for ®, the posterior distribution §,n of ® may be denoted by (n, ¢), and
the posterior expectation of any function, say g, of ® may be denoted by g(n, ¢),
where ¢t = T,(x"). Remarks (1)—(3) below pertain to the hypotheses of Theorem 4.1,
Ray (1965, page 865), which is stated here as Theorem 1.2.

THEOREM 1.2. (Ray (1965, page 865)). Let X and © have distributions (1.2) and
(1.3), respectively. If u is absolutely continuous with respect to Lebesgue measure and
the loss characteristic is monotone in @ taking both positive and negative values with
positive § probability, then N(n, t) attains its supremum on the set, {(n, t7) : L(n, t{)
=0,n=1,2,-- -}, called the neutral boundary. Moreover, this supremum is given
by
(1.5) An, 17) = |[rL(O) Fy(2; 11 = 1)) din, 155(0)]

where F, is the conditional distribution function of P(X) given © = 0.

(1) The hypothesis regarding the change of sign of L(#) is insufficient to insure a
change of sign of L(n, t) as may be seen by setting f(x|0) = § exp(—8x), x > 0
(6 > 0), taking the distribution of © to be gamma (2, 10), and letting L(§) = § —
and n =2. Then, L(n,t) =4/(10 + f) — 27! and P[L(n, T,) > 0] = 0, where
T, = 27.,X,. Thus, it should be assumed that L(n, r) changes sign.

(2) The assumption that p is absolutely continuous with respect to Lebesgue
measure is made in order to assure the continuity of L(n, ¢) in ¢ for all n. However,
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since L(n, t) depends on the posterior distribution of O, this hypothesis should be
replaced by an appropriate assumption regarding (n, £). It will be sufficient to
assume that (n, r) is absolutely continuous with respect to 7 and that there exist
closed intervals J, and J, of the real line such that [d(n, £)/dr](@) is continuous in
(0, t) over J, X J,. If J, is compact, assume L(#) is Riemann integrable over J,; if
Jy is an infinite interval assume E, ,L(®) converges uniformly. See Bartle (1964,
pages 306, 312, 355) for a discussion of these conditions.

(3) Most importantly, Theorem 1.2—as stated—does not apply to a discrete X.
The revisions suggested in (1) and (2) broaden Ray’s important result to include the
discrete case. His proof remains valid without change. It should be noted, however,
that essup,.A(§,.) may not coincide with sup,A(n, £), but will never exceed it.

2. Comparing two distributions. Let ® = (0,, ©,), and let X" = (X, - - , X))
where X, = (X};, X,;), be a random sample from the joint distribution of X, and
X,. It is assumed that X, and X, are independently distributed with generalized
densities, with respect to p, of the form

(2.1) A(x]8;) = ¥(6,) exp[0,.P(x)], i=12;

and O, and ®, are independently distributed with generalized densities, with
respect to 7, of the form

(22) g(0) = K(a, b)) exp[ a0 + b,S(0)], i=12,
as in (1.2) and (1.3), respectively.

Fori=1,2,define 7, , =37_\P(X,), U,=T, ,+ T, ,,andd = 0, — §,. Itis
obvious from (1.2) and (1.3) that T, , and T, , are jointly sufficient for ®, and ©,,
and the posterior distribution of @, given (n, T, , = t,, T, , = t,), has density

g(8,, 0,|t;, 1,) = C’ eXP{E%-l[(ai + )0, + (b, + ”)S(ai)]}-

Thus, the posterior distribution of ® may be denoted by (n, ¢,,2,). If U, = u is
fixed, then (n, ¢, t,) = (n, t;, u — t,). In this case, we may denote (n, ¢,, ¢,) by
(n, t,, u).

The following lemmas are needed for the proof of Theorem 2.1.

LemMMA 2.1. The conditional distribution of T, ,, given U, = u, belongs to a
one-dimensional univariate family and depends on 0 = (8,, 0,) only through the
difference d.

PrROOF. Definitions (2.1) and (2.2) imply that the conditional joint density of
(T,,,, U,) given (8,, 8,) is K'(d, 8,) exp(dt, + 6,u) with respect to a suitable o-finite
measure » on the product space. The conclusion now follows immediately from
Lemma 8, page 52, of Lehmann (1959).

LeMMA 2.2. For each fixed value u of U,, the conditional posterior distribution of
©, given (t,, u), has monotone likelihood ratio in d when t, is regarded as the
parameter.
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PrOOF. The posterior density of 8 is C,(¢,, u)C,(d, 8,) exp(dt, + O,u).

THEOREM 2.1.  If the loss characteristic, L(®), is monotone in d and if U, has the
fixed value u, then

(23) L(n’ tl’ u) = E(n, 1, “)L(Q)

is a monotone function of t,. If for each positive integer n, L(n, t,, u) assumes both
positive and negative values as t, varies over the essential range of T, ,, then the
equation L(n, t,, u) = 0 has a unique root, t; = t'.

ProOF. The result of Lemma 2.2, along with Lemma 2(i), page 74, of Lehmann
(1959) and the assumptions made here imply that L(n, ¢,, 4) is monotone in ¢,.
According to Lemma 3, page 129, of Ferguson (1967), L(n, t,, ) is an analytic
function of ¢, and u separately. Thus, if L(n, ¢, u) assumes both positive and
negative values, it follows from the monotonicity of L(n, ¢, #) in ¢, and from the
properties of analytic functions (see Bartle (1964, page 412)) that the equation
L(n, t,, u) = 0 has exactly one solution in ¢, for each n.

As a consequence of the preceding, whenever the loss characteristic satisfies the
assumptions of Theorem 2.1, the following result applies. We now state our
generalization of Theorem 1.2 due to Ray (1965).

THEOREM 2.2. It is assumed that an hypothesis is to be tested regarding the
parameters ©, and ©, of two independent distributions having generalized densities of
the form (2.1) while ©, and ©, are independent with prior distributions (2.2). Let
samples be taken in pairs from the distributions (2.1). If L(n, t\, t;) = E, , \J(®)is
nondecreasing in t, and nonincreasing in t,, and for each n and u, L(n, t,, u) assumes
both positive and negative values, then the equation L(n, t,, u) = 0 has the unique
solution t, =t and N(n,t,, u) assumes its supremum on the neutral boundary
{(n,,u): L(n, ', u)=0,u€R,n=12,---}, that is

(24) essup(,, 1, A, ty, u) < SUp(, . WA\ (n, 1y, u) = A(n, ¢, u).
Furthermore, if t, = t”, is the unique solution, given U, = u + y,of L(n + 1, t;, u +
y) =0, then
(2.5) N, ¢, u) = |[72L(8) )2 { S 2 fo(x]¥) du(x) } 8o(¥) du(y) dE)O)]

= |E¢L(®) EyeFyo(T" — ¢|Y|.
In (2.5), & = (n, ¢, w). Also, X = P(X, ,.,), Fys is the conditional distribution
function of P(X,) given © = 0, and T" depends on u + Y where Y = P(X, ,,,) +

P(X3, n+1)- Finally, Ey g and Eg are the expectation operators with respect to the
conditional distribution of Y given © = 0 and §°, respectively.

Proor. The proof is a simple adaptation of the proof of Theorem 1.2 (Ray
(1965)) and is not given here. A detailed proof may be found in Mann (1973).

Although the expectation (2.3) is continuous in both #, and u, it should be
observed that if p is absolutely continuous with respect to counting measure, there
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may exist a neighborhood N of (#, u) such that (T, ,, U,) assumes values in N with
zero probability. In such cases it is convenient to introduce the concept of an
extended neutral boundary, Ray (1965, page 868). If the expected posterior sam-
pling cost attains its minimum on the neutral boundary at the point (n, ¢, u°
where u° is the value of u which maximizes A(n, ¢’, ), then an upper bound »’ to
the exact stage of truncation is determined by choosing n’ to be the least nonnega-
tive integer n such that A(n, ¢, 4% < c(n, t’, u®) a.s. for every n > n'.

3. Applications. In each of the following examples, the hypotheses to be tested
are Hy : 0, <8, vs H, : §, > 6, with symmetric linear loss given by

L(e, al) = 0, 01 < 02,
= k(8, — 6,), 0, <48,
= k(0, - 6)), 6, <6,

where k is a positive constant. Also, P(X)) = X; so that T, , = 27_\X,, ¥ =

X ps1+ Xonsyand U, = T, , + T, ,. In addition, we shall define X and ¢ by
X=X, ,4 and ¢ is a value of T, ,.

EXAMPLE 1. Normal. Suppose X; ~ N(6,, 1), ©, ~ N(w;, 7,7 1), i = 1, 2, where
7, is the precision. Applying Theorem 2.2, we obtain

(3.1)  sup, A(n, t), u) = k|2 [2.(0, — 6,)
X 2 oS fo(x]y) dxgg(y) dv hy(8,)hy(6,) db, db,|

where
Jo(xly) =TI"7 exp{ =[x — (8, — 6, + ¥)/2]*},
g(») = (I72/2) exp{ —47'[y — (6, + 6) %}
h(8) =[(r, + n)/ @m)]% exp{ —[(r, + n)/2][6, — w']*}
where
wo=(rp+mpu+u)/(r+m+2n).
Also, l

"=t =[(a+1)/(a+B+2)]y
+[("2 —m)(mm + T, + u)]/[(a + B)a+ B+ 2)]

where a = 7, + n and 8 = 7, + n. We have evaluated (3.1) exactly if r, = 7, = 1.
In this case the right side of (3.1) becomes k[#(7 + n)(t + n + 1)]‘%, and n’ is
chosen to be the smallest nonnegative integer n such that n > k[mc? + 0.25]‘% -7
— 0.5. For unequal values of 7, and 7,, a 16-point Gaussian quadrature was used to
approximate (3.1) which appears to be independent of u. The accuracy was
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checked for several cases of equal 7, and 7,. In each case, we obtained at least three
place accuracy, and the error diminishes with increasing sample size. Thus, it
appears that such a numerical approximation is sufficiently accurate for applica-
tions.

EXAMPLE 2. Bernoulli. Suppose X; ~ bin(l, 8,), ©, ~ beta(a;, 8), a; > 0, B; >
0,i = 1, 2. In this case,

sup,,, wh(n, 1), u) = k/[4(m + n + 1)]

where m = min{a, + B, a, + B,}. An upper bound n’ to the exact stage of
truncation is obtained by letting n’ be the smallest nonnegative integer n such that
n > k/(4c) — m — 1. This result is consistent with that given by Bratcher (1971).

For a more detailed analysis of both examples, the reader is referred to Mann
(1973).
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