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EXACT BAHADUR EFFICIENCIES FOR TESTS OF
THE MULTIVARIATE LINEAR HYPOTHESIS!

By H. K. Hsien
University of Massachusetts

The notion of Bahadur efficiency is used to compare multivariate linear
hypothesis tests based on six criteria: (1) Roy’s largest root, (2) the likelihood
ratio test, (3) the Lawley-Hotelling trace, (4) Pillai’s trace, (5) Wilks’ U, and (6)
Olson’s statistic. Bahadur exact slope is computed for each statistic as a
function of noncentrality parameters using results for probabilities of large
deviations. The likelihood ratio test is shown to be asymptotically optimal in the
sense that its slope attains the optimal information value, and the remaining
tests are shown not to be asymptotically optimal. Inequalities are derived for
the slopes showing order of preference.

1. Introduction and summary. We consider a hypothesis testing problem of the
multivariate linear model (see, e.g., Anderson, 1958; Roy, 1957; Roy, Gnanadesi-
kan and Srivastava, 1971). Let {X;} be a sequence of independent random vectors,
X, ~ N,(BZ, Z). That is, X is a p-variate normal variable with covariance matrix
2 and expectation EX; = BZ, i = 1,2,- - - . The vectors Z, each with g-compo-
nents, are known, and the p X ¢ matrix B and the p X p matrix £ which is
assumed to be positive definite (p.d.) are unknown. The null hypothesis is H, : B,
= 0,4, and the alternative is H, : B, # 0,,,, where B = (B, B,) such that B,
has ¢, columns and B, has ¢, columns (g; + g, = ¢g). A typical example of this
multivariate linear model is the MANOVA problem. Some invariant procedures for
testing H,, are (see, e.g., Anderson, 1958, pages 222-223; Roy, Gnanadesikan and
Srivastava, 1971, page 73): (1) the likelihood ratio criterion; (2) Roy’s largest root;
(3) the Lawley-Hotelling trace; (4) Pillai’s trace (Pillai, 1955); (5) Wilks’ U (Wilks,
1932); and (6) Olson’s criterion (Olson, 1974). These criteria are denoted by W, R,
T, V, U, and S, respectively; their expressions as functions of some sample matrix
are given in Section 2 below.

The monotonicity property of the power functions of tests (1) through (4) has
been studied by Das Gupta, Anderson and Mudholkar (1964), Eaton and Perlman
(1974), and Srivastava (1964). It follows from Theorem 1 of Schwartz (1967) (see
also Kiefer and Schwartz, 1965) that W, R, T, and V are admissible for finite
samples. An associate editor has conjectured that U and S are inadmissible using

Received December 1976; revised January 1978.

'Research supported by DHEW, PHS, National Institutes of Health under Grant 5 RO1 CA 18332-02,
at the University of Wisconsin; typing of the manuscripts supported by the Department of Mathematics
and Statistics at the University of Massachusetts.

AMS 1970 subject classifications. Primary 62F20, 62H15; secondary 62F05.

Key words and phrases. Multivariate linear hypothesis, exact slopes, exact Bahadur efficiency,
asymptotically optimal sequence.

1231

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%g"’é
The Annals of Statistics. RINGJS

®

WWWw.jstor.org



1232 H. K. HSIEH

Theorem 2 of Schwartz (1967). Further, it is known from numerical work of
Fujikoshi (1970), Hart and Money (1976), Ito (1962), Lee (1971), Mikhail (1965),
Pillai and Jayachandran (1967), Pillai and Sudjana (1975), Roy, Gnanadesikan and
Srivastava (1971), Schatzoff (1966), and perhaps others, that for fixed sample sizes
there is no UMP invariant test for the multivariate linear hypothesis problem. For
large sample comparison, Gnanadesikan et al (1965) mentioned comparisons of
asymptotic efficiencies of tests W, R and T using Bahadur’s (1960) approximate
measure (but to the author’s knowledge, no published results are available). Gleser
(1966) compared approximate asymptotic efficiencies of the LR test and Hotel-
ling’s T2 test in the context of the modified 72 problem discussed by Rao (1946).
But as indicated by Bahadur (1967), knowledge of the exact measure is preferred
when available. The main purpose of this paper is to compare criteria (1) through
(6) using the notion of exact Bahadur efficiency suggested by Bahadur (1967).

The exact Bahadur efficiency between two test criteria is defined as the ratio of
the exact slopes of the two sequences of statistics associated with the two criteria.
The computation of exact slopes, which is also known as the theory of large
deviation probabilities, has been discussed by authors including Bahadur (1971;
and references therein), Bahadur and Raghavachari (1972), Book (1975), Gleser
(1964), Hwang and Klotz (1975), Killeen, Hettmansperger and Sievers (1972), and
Sievers (1976). Recently, Koziol (1978), Sievers (1975), and Steinebach (1976)
discussed probabilities of large deviations for multivariate test statistics. However,
application of known theories to the multivariate linear hypothesis problem is not
straightforward, since the test statistics that we consider are functions of correlated
variables with complicated distributions.

In this paper, the exact slope associated with each of the six test criteria
mentioned previously is obtained as a function of noncentrality parameters for any
fixed alternative and dimension. Inequalities for these slopes are derived showing
order of preference. It is noted that among the six criteria considered, only the
likelihood ratio criterion is asymptotically optimal in the sense that its exact slope
attains the optimal information value for all alternatives. This provides an example
to the general results of Bahadur (1967, 1971) and Bahadur and Raghavachari
(1972) that under certain regularity conditions, likelihood ratios have optimal
slopes. However, readers should notice that the results of this paper are asymptotic
ones, and do not necessarily imply anything about what happens in finite samples.
Therefore, the uniform asymptotic optimality of the likelihood ratio test should not
be interpreted as an unqualified endorsement of the LR test in finite sample
situations.

2. Further notation and assumptions. For large sample theory, we assume that
the sequence {Z;} satisfies the following:

AssUMPTION 1. All entries of Z; (i = 1, 2, - - - ) are uniformly bounded.
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ASSUMPTION 2. For each n > p + g, the ¢ X n matrix
Z(n) = (Zy,- -, Z,)
is of rank gq.
AssUMPTION 3. There is a ¢ X ¢ p. d. matrix M satisfying
2.1) Jim n~'Z(n)Z'(n) = M.

Assumption 1 can be satisfied whenever experimental designs are performed in a
bounded domain. Assumption 2 implies that Z(n)Z’(n) is positive definite for
n > p + q (see, e.g., Graybill, 1961, Theorem 1.24), and hence it has an inverse. In
the context of the MANOVA problem with ¢ groups, Assumption 3 is equivalent to
saying that n,/n — v, 0 < v; < 1, 39_,v; = 1, where n, is the sample size of the ith
group and n = 39_,n,.

The parameter space under the general model is

2 = {(B), B, 2) : By(p X q1), By(P X @), Z(p X p) p.d.},
and under the null hypothesis H, it is
R = {(0, By, Zp) : 0(p X qy), Byo(P X a3), Zo(p X p) p.d.}.
Clearly ©, Cc £ and &, = £ — &, is nonempty. Let
X(n) = (Xp, -+, X,),

then based on X(n), n > p + ¢, the MLE of B and = over  are given (see, e.g.,
Anderson, 1958, page 181) by

22) B(n) = X(n)Z'(m[ Z(nZ'(n)] ",

(2.3) 3(n) = n='[X(n) — BZ(n)][ X(n) — BZ(n)]’
respectively. Corresponding to the partition of B, we partition
(24) B(n) = (B,(n), B,(n)

such that B,(#) has ¢, columns;
Ayy(n) Alz(”)) M= (M“ Mlz)
Ay(n)  Ap(n) ) M, M

such that 4,,(n), M,, are g, X g, matrices, and 4,,(n), M,, are g, X g, matrices.
Further, we define

(2.6) Aya(n) = Ay(n) — Alz(")Az-zl(”)Azl(”)’

(2~7) M, =M, - M12M251M21~
1

(2.5) Z(n)Z'(n) = (

The existence of the inverses 45,' and M,,' follow from Assumptions 2 and 3.
Further, A4,,,(n) and M,,, are positive definite and by (2.1)

(2.8) limn-—»oon_lAllQ(n) = M,
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Throughout this paper we use the following notation.
H(n) = By(n)4,,.o(m) Bi(n);
G(n) =nZ(n);
K =B /M, ,B{;
® =(B, Z) = (B,, By, 2);
29 s =min(p, q,);

v, =the ith largest nonzero characteristic root of the
random matrix H(n)G ~'(n),0 <v, < - - - < v; < 00;

=0,/ +0),i=1---,8;

A, =the ith largest characteristic root of K=/,
O<A <--- <A < o0

0x=>\1/(1+>‘x)91=1’2’ Y N

We note that the A, are also characteristic roots of the limiting matrix of non-
centrality parameters A =%2‘%K =-7 in the canonical form of the multivariate
linear model (see, e.g., Anderson, 1958, Section 8.11 and Fujikoshi, 1970). In this
paper, we call KZ~! the matrix of noncentrality parameters.

The test statistics associated with the six criteria mentioned in Section 1 can be
expressed in terms of v; and w; as follows:

The likelihood ratio, W, = II'.,(1 + v);
Roy’s largest root, R, = v;;

The Lawley-Hotelling trace, 7T, = 3_,v;
Pillai’s statistic, V, = 35_,w;;

Wiks’ U, U, =IE.w;

Olson’s statistic, S, = II}..,v;.

In each case the null hypothesis H,, is rejected for large values. We suffix each
statistic with n to indicate that the associated statistic is based on a sample of size
n. But suffixes on v; and w; are omitted for simplicity. Since when s = 1 all test
criteria are reduced to the familiar F-test (see, e.g., Anderson, 1958, Theorem 8.5.3),
in this paper we are mainly interested in cases where s > 2, i.e., we take p > 2 and
g, > 2 throughout.

It is known (see, e.g., Anderson, 1958, Sections 13.2.3 and 13.2.4; Pillai, 1956)
that under the null hypothesis H,, the joint pdf of w; (i = 1, - - - , 5) has the form

(2.10) c(s, m*, n*)I_ W/ (1= w)™ I, (w, = w)
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for0 <w, < --- <w, <1, where

* * ;
o(s, m*, n*) = H%’H‘,._ll‘(zm + 2n 2+ s+2+ 1)

/[r(2m* -; 1+ i)r(2n* +21 + i)l‘(-;;)],
(2.11) m*=3(p—al-1)
| n=1(n-p-q-1).
In terms of v, (2.10) becomes
(2.12) c(s, m*, n*)IE_ 07 (1 + Di)—(n‘+m‘+s+l)Hi<j(Ui - )
1

for 0 <ov, < --- <v; < 0. Note that the value of m* can either be —3 or
nonnegative. Since we are interested in large sample theory, we take n* > 0
throughout the paper.

Further, we use Py[-] to indicate the probability operator under the null hypothe-
sis H,. In view of (2.10) or (2.12), the operator P[] is well defined.

3. Preliminaries. Using Stirling’s approximation to the gamma function (e.g.,
Feller, 1968, page 66), it is easily seen that for any fixed number r

@3.1) lim, , u " 'In[T(u)/T(u + r)] = 0.

Consequently, for fixed s and m*
(32) lim,_, 7" "In c(s, m*, n*) = 0.

LemMmA 3.1. In the framework of the multivariate linear hypothesis, let ® =
(B, Z), then

33) lim
(3.4) lim
The convergence is element-wise.

Proor. (3.4) follows directly from Theorem 8.2.2 of Anderson (1958) and the
strong law of large numbers (see, e.g., Rao, 1973, page 115). To show (3.3), we note
(3.5) B(n) - B = E()Z/(n)[ Z(m)Z'(m)] ",
where E(n) = (e, - N e,) such that e, - - - , e, are i.i.d., ¢ ~ N,(0, Z). Define
D(n) = [Z(n)Z'(n)]” 2Z(n) and write

[Z(n)Z'(n)] "' Z(n)E"(n) = n3[ Z(n)Z'(n)] ™ n=3D(n)E"(n).

Applying Theorem 3 of Chow (1966), we obtain n‘%D(n)E ‘(n) - 0 a.s. This and
(2.1) imply that the expression in (3.5) converges to the zero matrix a.s. []

ReEMARK 3.1. Anderson and Taylor (1976) obtained result (3.3) for p = 1 under
a condition similar to (2.1).
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COROLLARY 3.1.1. Let © = (B, X), then
(3.6) lim, , ,n"'H(n) = K  as. Py,
3.7 lim, . ,n"'G(n) ==  as. Pg.

COROLLARY 3.1.2. Let ©® = (B, X), then
lim, W, =L (1 +A) as. Pe;
lim, | R, = A, as. Pg;

n—o0Lin
lim, 7T, =37\, as.Pg;
(3.8) lim, , V, =235.,0;, as. Pg;
lim, , U, =1II;_,0;, as. Pg;
lim, S, =1\, as. Pg.

The last corollary follows from Corollary 3.1.1 since as n — oo, H(n)G'l(n)—?
K3~ !ae. Pg, and the ith largest characteristic root H(n)G ~'(n) converges to that
of K=~ ! a.e. Pg. The following lemma is a consequence of Anderson (1958, page
223) and a result of Mitra (1970).

LeEMMA 3.2. Let a be any fixed nonzero p-vector, then under the null hypothesis
H,, the random variable
y(n) = a’G(n)a/a’[ G(n) + H(n)]a
has beta [%(n - q), % q,] distribution independent of a.
We state below a particular case of Minkowski’s inequality (see, e.g., Hardy,
Littlewood and Polya, 1967, 2.13.8).

Lemma 3.3. Ifd,, - - -, d, are nonnegative numbers, then the following inequality
holds:
(39) I, (1 + d)/™ > 1+ (I, d)"/™

4. The Kullback-Leibler information number. Denote x = (X, ... X,) with X;
as defined in Section 1. For each ® = (B,, B,, Z) € € and ©, = (0, B,,, ;) € Q,,
we define (according to Bahadur and Raghavachari, 1972)

(4.1) K,(x; ©, ) = n~'In{Il}, [ f(X;; ©)/f(X;; ©9)]},
where
JAX;; ©) = (2m) 32| Texp[ — 3tr(X, — BZ)(X, — BZYZ™"],
f(Xi5 ©) = (2‘”')_%|20 _%CXP[ —3tr(X; — ByZ@)(X, - 320252))’251]’

B = (B,, B)) and Z/ = (ZW,, Z®") such that Z" has g, components and Z?®
has ¢, components. Then using Assumptions 1 and 3, and Kolmogorov’s strong law
of large numbers (see, e.g., Rao, 1973, page 114), it can be verified that

42) lim, ,  K,(x; ©, ©,) = I(©, 0,) as. Pg



EFFICIENCIES OF MULTIVARIATE TESTS 1237

and 0 < I(©®, ©,) < oo, where

I(®, ©) = —3In|=| —1p +11n|Zy| + %tr{[z + BMB’ — B,M,B;, — B,M,,B;,
— ByyM B{ — ByyM;,B; + BzoMzzBﬁo]E(;l}-

Further, if J/(®) denotes the inf of 1(®, ©;) over O, € Q,, then

(4.3) J(0) = éln[H‘ﬁ_,(l + A,.)].

Results (4.2) and (4.3) show that Corollary 3 of Bahadur and Raghavachari

(1972) is applicable to the multivariate linear hypothesis problem. Hence we have
the following.

THEOREM 4.1. In the context of the multivariate linear hypothesis model defined
in Sections 1 and 2, let t, be a test statistic based on x =(X,- -+ ,X)) for
testing H, against H, such that H, is rejected for large values of t,. Let L (x) =
=supg cq,Pe |l > x] be the level attained by t, for x. Then for any fixed alternative
® = (B,, B, 2) € Q,,

(4.9) —lim inf, ,n"'InL,(x) <3In[I.,(1 +A)] as. Pe.

Inequality (4.4) implies that in the multivariate linear hypothesis model, the exact
slope (if it exists) of any test sequence for any fixed ® € £, can not exceed 2J(0).
Accordingly, a test criterion is said to be asymptotically optimal if its associated
slope equals the optimal information value 2J(®) for every © € £,.

5. Exact slopes for the six test sequences. Using Bahadur’s (1967, 1971)
definition for exact slopes of a test sequence, we have the following results.

THEOREM 5.1. In the framework of the multivariate linear hypothesis model, for
each © = (B,, B,, Z) € Q,, the exact slopes of {W,}, {R,}, {T,}, {V,}, {U,} and
{S,} exist and equal

Cw(©) = In[IF_(1 + A)]
Cr(®) = In(1 + 1)),

CH(©) = In(1 + Z5_),

Cy(®) =In[1 - (Z5.,8)/s] ",
Cy(®) = In[1 - (IB_,8)"*] ",
Cs(©) = ln[l + (Hsinl}‘i)l/s]sa

respectively, where s, \;, 8; are defined in Section 2. Consequently, the LR test is
asymptotically optimal and the remaining ones are not.

This theorem follows from Theorem 7.2 of Bahadur (1971) using Corollary 3.1.2
of this paper and Lemmas 5.1 through 5.6 below.
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LEMMA 5.1.  Let ay{n, t) = P W, > t]. Then for each d > 1,
(5.1 lim,_, n " 'Inay(n, d) = —3lnd.

ProOF. Let U(n) = W, ! = |G(n)|/|G(n) + H(n)|. Consul (1969) shows that
under the null hypothesis H,, U(n) has exact pdf given by

f(u) = k(n)uz®=?=1"Vg(u), o<u<l,
where
k(n) =TZ_T[3(n+ 1~ g~ ND]/T[5(n+ 1~ g~ )]

and
o2+ D@+ p- 1)
0,3, L, 3(p—1)
is the Meijer G-function (see e.g., Erdélyi et al., 1953), which is known to be

continuous on the closed interval [0, d '], 0 <d~! < 1, and independent of n.
Therefore, for each d > 1,

g(u) = G;’,'po u:

ay(n,d) = P[W, >d] = Po[ U(n) < d—l]
(52) = k(n) 2 ur™=P=9=Vg(4)dy

< k(n)d =3 =P=2=D(d"'o(y)du.
By (3.1), n~ ! In k(n) - 0, as n — 0. This and the finiteness of the integral on the
right-hand side of (5.2) imply
(53) lim sup,_, .n " 'In ay(n, d) < —3Ind.
This inequality and results (3.8) and (4.3) show that the conditions required by
Corollary 5 of Bahadur and Raghavachari (1972) are satisfied by the sequence
{%ln W,}. Hence as a consequence of that corollary, (5.1) holds. []

LEMMA 5.2. Let ag(n, ) = PR, > t]. Then for each t > 0,

lim,_ 7~ 'In ag(n, £) = —3In(1 + 7).
Proor. For ¢ > 0, define
Di={(wy, - ,w):0<w, < - <w<Lw>t/(1+1)}
Using (2.10) with w; = v, /(1 + v,), we have
ag(n, 1) = Po[v, > t] = Po[w, >t/ (1 + ]
(59 = c(s, m*, n*)[p - - - ST aw™ (1 = wi)n‘Hi<i(w w)ll; . aw,

<c(s,m*, )1+ 07" - [pI5 w5 dw,.
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Note that the multiple integral on the right hand side of (5.5) is bounded by
(m* + 1)7°. This and (3.2) imply
(5.6) lim sup, ,.n~'In ag(n, 1) < —3In(1 + 2).
On the other hand, by the definition of v,,
_ x'H(n)x _ a’H(n)a

01 = SUPxerr x' G(n)x > a'G(n)a
for any nonzero p-vector a, where R’ represents the p-dimensional Euclidean
space. Hence for ¢t > 0,

ag(n, 1) > PO[ LEWLEN t]

a’'G(n)a
_ a’G(n)a -1
(5.7) = PO[ [ G(n) + H()]a <1+
I‘[%(n —q*t ql)] fgl+t)_ly%(n*q)—l(1 _y)%q.—l @.

I‘[%(n - ‘I)]r(%‘h)
The last equality follows from Lemma 3.2. From (5.7) and recalling ¢, > 2,
(5.8) ag(n, ) > k(n)(1 + 1)~ 79,

where ky(n) = 2(n — ¢)"'[t/(1 + t)]%q‘_l{r[%(” — ¢)1/Tl3(n — 9IT(54,)}. Since
(3.1) implies n ™ 'In k,(n) — 0 as n — o0, (5.8) gives
(5.9) lim inf

n—oQ

Combining (5.6) and (5.9) gives (5.4). []

n~'Inag(n, t) > —3 In(1 + ¢).

LeMMA 5.3. Let ap(n, t) = PyT, > t]. Then for each t > 0,
(5.10) lim, . n~'Inay(n,t) = —1 In(1 + ¢).

ProoOF. For each ¢ > 0, (5.10) is established by applying (5.1) and (5.4) to the
following inequalities:

Pl (1+0) > 1+ 1] > P[Z5_10, > 1] > Py[v, > 1]. i
LemMMA 54. Let ay(n, £) = PV, > t]. Then for each t,0 <t <,
(5.11) lim, , n~'Inay,(n, t) =3 In(1 — t/s)".

ProoOF. Denote
D2={(W1,"',Ws)!0<ws<"'<W1<1, 2?_1Wi>t}.

Using (2.10) and applying the arithmetic-geometric mean inequality to the product
IE.,(1 — w), we have
(5.12)

ay(n, t) < c(s, m*, n*)f-- 'fDZH":'-lwim.[l - (zsislwi)/s]m.HKj(Wi - Wj)Hsi-l aw;.
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Consider the following set of symmetric transformations F (see, e.g., Van der
Waerden, 1949, page 78)

uy=w + - +w,

u2 = W1W2+ e ‘i"Ws__IW_y
(5.13)

=W,

and denote the image set of D, under F by D,. Then F is one-to-one between D,
and D,, and

(5.14) 5oy du; = I (w; — w)ITi .y dw,.
(For s = 2, see, e.g., Hotelling, 1951.) Now (5.12) is equivalent to
(5.15) ay(n, 1) < (s, m*, n*)f <+ [pu™(1 = u /sy E, d

Since the coordinates of any vector (u,, - - - , &) in D, satisfy

(5.16) t<u <s, 0 <u; <b(is), i=2-+-,8,
where b(i, s) =s /[i!(s — i)!] is the binomial coefficient, (5.15) leads to

(5.17) aV(n, 1) < c(s, m*, n*)(1 — t/s)" Q,,

where O, = - - - fn,,u S_y du; < (m* + 1)7 (s — HIE_,b(, s). Using (3.2) and
the finiteness of Q,, (5.17) gives

(5.18) lim sup, .7~ "In ap(n, £) < 3 In(1 — ¢/s)".

On the other hand, since in D, w, >w; (i =2,---,5), replacing w; (i =
2,- -+, 5) by w, in the factor (1 — w;)"™" of (2.10) gives
(5.19)

ay(n, t) > c(s, m*, n*)f - - - sz[Hsi-lwim.](l - wl)sn.HiQ(wi - W)Hx—l
For each h satisfying 0 < h < m, with m; = min{(s — ?)/s, (s — 1)¢/s}, define

t h t t
D[(|I)={(wl"."ws):_§_s_l s<..- <w2<;,;+h<wl<1}.

Clearly, DSV is nonempty and it is a subset of D,. Putting a = (¢/s) — h/(s — 1)
and replacing D, by D" in (5.19), we get

(520) ay(n, t) > c(s, m*, n )ft/s+hw (1- Wl)sn.ﬂ/s to f:’_lHi'-lwim‘
t sn*+1
H,-<j(wi - wj) dws te dwl > k2(n)(1 - ; - h) Q2’
where ky(n) = c(s, m*, n*) min{l, ((z/s) + B }(sn* + 1)"!, and Q, =
Yoo el ,w T (t/s) + b — w)ILIA Gmie1t(W; — W) dw, - - - dw,. Since

n~!1n k,(n) > 0 as n — oo, and Q, is positive and independent of n, (5.20) implies

o et i)
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Since (5.21) holds for all 4 in the interval E, = (0, m,), it follows that

lim inf,,;n~" In ay(n, £) > supjeg,} ln(l - - h)s =1 ln(l - f)

The last inequality and (5.18) give (5.11). []

LemMA 5.5. Let ay(n, t) = PU, > t). Then for each t,0 <t < 1,
(5.22) lim, ,  n~"In ay(n, 1) =1 In(1 — ¢'/°)".

Proor. By the arithmetic-geometric mean inequality,

ay(n, t) = Po[ I w; > 1] < Po[Z5_,w, > st'/*] = ay(n, st'/°),

where ay(n, -) is defined in Lemma 5.4. With ¢ replaced by s¢'/* in (5.18), we get
(5.23) lim sup,_, ,n~'In ay(n, t) < 3 In(1 — ¢'/%)".

Let Dy = {(wy,- - ,w):0<w, <--- <w <1, IE_,w, >t}. By definition
of U, and (2.10), one obtains

(524) ay(n, 1) > c(s, m* n¥)myf - - - [ (1= w)" T, ;(w; — w)IE_, dw,
where m, = min(l, t™). For each h satisfying 1'/* < h < 1, define
DP = {(wy, -+ -, w) £/ R/OD Sy < <y
<eVs, 1V /h<w <1},
which is nonempty and is a subset of D,. As in (5.20), (5.24) leads to

(5.25) ay(n, t) > ky(n)(1 = £V/¢/B)™ - Q,,
defining @ = 1'/*- B1/¢=D, ky(n) = c(s, m*, n*)my(sn* + 1)),
Q3 = ’1/, : fa’ lII‘:-Z(tl/s/h - W)Hx-Z -x+l(wi - W}) dws T dw2'

Since @, is positive and independent of n, and since by (3.2) n™ ! In ky(n) -0 as
n — oo, with E, = (¢'/%, 1), (5.25) yields

(526) liminf, ,on~"In ay(n, ) > sup,cg 3 In(1 — ¢'/5/h)" =1 In(1 — 1/%)".
Inequalities (5.23) and (5.26) establish (5.22). [J

LEMMA 5.6. Let ag(n, ) = Py[S, > t]. Then for each t > 0,
(5.27) lim, , n~"In ag(n, £) = — 1 In(1 + £175)°.

Proor. By (3.9),

Po[Ilmy0; > 1] < Po[IE_,(1+ ) > (1 + 1'y°].

Applying (5.3) to the above inequality gives
(5.28) lim sup,_,.n~"In ag(n, £) < —3 In(1 + ¢1/%)°.
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On the other hand, using (2.12) with (1 + v,) replaced by (1 + v,), we get
(529) ag(n, 6) > c(s, m*, n*)f - - - [p [I507](1 + p,) FTEmIEsED
X Hi<j(vi - Uj)Hsi=1 dv;

where the domain of integration is defined by

D4= {(vl" "t ,DS)IO<D_, < <v]aHi'_1Og >t}
As in preceding lemmas, for each A satisfying 0 < A < 1, we define
D = {(v,- -, 0) VTV <o < <0y <V 1 R <oy < o0},

which is nonempty and D,® c D,. Denoting a = ¢'/*- h'/¢~Y, and replacing D, in
(5.29) by D, we get

(530) as(n, 1) > c(s, m*, n*) [T pnfs" -+ - f3m(Tmyol)(1 + 0) 7T 3D
X1 j(v; — v) do, - - - do,.
The cases m* > 0 and m* = — 21 are discussed separately as follows.

Case 1. m* > 0. Then, in the domain of integration D, [I5_,0" > ™
Hence from (5.30) we have

(5.31) ag(n, 1) > ky(n)(1 + (V/2/p) 5O tmeratDel g
where k,(n) = c(s, m*, n*)t™[s(n* + m* + s + 1) — 1]7},
Q4 = '1/ fv lH -2(t1/s h — D)Hx—Z -l+l(oi - vj) dos v dDZ'
CASE2. m* = — 1. In this case o] > (1 + v;)" 7, (5.30) gives
cread)gl
(5.32) ag(n, 1) > ky(n)(1 + 1/2/B) (" Her2)+3 o
where ky(n) = c(s, m*, n*)[s(n* + s + 3) — 3]7!
QS = ’1/ fo’ le—ZD z(tl/s h— D)Hx—Z -x+l(vi - vj) dvs e doZ'

Since Q, and Qs are positive and independent of n, and since n~! In k,(n) — 0,
n~'1In ks(n) - 0 as n — o0, (5.31) and (5.32) show that no matter the value of m*,

lim inf,_, ,n "' In ag(n, £) > sup,c 1) — 3 In (1 + ¢/*/h)’
— 1 In(1 + £17%)°.
This and (5.28) prove the lemma. [

6. Orderings of the six slopes. For any fixed alternative ® € Q,, let C,/(0),
Cr(©), CH®), Cy(®), C,(B), and Cy(O) be the slopes defined in Theorem 5.1. It
can be verified that the following inequalities hold:

() Cgr(®) < C(O) < Cy(®);
(i) Cy(®) < C(B) < Cy(8);
(iii) Cy(©) < C4(®) < Cy(®).
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Definite orderings of the six slopes have been exhausted by inequalities (i)—(iii).
Other than these orderings, each slope could be larger than others for some
alternatives (Hsieh, 1976, Tables 1-15). In particular, if the noncentrality matrix
K=" has only one nonzero characteristic root, i.e., if A\, # 0, A, = - - + = A =0
then

(iv) CUO‘]) = CS()‘I) < CpA) < CR()‘|) = CT()‘I) = CW(}‘I);

if the p characteristic roots are equal, i.e., if A} = A, = - - = A, = A, then

V) G < Cd) < CyA) = CsM) = CA) = C(A).

Since, as indicated by Bahadur (1967), the most important property of an exact
slope is its value in the immediate vicinity of the null hypothesis, we investigate the
leading term of the Taylor expansion for each slope. One of the referees pointed
out that it follows from Theorem 5.1, as A; - 0,

Cw(®) = Zi_ I\ + o(Ay);
Cr(©) = A, + o(A);

Cr(®) = Z5_ N + o(Ay);
Cy(®) = Zi_ A + o(A);
Cy(©) = (M) + o\y);
Cs(©) = s(I1;- M) + o(Ay).

Therefore, in terms of exact local slopes, W, T, and V are equivalent; R, U, and S
are inferior to these; and U and S are equivalent.

We note here that the approximate slope of the LR criterion for the modified
T?-problem obtained by Gleser (1966) essentially takes the same form as the exact
slope of the LR criterion discussed in this paper; and the approximate slope of
Hotelling’s T'-test for the same problem of Gleser takes the same form as the local
slope of T criterion of this paper. Further, when g = 2, g, = 1 (or p = 1), results of
Theorem 5.1 reduce to those obtained by Bahadur (1971, Example 5.1), Killeen and
Hettmansperger (1972) and Klotz (1967).
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