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CONSTRUCTING ALL SMALLEST SIMULTANEOUS
CONFIDENCE SETS IN A GIVEN CLASS,
WITH APPLICATIONS TO MANOVA'

BY ROBERT A. WDSMAN
University of Illinois at Urbana-Champaign

A method is presented for the construction of all families of smallest
simultaneous confidence sets (SCS) in a given class, for a family {y,(y)} of
parametric functions of the parameter of interest y = y(#). The method is
applied to the MANOVA problem (in its canonical form) of inference about
M = EX, where X is ¢ X p and has rows that are independently multivariate
normal with common covariance matrix 3. Let S be the usual estimate of = and
put W= (M- X)S ~1. It is shown that smallest equivariant SCS for all a’M,
a € RY, are necessarily those that are exact with respect to the confidence set
for M determined by A (WW’) < const (A\; = maximum characteristic root),
i.e., derived from the acceptance region of Roy’s maximum root test (this is
strictly true for p < g, and true for p > g under a weak additional restriction).
It is also shown that smallest equivariant SCS for all tr NM, with rank (N) < r,
are necessarily those that are exact with respect to || W||,, < 1, where ¢, is a
symmetric gauge function that, on the, ordered positive cone, depends only on
the first » arguments. Taking r = 1, the simultaneous confidence intervals for
all a’Mb of Roy and Bose emerge, and r = min(p, q) results in the simulta-
neous confidence intervals for all tr NM of Mudholkar.

1. Introduction and basic result. In this paper a method will be exhibited that
is useful in several statistical situations to find for a specified family of parametric
functions all families of smallest simultaneous confidence sets of a given kind. The
method will be applied to the multivariate analysis of variance (MANOVA)
problem, and the restriction will be made to equivariant estimators. Some of the
families of parametric functions have not been treated before. Others have ap-
peared in the literature ([4], [6], [11], [16]), but it will be shown now for the first
time that the proposed simultaneous confidence sets are the only smallest equi-
variant ones.

Simultaneous confidence sets (abbreviated SCS hereafter) often arise in connec-
tion with a testing problem. Suppose X is a random variable with values in a
measureable space %X and having distribution P,, § € ©. Suppose that inference is
desired about some function of 8, say y = y(@), with values in a space I'. In the
following the symbol y is used to denote the function y : ® - T, or a point of T,
depending on the context.
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For given vy €T let H : y(@) = v, be a hypothesis, and let T be a test for H
with acceptance region A(y,) C X. If H is rejected, then the statistician would like
to know which of the many different possible causes is or are responsible for
¥(8) #* v, More precisely, let there be given a family {y, : i € I} of parametric
functions y; : I' > ¥, with I an arbitrary index set and ¥ an arbitrary space.
Furthermore, let y = vy, if and only if y,(v) = y,(y,) for every i € I. Then each
i € I for which y;(y) # ¥;(v,) can be called a cause for the falsity of H. Now
suppose for each i/ € I there is given a random subset B, = B(X) of ¥ and
suppose B; is regarded as a confidence set for y; = y,(y). Then the simultaneous
confidence statement {y,(y) € B,Vi € I} is made. For those i € I for which
Yi(y) & B,, the corresponding y,(y) is then judged to be different from v,(y,),
pointing to a cause, or causes, for the rejection of H.-Gabriel (1969) terms the
family {B,} coherent (relative to the test T') if acceptance of H implies y;(y,) € B;
for every i € I, and consonant if rejection of H implies y,(y,) & B; for some i € I.
Thus, {B;} is coherent and consonant if the event [{,(yy) € B,Vi € I] is the same
as the event that T accepts H. This is the case, for instance, with the Scheffé-type
simultaneous confidence intervals for all contrasts in a one-way analysis of vari-
ance relative to the usual F-test (Scheffé (1959)).

Next, consider a family of hypotheses and tests, one for each vy, €
T : {(H(v0): T(v0)) : vo € T}, and let A(y,) be the acceptance region of T(y,). The
family {A(yy) : vo € T'} can be converted in the usual way into a confidence set
F = F(X) €T for v, such that H(y,) is accepted if and only if y, € F. Then {B;}
is coherent and consonant with respect to each (H(v,), T(y,)) if and only if

(1.1) [v(8) € F(X)] =[%(v(9)) € B(X)Vi € I], Vo €0,

i.e., the two events on both sides of (1.1) are identical, no matter what the true
value of € O is. If (1.1) is satisfied we shall say that { B;} is exact with respect to
F. If {A4;} is exact with respect to F and 4; C B,Vi € I for every { B;} that is exact
with respect to F, then {4;} will be termed a family of smallest exact SCS with
respect to F. As an example, the Scheffé-type simultaneous confidence intervals for
all linear parametric functions that are 0 under a given linear hypothesis are
smallest exact SCS with respect to the confidence set derived from the usual F-test.
This follows as a special case of Theorem 4.1 (i).

In Theorem 1.1 it will be shown how to construct a family {A4,} of smallest SCS
given a family {B;}, as well as the confidence set F with respect to which both are
exact. In most interesting statistical problems the class of all SCS { B;} for {y;} may
be unworkably large and it will be convenient to restrict oneself to a smaller class
with “nice” properties. In estimation problems that are invariant under a group G a
natural restriction is to equivariant estimators. Invariance reduction is especially
effective in multivariate normal problems which usually possess a large amount of
symmetry. Roughly speaking, an equivariant estimator is one that transforms under
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G in the same way as the function to be estimated. A precise definition is given in
Section 3.

A word is in order with regard to the notion of a random subset of a certain
space, e.g. of I'. Let F* be a subset of X X T' such that its y-section {x €
% :(x,y) € F*} is measureable for each y €. Then its X-section {y €
T : (X, y) € F*} is a subset of I" depending on X. It will be called a random subset
of T' and denoted F(X) or simply F. We shall also say that F is measureable.
Analogous considerations apply to the random subsets B, = B(X) of V.

Let F be a random subset of I and {B;} a family of random subsets of ¥. The

definition (1.1) of {B;} being exact with respect to F can be rewritten more
conveniently
(1.2) F=n {4 'B:iel}.’
(Here and elsewhere we shall often omit parentheses and write f4, f ~'B instead of
f(4), f~Y(B) if f is a function and 4, B are sets). Equation (1.2) and similar ones to
follow are tacitly understood to hold for every # € ©. The main tool in this paper
is forged in the next theorem.

1.1 THEOREM. Let {B;:i €1} be a given family of random subsets of V.
Define F by (1.2) and suppose F measureable. Also define

(1.3) A; = y,F, iel
Then
(1.4) F=n{y 4,:i€1)

and {A; : i € I} is the family of smallest SCS for {{;} that is exact with respect to F.

PrOOF. Define F; = N {;,7'4;, : i € I}. It will first be shown that 4, C B,Vi
€ I and that F, = F, thereby proving (1.4). It follows from (1.2) and (1.3) that
A; C Yy~ 'B; = B; so that F; C F. On the other hand, Fcy WF=y '4Vie
Lsothat FCn{y '4,:i€l}=F,

By (1.4), {4;} is exact with respect to F. Let {C;} be any family of SCS exact
with respect to F, then (1.2) holds with the B, replaced by the C,. By the first part of
the proof, 4, C C,. [J

For given {y,} let C be a class of families { B;} of SCS for {;}. Suppose that for
each {B;} € C the family {4,} constructed by (1.2) and (1.3) is also in C. It
follows then from Theorem 1.1 that these families {4,} are the families of smallest
SCS for {y;}. This will be applied in Section 4 to various choices for {y;} in the
MANOVA problem. For each {4} the class C will be taken as all equivariant { B,}
and for each such € it will indeed be true that { B,} € € implies {4,} € C.

There are other families {y;} in the MANOVA problem, as well as other
multivariate problems, where Theorem 1.1 can be used. Some of these problems are
discussed in Wijsman [18], including the simultaneous confidence intervals in
MANOVA based on a step-down procedure treated by Mudholkar and Subbaiah
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(1975), and those associated with nonindependence between sets of variates treated
by Mudholkar (1966). The point of view in [18] is slightly different from the one in
the present paper in that the starting point there is a confidence set F for y rather
than a family {B,} for {y,}.

2. Simultaneous confidence sets in the MANOVA problem. In its canonical
form the MANOVA testing problem can be stated as follows (see e.g. Lehmann
(1959)). The rows of the random matrices X, Y, and Z are independent p-variate
normal with common, unknown, nonsingular covariance matrix 3; EX = M: g X
p, EY = My, EZ =0 (M and M, unknown), and S = Z’Z is nonsingular with
probability one. The task is to test the hypothesis H that M = 0. If H is rejected,
various families of parametric functions can be proposed in order to look at M in
more detail. The family that is the most natural generalization of the univariate
ANOVA problem is the family of all a’M as a runs through R?. More detail is
provided by the “double linear compounds” a’Mb, a € R?, b € R?, treated by
Roy and Bose (1953). These are special cases of the functions 4’MB (A and B
matrices) treated by Gabriel (1968). The most detail results from looking at all
linear combinations of the elements of M. This leads to all tr NM, treated by
Mudholkar (1966), where N runs through all p X g matrices. All SCS are derived
from the pivotal quantity for M

2.1) X -MS (X - M),

and use the distribution of the ordered characteristic roots A; > - - - > A, >0
(strict inequalities with probability 1) of the matrix (2.1), where s = min(p, ¢). The
distribution of the maximum characteristic root A, plays an especially important
role. Let A, be its upper a-point:

(2.2) P <A)=1-a

Related to (2.2) is Roy’s maximum root test which rejects the hypothesis M = 0 if
A (XS 71X > A,. The confidence set for M derived from the maximum root test is

(23) {M:\((M - X)S™' (M - X)) <A}

The following SCS for all a’M are implicit in Gabriel (1968) and explicit in
Jensen and Mayer (1977):

24)  P{(@M - aX)S~ (@M~ dX) < alPA,Va € RY) =1 - q,
' Vo € 6.
Roy and Bose (1953) derived for all a’ Mb the following simultaneous intervals:
(2.5) Py{laMb — a'Xb| < llal|(&'Sb)I\,3Va € RY, b € R} =1-a,

Vo € 0.

Optimality of the intervals (2.5) was shown by Gabriel (1968) within a class
defined by so-called increasing root functions. Similar optimality of (2.4) is implicit
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in Gabriel (1968) and also shown by Jensen and Mayer (1977) within that same
class. In Section 4 we shall prove the stronger result that within the larger class of
all equivariant SCS those of (2.5) are smallest for all ' Mb and those of (2.4) are
smallest for all a’M if p < q. If p > g the sets of (2.4) are smallest provided an
additional mild condition is imposed on their shape (see Theorem 4.1 (ii)). More-
over, these SCS are exact with respect to the confidence set (2.3) for M. In fact, the
latter is the only (1 — a)-confidence set for M with respect to which there exist
equivariant SCS for all a’Mb and for all &’ M if p < q.

The result mentioned in the previous sentence has the following somewhat
unpleasant consequence for the practicing statistician. Suppose this statistician has
a favored test for H : M = 0, e.g. Wilks’ lambda test (the likelihood ratio test).
Suppose also that SCS 4, , for all a’Mb are desired in such a way that H is
rejected if and only if some A4, , does not contain 0. However, it turns out now that
this is impossible with Wilks’ lambda test (or Hotelling-Lawley’s trace test, or
Pillai’s trace test, etc.), and the only test capable of furnishing exact equivariant
SCS for all a’ Mb is Roy’s maximum root test. The same is true for all ’ M if p < g,
and if p > g under a mild additional condition.

Before stating the confidence intervals for all tr NM a little more notation is
needed. Denote by 9, , the set of all m X n real matrices. Every 4 € 91, , has
a singular value decomposition (see e.g. [14])

(2.6) A = UDV’,
in which (denoting s = min(m, n)) U'U = V'V = I, D = diag(d,, - - - , d,) with
dy>--->d >0.(If m=nboth U and V are orthogonal; otherwise one of U

and V is incomplete orthogonal.) If rank(4) = r, then exactly r of the d; will be
> 0. It will be convenient to denote

2.7) d(4) = (dy,- - -, d),

i.e., d(A) is the column vector of ordered singular values of 4.

Next consider Euclidean n-space R” and its ordered positive cone

(2.8) R!', ={xE€R":x;>:-+ >x,>0}.
Let G, be the group of sign changes and permutations of the coordinates x; of
x € R", i.e.,, G, acts on R” and the action gx of G, on x =(x,- -+, x,) is a
composition of transformations of the type x; > — x; and x; <> x;. Any transforma-
tion with g € G, will be called a symmetry operation, and if a function f on R” is
invariant under G, then f will be called symmetric.

Lastly, a function ¢ : R” — R is called a gauge function, or simply a gauge, if ¢ is
convex and positively homogeneous (i.e., ¢(cx) = cp(x) if ¢ > 0) (cf. [1], [15)].
Following von Neumann (1937), ¢ will be called a symmetric gauge function (sgf) if
it is a gauge and symmetric. The functions ¢ = 0 and ¢ = oo will be excluded.
Denote by @, all remaining sgf’s on R”. Then for each ¢ € ®,, ¢(0) = 0 and
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o(x) > 0 if x # 0. For ¢ € ®, the polar of ¢, denoted ¢, is defined by
29 ¢°(x) =max{y'x:y € R", ¢(y) < 1}, X € R™.

The maximum in (2.9) can also be taken over all y € R” with ¢(y) = 1.

Note on nomenclature. Von Neumann (1937) used the term “conjugate” (de-
noted ) instead of “polar.” This has been followed by Mudholkar (1965, 1966).
However, in the literature on convexity the term “polar” seems now well estab-
lished ([1], [15]), reserving “conjugate” for the Fenchel conjugate ([3], [15]). The
notation ¢° for the polar of ¢ follows the notation in [15]. For guiding me into the
literature on convexity and duality I am much indebted to Lynn McLinden.

It is true for any gauge ¢ that ¢° is also a gauge and that ¢ = ¢. Moreover, if
@ is symmetric, then obviously the same is true for ¢°..Therefore, ¢ € ®, implies
¢° €®,. Now let 4 € I, , and ¢ € ®,, where s = min(m, n), and denote

(2.10) 4]l = e(d(4)),

where d(4) was defined in (2.7). For square matrices 4 von Neumann (1937)
showed that (2.10) defines a norm, and Mudholkar (1965) extended this to
arbitrary matrices. '

The following random matrix plays an important role:

(2.11) W=(M-X)S"z.

(Note that the matrix (2.1) is WW".) Its singular values are the square roots of the
characteristic roots A; of (2.1), and the distribution of d(W) (cf. (2.7)) is free of the
parameters. Mudholkar (1965) recognized the importance of the symmetric gauge
functions and in [11] derived the following simultaneous confidence intervals for all
tr NM:

(2.12) Py{|tr NM — tr NX| < |SIN|| YN €, ,} =1-a VO EB,
in which ¢ is any function in ®; (s = min(p, ¢)) for which
(2.13) P{IW|, <1} =1-a

It will be shown in Section 4 (Theorem 4.2) that for every ¢ € &, and 0 <a < 1,
(2.12) is a family of smallest equivariant SCS for all tr NM and that those are the
only ones if N-is unrestricted.

There is a relationship between the confidence intervals of (2.12) and those of
(2.5). In the latter, @’ Mb can be written as tr NM with N = ba’, a matrix of rank
< 1. Thus (2.5) provides simultaneous confidence intervals for all tr NM as N
ranges through all matrices of rank < 1, and it will be shown later in this section
that (2.12) with N thus restricted reduces to (2.5). The conjecture arises im-
mediately that confidence intervals analogous to (2.12) can be derived for N
restricted to any intermediate rank.
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Before executing the idea expressed in the preceding sentence it will be necessary
to define a particular extension of a sgf to one on a space of higher dimension. The
extension ¢, of ¢, (with s > r) defined below has the property that on R?, it
depends only on the first 7 coordinates and coincides there with g,.

21. LemMA. Let r<s and ¢, €9, If x=(x,- -, x,), denote x" =
(x1, * + + , x,). Define, for x € R",
(2.14) ¢.(x) = max{¢,((gx)") : g € G, }.
Then ¢, € ®, and
(2.15) e(x) = (x") if x€ER],.

ProoF. Use (2.9) with n = r and the roles of ¢ and ‘<p" interchanged. Then
(2.16) #.((gx)") = max{y'(gx)" : y € R", @?(y) = 1}.

Substituting (2.16) into (2.14) and interchanging the order in which the maxima are
taken, it is seen that ¢ = max{f, :y € R’, °(y) = 1}, where 5(x) =
max{y'(gx) :g € G,}. It is 1mmed1ate that f, is symmetrlc for every y. Further-
more, it is a gauge since it is a maximum of linear functions. Therefore, f, € @, for
every y, and the same is then true of ¢, as a maximum of such functlons

To show (2.15), first observe that when ¢, is written as an iterated maximum
(over y and g, with help of (2.16)), it is obviously permissible to restrict y to R’
and its limit points, or, alternatively, to restrict y to R, and replace maximum over
y by supremum. Then for x € R;, the maximum over g € G, is attained if g = e,
and the maximum value of y'(gx)" is ] y;x; = y’x". Then @ (x) = sup{ y’x’ y E
R;,, 9°(y) = 1}, and this also equals ¢,(x") if x € R}, so that x” € R/,. []

o+’

It will be very convenient in the sequel not to introduce a notation for the
extension of a function ¢ € ®,. Thus, if ¢ € @,, then ¢ will also be considered a
function in @, for any s > r via the extension defined in Lemma 2.1. In particular,
this will be used in the definition (2.10) of the p-norm of a matrix.

Define 9N, , to be all m X n matrices of rank < r. The following lemma
generalizes Lemma 3.9 in [11], which, in turn, generalizes a result of von Neumann
(1937).

22 LemMA. Let 1 <r < min(p, q) and ¢ € ®, be given. (i) If N € M, 45
then max{tr NW: W € M, ,, |Wl, < 1} = ||N|l,.. () If WeON,,, then
max{tr NW: N € I, ,, [IN|lg. < 1} = | W],

This lemma will be proved in Section 5. If desired, in (i) of the lemma the
maximum may be taken over ||W]|, =1, and in (ii) over [[N]|go = 1. Note that
from each of the two equalities in the lemma there follows one with max replaced
by min and the right hand side replaced by its negative. Lemma 2.2 leads
immediately to simultaneous confidence intervals for all tr NM with N running
through all p X ¢ matrices of rank < r, generalizing Mudholkar’s (1966) simulta-
neous confidence intervals (2.12).
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2.3. THEOREM. Let 0 < a <1 and integer r with 1 < r < s = min(p, q) be
given, and let ¢ € ®, be such that

(2.17) P{IW|,<1}=1-a,
then
(2.18) P{|tr NM — tr NX| < ||S*N||, VN € O} =1 - a.

In fact, the events on the left hand sides of (2.17) and (2.18) are identical.

PRrROOF. Usmg 2.11), the event on the left hand side in (2.18) is the same as the
event {|tr S2NW| < ||S2N||q,.,VN € M .} = {|tr NW| < ||N||.VN € I .}
(using the fact that SIN € M, , if andonlyif N € M ) = {|tr NW| < IVN €
M, g5 IN|lgoe = 1} = {—1 " min tr NW < max &8 NW < IVN € M, 45
INllge = 1} = (I Wl|, < 1} by Lemma 2.2 Gi). [

Specializing Theorem 2.3 to r = s reproduces, of course, Mudholkar’s intervals
(2.12). Specializing Theorem 2.1 to r = 1, the Roy-Bose intervals (2.5) result.
Indeed, the only type of functions P in ®, is p(x) = c|x|, ¢ > 0, and its polar is

ox) = c"|x| Then |W||, = c)\2 and in order that (2.17) be satisfied we must
havec™! = 7\,,2 (see (2.3)). Hence, "(x) = )\g|x| Putting N = ba/, the only pos31ble
nonzero s1ngu1ar value of SN is (tr N’ SN); = ||la|| (b’Sb)2 so that || S IN [l po
}\2||a|| (b'Sb)2 Thus, (2.18) becomes (2.5).

In the remainder of this paper it will be sufficient to deal only with the SCS (2.4)
for all @’M, and with the confidence intervals (2.18) for all tr NM, N € 9, _,
since (2.5) and (2.12) are special cases of (2.18).

3. Equivariant simultaneous set estimators. Reverting temporarily to the gen-
eral notation of Section 1, it is convenient to regard the family of functions
{; : i € I} as a single function ¢ : I’ X I — V. In the same spirit, SCS for {y;}
will be regarded as a function Q on % X I whose values are subsets of ¥. The
function Q will sometimes be called a simultaneous set estimator.

Suppose there is a group G of invariance transformations, i.e., G acts on X
(measureably) and on O, and P,,(gA4) = Py(A) for every measureable 4 ¢ X and
all g € G, 8 € O. Suppose, furthermore, that an action of G on T" can be defined
such that y(gf) = gy(0)Vg € G, 6 € O (this is true iff v(0,) = v(6,) = v(gb)) =
v(g8,)Vg € G, §,, 0, € ©). Finally, suppose that an action of G on I and, for each
i € I, an action of G on ¥ (denoted y — g;{) can be defined such that y( gy, gi) =
gy¥(y, )Vy €T, i € I, g € G. Then the problem of estimating y(#) and estimating
simultaneously all y(y) is invariant under G.

Writing temporarily ¢ = (x, i), x € %, i € I, a simultaneous set estimator Q for
y is called equivariant if Q(gt) = g Q(1)Vt € X X I, g € G (cf. Lehmann (1959),
page 243, (27), for the definition of a single equivariant (called “invariant” there)
confidence set). Replacing ¢ by (x, i), and x by the random variable X, we write the
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definition of equivariance of Q as

3.1 0(gX, gi) = g,Q(X, i) VgeG,iel.

For the application to MANOVA the random variable X in (3.1) will be replaced
by (X, Y, Z), and the index i by a € R? or by N € 9 ,. The problem of
obtaining SCS for all a’M, a € R? [all tr NM, N € I ] is invariant under a
group G, [G,] defined below by the action of its various subgroups (labeled (a), (b),
etc.). Any action not indicated is supposed to be trivial. Notation: O(n) = alln X n
orthogonal matrices; GL(n) = all n X n real nonsingular matrices; g¢,[q;] =
number of rows of Y[Z]. Points of ¥ will be denoted ¢ (not to be confused with
the function ¢). The nontrivial actions are:

G,(a): V4, € 9,

q,p°

XoX+A,M>M+ A, Y>>y + dA;
(b): VA, €M, ,, Y > Y + Ay, My > My + Ay;
(): VU, €09, X>UX,M—> UM, a— Ua;
(d): YU, € 0(gy), Z —> U,Z;
(e): VC € GL(p), [X', Y, Z',M',My]>C[X", Y, Z',M', M}], 2 -
C2C, ¢y - yC’;
: Ve#0,a—ca, y—> .
Gya): VA, EM, ,, X >X + A, M>M+ A,y >y +tr NA;
(b): same as G,(b);
(©): YU, € 0(g), X > U, X, M — UM, N - NU};
(d): same as G,(d);
(e): in G,(e) replace ¢y - YyC’ by N - C'~'N;
): Vc# 0, N> cN,y - cy.

3.1. LeMMA. A simultaneous set estimator Q for all a’ M, a € R?, is equivariant
if and only if

(32) Q(X,Y,Z,a)={aM ER?:a(M—X)S (M — X)a€|a|J},
a € RY,
in which J is any Borel subset of [0, o).

PrOOF. Set
(33) . o(X,Y,Z,a)=aX+ F(X,Y,Z,a)

in which F is some subset of R?, regarded as a space of row vectors. In (3.1)
replace X by (X, Y, Z), i by a, and take g belonging to the subgroup defined in
G,(a). The left hand side of (3.1) is Q(X + 4, Y, Z,a) = a'(X + 4) + F(X +
A, Y,Z, a) by (3.3). The right hand side of (3.1) is Q(X, Y, Z,a)+ a4, =
aX + F(X,Y, Z,a) + a'A, by (3.3). Equating the two sides of (3.1) gives F(X +
A, Y, Z,a)= F(X,Y, Z, a) for every A, € "Jll,q,p, showing that F does not de-
pend on X. Taking g of G,(b) similarly shows that F does not depend on Y. Taking
g of G,(d) shows F(U,Z, a) = F(Z, a)VU, € 0(g;) from which it follows that F
depends on Z only through Z'Z = S. Write F = F(S, a). Applying g of G(c)
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(which leaves @’ X and Q invariant) shows F(S, U,a) = F(S, a)VU, € 0(g) so that
F depends on a only through | a||. Combining this with the transformations of
G,(f) with ¢ > 0 shows F(S, ||a|]) = ||a|| F(S, 1) = ||a||F(S), say. Finally, taking g
of G,(e) leads to F(CSC’) = F(S)C'VC € GL(p), S :p X p positive definite.
First take S = I, and C = U € 0(p), then from F(I) = F(I)U’ it follows that
F(I) = {v € R? : ||v||> € J} for some J C [0, ). Second, take C = S 3, then
F(I) = F(S)S‘% so that F(S) = F(I)S% = {vS% ER: o> €J} =
{vER?:0vS " €J}. Hence, by (33), Q(X,Y,Z,a)=aX + |a|{v E
R? : vS "'’ € J}. Replacing v by a’ M yields (3.2). ]

3.2. LEMMA. A simultaneous set estimator Q for all tr NM, N € O , is
equivariant if and only if

(34) QX Y,Z,N)={tr NM: |tr N(M — X)| € J(d(57N))},
N e ,,

in which d(N) is the vector of ordered singular values of N, and J is a Borel subset of
[0, c0) depending positively homogeneously on the vector d(-).

ProoF. Write Q(X, Y, Z, N) = tr NX + F(X, Y, Z, N). Then expressing the
definition (3.1) of equivariance under g of G,(a), (b), and (d), shows as in the proof
of Lemma 3.1 that F = F(S, N). The transformations of G,(c) show that F =
F(S, NN’). Applying the transformations G,(e) leads to the equation
F(CSC’, C’"'NN’'C ") = F(S, NN’) and this shows that F depends on its argu-
ments only through the characteristic roots of NN'S, or, equivalently, through
dacs IN ) (cf. (2.7)). Applying the transformations G,(f) gives the equation
F(d(cS?N)) = cF(d(S2N)), which can be written F(|c|d(-)) = cF(d(-)). Taking
¢ > 0 shows F to depend on d(-) positively homogeneously. Taking ¢ = — 1 shows
F=—-F Put F=J U (=J),J C[0, ), then Q(X, Y, Z, N) = tr NX +
F(d(S IN )) can be put in the form (3.4). []

4. Smallest equivariant SCS. Denote by A (A) > A,(A) > - - - the ordered
characteristic roots of a symmetric matrix 4.

4.1. THeoreM. (i) If p <gq, then (1 — a)-exact equivariant SCS for all a' M,
a € R, exist only with respect to the confidence set (2.3) for M, derived from Roy’s
maximum root test. The smallest such sets are given by (2.4).

@ii) If p > q, then (1 — a)-equivariant SCS are smallest if and only if they are of
the form (3.2) with J having the property
(4.1) P{[A(WW),\(WW)]CJ}=1-a

(W defined in (2.11)), and these SCS are exact with respect to the confidence set
for M

42) {Mem,,: [N(WW),\(WW)]CJ}.
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If the confidence set for each a’ M is required to be connected and contain its center
a’X, then the same conclusion prevails as in part (i) of the theorem. The same is true if
the confidence sets are required to be convex.

REMARK. It will appear in the proof of part (ii) that J in (4.1) may be taken to
be a countable union of disjoint nondegenerate intervals, say J = U I,. Then the
event on the left hand side of (4.1) happens iff both the smallest and the largest
characteristic root of WW” are in the same I, for some n = 1,2, - - - .

PrROOF. The proofs of parts (i) and (ii) run together for a while. By (2.11), if X
and S are given, then to any set F of matrices M corresponds a set F* of matrices
W, and to any set B, of vectors a’M, a € R, corresponds a set B* of vectors a’ W.
It is more convenient to carry out the program laid down in Theorem 1.1 in terms
of the starred sets. For simplicitly of notation, however, the asterisk will be
dropped. The SCS (3.2) are
(4.3) B,={aW:adWW<ac€|a|J}, a € RY.
Then by (1.2) (with i replaced by a € R9), F consists of all W such that
aWW'a € ||la||’7Va € R This condition on' W is clearly only a condition on
d(W) (defined in (2.7)). Thus, there is a set E such that
44) F={wed,,: :dWw)eE}.

The set E may be taken to be a subset of R;,, since P{d(W) € R;,} =1
(s = min(p, ¢)), but it will be convenient to allow 0 € E. By (1.3),

(4.5) A, ={adW:W € F}, a € RY,
with F given by (4.4). In order to determine the nature of these sets, singular value
decompose W for every W € F, W # 0 (see (2.6)):

(4.6) W = UDV’

withUeM, ,, VEM, , ,U'U=V'V=1I, and D = diag(d,(W), - - -,
d(W)), with d\(W) > - - - > d (W) > 0 being the s ordered singular values of W.
Then

(4.7) Aa = Ud(W)EE @] 7 Va' UDV/.
From this point on the proofs of parts (i) and (ii) diverge.

PrOOF OF (i). Since p < g, s = p and in (4.7) ¥ runs through O(p), U through
all g X p matrices with orthonormal columns. It is found that for fixed d(W) in

(4.7) the union over U and ¥V produces the closed ball with radius ||a||d,(W).
Taking the union over all d(W) € E yields

(4.8) A, ={v € R?: ||v| < |la|lcg}, a € RY,
in which
(4.9) cg = sup{d\(W) : d(W) € E},
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or with < in (4.8) replaced by < . For probability statements it will make no
difference whether < or < prevails, and the former will be assumed. From (4.8)
the exact nature of F can be found, by (1.4):

F={weon, , :adW € A,Ya € R}
={weMm,,: |dW| < |a|cVa € R?},
which can be written
(4.10) F={WeMm,,:d(W)<cg}

In order that the acceptance region determined by F be of level a, ¢z = )\é , and
(4.10) coincides with (2.3). The confidence sets (4.8) can be written as a’ WW’a <
lla]|*A, and coincide with those of (2.4).

PrOOF OF (ii). Now p > g, so s = ¢q. The case g = 1 is rather trivial since there
is now essentially only one confidence set. It is seen that J in (3.2) can be any Borel
subset of [0, o0) such that P(WW’' € J) =1 — a. Now suppose ¢ > 1. In 4.7) U
runs through O(q) and V through all p X ¢ matrices with orthonormal columns.
Then it is seen that for fixed d(W) € E the vectors ' UDV" run through all vectors
v € R? such that

(4.11) llalld, (W) < [loll < llalld\(W)

(this is the essential difference with case (i)). For d(W) € R; ., [d(W), d\(W)] is
nondegenerate, closed interval. The union over all d(W) € E of these intervals is a
set K C [0, o0) consisting of a countable union of disjoint nondegenerate intervals,
with possibly {0} adjoined. Hence, after observing (4.11),

(4.12) A, = {v € R? : ||v] € |a| K}, a € R
Then (see (14)) F= {W € M, , : a’ W € A,Va € R?} turns out to be
(4.13) F={WeMm,,: [d(W),d(W)] c K}.

Observing that the singular values d(W) are the square roots of the characteristic
roots A(WW’), and taking J = {x? : x € K}, the set F of (4.13) corresponds to
(4.2). The sets (4.12) for a’ W can be written as a’ WW’a € ||a||%J, which is (3.2)
with J as announced in the theorem. These confidence sets are not connected, nor
contain their center a’X, unless J = [0, A,], and then the confidence sets reduce to
(2.4). The same is true if the sets are required to be convex. [J

4.2 THEOREM. Let 1 <r < s = min(p, q). Then smallest equivariant (1 — a)-
SCS for all tr NM, N € 5.)!(,1’,, g> are necessarily those given by (2.18), with any ¢ € ®,
satisfying (2.17), and the confidence intervals (2.18) are exact with respect to the
confidence set for M defined by ||W ||, < 1.

PrOOF. As in the proof of Theorem 4.1 F will stand for a set of matrices W
rather than M, and B, for a set of values of tr NW rather than tr NM. Then (3.4)
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takes the form
(4.14) By = {tt NW : |tr NW| € J(d(N))}, NeX ,

in which J(d(+)) C [0, ) and depends on d(-) positively homogeneously. The set
F of (1.2) (with i replaced by N) is the set of all W satisfying (4.14) for every
N € 9 , and is therefore determined by conditions on d(W). Hence, as in the
proof of Theorem 4.1, there is a set E C Ry, U {0} such that (4.4) holds. The
corresponding sets A, of (1.3) are

(4.15) Ay ={tr NW: W € F}, N eI ,,
and (1.4) reads

(4.16) F={WeM,,:trt NW € A4y¥N € O, 1.

The theorem will be proved if it is shown that

(4.17) F={Weom,,:|W|,<1} forsome 9pE P,

and

(4.18) Ay =[=[INllges IV llge],

because then tr NW € AyVN € 9N, , is equivalent to the simultaneous confi-
dence intervals (2.18). Employing the singular value decomposition (2.6) for W and
utilizing the representation (4.4) of F, (4.15) can be written

(4.19) Ay ={uNUDV': U'U=V'V=I,d€E}, NEeEON,,

in which D = diag(d,, - - - ,d,) and d = (d,, - - - , d,). Denote (see (2.7)) d(N) =
n=(n,- - -,n),in which n, = 0 for all i > r (since N is of rank at most r). It is
proved in Lemma 5.2 that for d € E fixed, withd, > - - - >d, >0,

(4.20) {rt NUDV' : U'U = V'V =L} =[—n'd, n'd].

Then taking the union of (4.20) over all d € E shows A, to be a symmetric and
nondegenerate interval, unless N = 0 in which case 4y = {0}. For probability

statements it will make no difference whether the interval is open or closed, and it
will be convenient to assume A, closed for every N. Therefore,

(4.21) AN = [ —ay» aN]’ N e (-’)K’;,qa
where ay > 0 for every N € I, — {0}. Then (4.16) is

(422) F={wWeM,, max{ay't NW:N € O, — {0}} < 1}.

(Note that the condition on W in (4.22) is equivalent to min{ay '"“ NW:N €
M , — {03} > — 1 since N € I , if and only if —N € M ;) From (4.15)
and the representation (4.4) of F it follows that 4, and therefore ay, depends
positively homogeneously on d(N) = n. Write a, instead of ay, then a,, = ca, for
every ¢ > 0. Take W € F, W # 0, fixed and denote d(W) =w = (w,, - * - , w,)’.
Take n = (n,- - - , n) fixed, withn, > --- >n>0=n,,=--: =n, then
it follows from Lemma 5.1 that max{tr NW : d(N) = n} = n'w = Z{nw,. Further-
more, utilizing the group G, of symmetry operations introduced in Section 2,
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n’w = max{(gn)’w : g € G,}. Now define, for x € R’ h,(x) =

a; ! max{(gn)x : g € G,} provided n # 0, and h,(x) = 0 if n = 0, then A, is a sgf
on R* which (for n # 0) on R?, equals a, 'n’x = a; '3in,x, and therefore on R?,
does not depend on x, ., - * - , x,. Put ¢ = max,h,, the maximum taken over all n
with n; > - - - > n, and n, = 0 for i > r (this maximum exists as a result of the
positive homogeneity of a,). Then ¢ is also a sgf on R® which on R;, depends only
on the first r coordinates. Hence, ¢ € ®,, and the condition in (4.22) reads:
@(d(W)) < 1, or, equivalently (see (2.10)), [|W]|,, < 1, so that (4.22) becomes
(4.17). Then from (4.15), (4.21), and (4.17) one has ay = max{tr NW : |W||, < 1}
= || N||4> by Lemma 2.2 (i), proving (4.18). []

5. Matrix lemmas involving traces. The next lemma is basic for various ex-
tremal problems, including several lemmas in this paper. For square (and complex
valued) matrices it originated with von Neumann (1937) who gave a rather long
proof. Since then the proof has been simplified by various authors. In particular,
Mirsky (1975) gives a much simpler proof, using singular value decomposition.
Lemma 5.1 below generalizes von Neumann’s result to matrices that are not
necessarily square. The proof is close to the one in [9]. We have stated the lemma
for real valued matrices, since those are the only ones occurring in this paper.
However, the conclusion is equally valid for complex valued matrices if “orthogo-
nal” is replaced by “unitary.”

51. LeMMA. Let A, B € 9N, ,, and a = d(A), b = d(B) (see (2.7)) their vec-
tors of ordered singular values (a; > a, > ---,b, >b, > - --). Then

(5.1) max{tr AUB'V' : U €0(n), V € 0(m)} = a’b.

Proor. Without loss of generality it may be assumed that m > n. Writing 4
and B in their singular value decomposition it may be further assumed that the
elements g, ; of 4 and b, ; of B are 0 except a; = a;, b; = b;. Redefining 4 and B by
deleting their last m — n rows, and redefining V" by deleting its last m — n rows
and columns, it will be shown that if

(5.2) A = diag(a,,- - - ,a,),a, > -+ >a, >0,
(5.3) B =diag(by,- - - ,b,), b, > - -+ >b, >0,
and H consists of all n X n matrices U = ((;)) with

(54) S <1V,  Zuf <1 Vi

then

(5.5) max{tr AUB'V' : U,V € H} = Ziab,.

Obviously, the right hand side of (5.5) can be attained by taking U = V = I,,. Since
tr AUB'V’' = 3, au; b, , since the a; and b; are > 0, and since v, ,0,; < 3(u; +
v?), it suffices to show that

(5.6) 2; ja,-bju,-zj < Zla;b;
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if the u,; satisfy (5.4). The inequality (5.6) is proved as Lemma 1A by Ky Fan in [2].
0

REMARK. Another very instructive proof of (5.6) can be given by using the
notions related to Schur convexity. The u,.zj may be regarded as the elements of a
doubly substochastic matrix. By increasing the elements, if necessary, the matrix
can be made into a doubly stochastic matrix, say P, and during this process the left
hand side of (5.6) is not decreased. It is sufficient to show that @’ Pb < a’b if P is
doubly stochastic. Theorem 2 (credited to Birkhoff) given by L. Mirsky (1963)
states that P is a convex mixture of permutation matrices: P = Say Py, oy > 0, S,
=1, and for each permutation matrix P, it is obvious that a’P,b < a’h. An
independent proof of (5.6) for ((u,?j)) doubly stochastic is given by Mirsky (1975).

5.2. LEMMA. Under the same conditions as in Lemma 5.1 we have
5.7 {tr AUB'V' : U €0(n), V €0(m)} =[ —a’'b, a'b].

ProoF. From Lemma 5.1 it follows that no point outside the interval on the
right hand side of (5.15) is in the set on the left hand side of (5.7). As in the proof
of Lemma 5.1 it may be assumed that m > 'n and that 4 and B have the form (5.2)
and (5.3). It will suffice to put ¥ = I, and to prove that

(5.8) {trAUB: U €0(n)} =[ —a'b, a'b],

with 4, B given by (5.2), (5.3). By taking U = I,(—1,) the right endpoint a’b (left
endpoint —a’b) is attained. It remains to be shown that every point between — a’b
and a’b is a possible value of tr 4AUB.

Consider, for 1 <k <n—1 and 0 < <, the orthogonal matrix U,(#) of
elements uy = 4y 441 =080, 4 41 = — Uy =sinb,u;, =1 for i #k,i
# k + 1. Suppose first that » is even. Take U = U,(6) and let § run from O to 7.
This changes tr AUB continuously from Xjab, to —33a,b, + Z%a;b,, so that all
intermediate values are attained. If n = 2, the sum X} is empty and we are done. If
not, repeat the procedure with Us(8), etc. Eventually, all values between =/a;b; and
— 21a;b; will have been reached. Now suppose n is odd, then with the above
method all values between X7a;b; and —37 'a,b, + a,b, can be reached. Then
repeat the procedure, but now starting with — U,_,(#) and working backwards.
This lets tr AUB attain all values between —Xa;b, and —a,b, + Z5a;b;. Since
—ab, + Zjab, > — 377 'a;b; + a,b,, the two intervals of possible values overlap
so that their union is the right hand side of (5.16). []

ProOOF OF LEMMA 2.2. (i) Write both N and W in their singular value decom-
position (2.6) and in the expression of tr NW take the maximum over the orthogo-
nal matrices involved in that decomposition. Using Lemma 5.1, that maximum is
seen to equal n’w, where n = d(N), w = d(W) (see (2.7)), and both n and w are in
the closure C1(R;,) of R;,. Since N € I , n'w = Zin,w,. Since ¢ € ®,, p(w)
depends only on the first r coordinates of w. Therefore, n and w can be replaced by
their restrictions n”, w” to C1(R;,) (the notation x” was introduced in Lemma 2.1).
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Write n’, w” again as n, w. Then max{n'w:w € CI(R],), p(w) < 1} =
max{n'w : w € R", p(w) < 1} = @°(n) = || N||., by the definition (2.9) of ¢° and
the definition (2.10) of the ¢-norm of a matrix.

(ii) As in the proof of part (i) it is permissible to replace n and w by their
restrictions n”, w”. Then max{n'w :n € CI(R],), 9°(n) < 1} = max{n'w :n €
R, 9°(n) < 1} = @(w) = ||W||,, by (2.9) and (2.10). ]
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