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EMPIRICAL BAYES ESTIMATION IN LEBESGUE-EXPONENTIAL
FAMILIES WITH RATES NEAR THE BEST POSSIBLE RATE'

By R. S. SINGH
University of Guelph

Asymptotically optimal (a.0.) empirical Bayes (EB) estimators are pro-
posed. Speeds and the best possible speed at which these estimators are a.o. are
investigated. The underlying component problem is the squared error loss
estimation of # based on an observation X whose conditional (on @) pdf is of
the form u(x)C(#)exp(fx). The function u could have infinitely many discontinu-
ities; 0 is distributed according to an unknown and unspecified G with support in
©, and © could be unbounded.

Using n independent past experiences of the component problem, EB estima-
tors ¢, for the present problem are exhibited for each integer r > 1. The risks
R(¢,, G) due to ¢, are shown to converge to the minimum Bayes risk R(G). In
particular, for each & in [r~!, 1], sufficient conditions are given under which
cn~%r=D/0+2) < R(a,, G) — R(G) < cn~20=D/(1+2) where ¢, and c, are
positive constants. The right hand-side inequality holds uniformly in G satisfy-
ing certain conditions, while the other holds at all degenerate G and for all large
n. (Thus with 8 close to one, ¢, achieves almost the exact rate.) Examples of
exponential families such as normal, gamma and one with pdf’s having in-
finitely many discontinuities are given where the conditions for the above
inequalities are satisfied uniformly in G with f |0[27%dG(6) < .

1. Introduction. Yu [21], Lin [7] and Singh [16] considered the empirical Bayes
approach, (introduced by Robbins (1955), and later developed by Johns (1957),
Robbins (1963, 1964), Samuel (1963), and Johns and Van Ryzin (1971, 1972),
among others), to the squared error loss estimation (SELE) in the one parameter
exponential family. The component problem in [21], [7] and [16] is the SELE of ¢
based on an observation X (which could be a sufficient statistic for #) having
conditional (on #) pdf of the form

(1.0) Po(x) = u(x)C(8)exp(6x)
where for ana > — oo,
(1.1) u(x) >0 ifandonlyif x >a,

and C(8) = (f exp(fx)u(x)dx)~'. The parameter 6 is distributed according to an
unknown and unspecified G with support in ©, a subset of the natural parameter
space {0|C(6) > 0}. The risk of an estimator ¢ is R(¢p, G) = E(p — 6)? and the

Received April 1977; revised February 1978.

1Part of the paper was prepared while the author was at the Indian Statistical Institute, New Delhi.
The research was supported in part by National Research Council of Canada Grant A4631.

AMS 1970 subject classifications. Primary 62F15, 62F10; secondary 62C25.

Key words and phrases. Empirical Bayes estimation, squared error loss, rates of convergence, the best
possible rate, asymptotically optimal.

890

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

%5

o 22

i

®

WWw.jstor.org



EMPIRICAL BAYES ESTIMATION 891

estimator which achieves the Bayes envelope R(G) = inf, R(¢, G) is given by

J0C(8)exp(0x)dG(8)
JC(0)exp(6x)dG(8)

Using n independent past experiences (of the problems identical to the above
component problem) through observations X, - - - , X,, and the present observa-
tion X, X’s being i.i.d. with pdf p(x) = [py(x)dG(8), asymptotically optimal (a.0.)
estimators (for the definition, see any of the references cited above) have been
exhibited in [21], [7] and [16]. These works may be thought of, to some extent, as
the counterpart of the notable work by Johns and Van Ryzin (1972) where the
empirical Bayes (EB) approach to linear loss two-action problem in the above
family is considered.

Whereas Lin’s (1975) presentation and proofs are nice, his restrictions, among
others, (i) the existence and the continuity of the rth derivative u® of u for r
sufficiently large, (ii) the boundedness in x of supy_, | p(x + )| for every ¢ > 0
and for r sufficiently large, and (iii) ® C [0, o), in order to get the speed of
asymptotic optimality near O(n~ %) are seemingly unnecessary. Though Singh (1976)
improves Lin’s rate to near O(n "~ %), his assumptions, the boundedness of ©® and the
boundedness of (p(x)/u(x))sup, ., <x+e¥(?) in x for some ¢ > 0, also appear to be
unnecessary. The reason for this speculation is that we, in this note, are able to
exhibit estimators (by using X, - - -, X, and X) which are a.o. with very high speed
(namely, arbitrarily close to O(n~')) without requiring any assumption on the
smoothness of u, or, for that matter, any of the above sort of restrictions at all.

(12) ¢6(X) = E(0|X) =

More precisely, for every integer r > 1, estimators ¢, based on X, - - -, X, and X
are exhibited such that, for some constants ¢, ¢/,
(13) cn =2(r—=1)/(1+2r) < R(¢n’ G) _ R(G) <c'n =2(r—=D+/(1+2r)

where the right-hand side inequality holds uniformly in G satisfying certain condi-
tions and for each n > 1; and the left-hand side inequality holds at each degener-
ate G and for all n large enough. In fact, in many exponential families, including
normal, gamma and one with pdf having infinitely many discontinuities, (1.3) holds
uniformly in G satisfying [|0* ~dG(6) < .

Hannan and Macky (1971) suggested an EB estimator in the above exponential
families which are a.o. if [8%dG(8) < oo. No specific rate of convergence, however,
is emphasized. Further comparisons of this work with those of others are given in
Section 7.

Notice that the rates in (1.3) can be made arbitrarily close to 0(n ") by taking r
sufficiently large. In view of the existing literature and our efforts in obtaining the
results here, we conjecture that (i) a rate O(n ~') or better is not possible for any EB
estimator in any Lebesgue-exponential family even though © is bounded, and (ii) no
specific rate of convergence for any EB estimator in any exponential family is
possible without any moment condition on G.

Our plan is as follows: in Section 2 we prove a basic lemma. In Section 3 we
exhibit our EB estimator, first by exhibiting mean square consistent estimators of
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f = p/u, and its first derivative f(". In Sections 4 and 5 we obtain our main results
giving, respectively, right-hand side and left-hand side of (1.3). In Section 6 we give
examples where (1.3) holds uniformly in G satisfying [ |8 ~dG < oo. We conclude
the paper with a few remarks in Section 7.

2. A basic lemma. For any estimator ¢*, the excess in risk due to ¢* over the
Bayes envelope is R(¢*, G) — R(G). The following lemma, which reduces the
problem of search of an a.o. estimator to the one of mean square consistent
estimation of the Bayes estimate ¢, has been found very useful in the context of
EB SELE. The conclusion of the lemma is well known, but the lemma under the
present assumption was suggested to me by Professor James Hannan; it is valid,
not only for p, of the form (1.0), but for any arbitrary p,.

LemMma 2.1.  If R(G) is finite, then for any estimator ¢*,

(2.0) R(¢*, G) — R(G) = E(¢* — ¢;)".

REMARK 2.1. In the published literature, (e.g. Johns (1957) and most recently
Lin (1975)), (2.0) is proved under the stronger assumption that E|f|> < co. This
implies the hypothesis of the lemma. The converse, however, is not true. For
example, let py(x) = (27)~ 7 exp(—(x — 8)*/2). Then, since E|X — 8% = 1, R(G)
< 1 regardless of the nature of G.

PROOF OF THE LEMMA. Let E, denote the conditional expectation operator
given X and all other random variables involved in the definition of ¢*. Then

(2.1)  Eu(¢* — 0)* = (¢* — ¢6)* + Ex{(dg — 0)* + 2(* — ¢6) (96 — 0)}.

But, since R(G) = E{E(¢; — 0)*} < o, Ex(¢g — 8)* (and hence E.|p; — 0]) is
finite w.p. 1. Therefore the second term on the right-hand side of (2.1) can be
written as Ey(dg — 0)° + 2(¢* — ¢)Esidg — 0) which is simply E.(¢g — 0)
since E,0 = ¢g. Thus, E(¢* — 0)> = (¢* — ¢)* + Ex(dg — 0)*. This identity,
combined with the fact that R(¢*, G) = E(E.(¢* — 0)%), gives (2.0). 0

3. Proposed class of empirical Bayes estimators.
3.1. Introduction. Let f(x) = [C(0)exp(6x)dG(8). By Theorem 2.9 of Lehmann
(1959), fO(x) = [0C(0)exp(6x)dG(H). Therefore, by (1.2), ¢ can be written as

(3‘0) o = f(l)/f-

Thus estimation of ¢, amounts to the estimation of f® for i = 0, 1, where f© = f.
Notice that f is not a pdf, and therefore estimators of a pdf or its derivatives
available in the existing literature cannot be directly used here. As a result, we will
now exhibit a class of estimators of f® for i = 0 and 1, and prove mean square
consistency of these estimators. Then based on these estimators we will define
estimators of ¢.

3.2. Estimation of f and its derivative f¥. Let r > 1 be a fixed integer. For
i =0, 1, let ! be the class of all Borel-measurable real valued bounded functions
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K. vanishing off (0, 1) such that

(3.1) YK»)dy =1 if t=i
=0 if t#i t=0,1,--,r—1

(Polynomials vanishing off (0, 1) and satisfying (3.1) can be constructed, e.g., see
Singh (1978, 1979). The set K, also contains the (i + 1)st element of the dual basis
for the subspace of L,(0, 1) with basis {1,y /1,- - - ,y"/r!}.) Kernel functions of
the type K, above are used by Johns and Van Ryzin (1972) and by Singh (1977a,
1978, 1979), among others, in construction of estimators of a pdf and its derivative.

Let I;(x) = I(x > 1) and I,(x) = I(a < x < 1) where a is given by (1.1), and
I1(S) is the indicator function of the set S. For i =0,1 and j = 1,2 denote
FO(x)I(x) by J;(")(x). For x > a, let 0 < h(x) = h,(x) be such that for each x, h — 0
as n — 0. Let K; be a fixed element of K. At x > a, define

(G2 T hx) = n () {K(%) / u(x,)}.

For i =0, 1 and j = 1, 2, our proposed estimators of f® are f® defined as

(3:3) FP(x) = T(x, (= 1Y'h(x)) ().
In Theorem 3.1 below we will prove mean square consistency of f;(’) as an estimator
of f. For the sake of brevity in writing we introduce for j = 1, 2

34) a8, x) = exp{(j — 1)h(x)0}1(8 > 0)
+exp{(j — 2)h(x)0}1(6 < 0)
and

3.5 B8, x) = 3CXP{(_1)jh(,x)0y} .
(3:3) ( d u(x + (—l)fh(x)y)

Note that ; and f; depend on n through /. Let M be the common bound of K, and
K,.

THEOREM 3.1. For i =0, 1 andj = 1,2, and for every 0 <t < 2,
(3:6) E|f" = fO1 < (MA)T(x)] (A"~ Ex-.(1812(8))}’

+ {nh' 2/ B, B(8)) "]
where the argument x in f;“l 5O, f» &, B, and h is indicated by omission.
Proor. We will indicate the proof of the inequality (3.6) for i =0 and j = 1
only. The proofs for others follow similarly.

Abbreviate fOI, to f, and f© to f,. Since f*(z) is [87C(8)e*dG(8) by Theorem
2.9 of Lehmann (1959) and since

3.7 sup0<,<1|f(’)(x — h(x)t)| < f(x)Ex=x(|0|’al(0, x))
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where «; is given in (3.4), by arguments similar to those used for (3.6) of Singh
(1977a), we have

(3.8) |Efy = fil < MREx_,(10]'a\(6)).
And the usual method of bounding the variance of the average of i.i.d. random
variables followed by (3.5) gives

(3.9) Var(f,) < MX(nh)™'fEx_,.B,(0).
Now the desired result follows by Hélder inequality since ( ﬂ — f))? is (left-hand
side of (3.8))? + left-hand side of (3.9). [

3.3. The proposed class of empirical Bayes estimators. In view of the mean
square consistent estimators f® = f® + £ of f@ = f® + f® fori = 0, 1, Lemma
2.1 and (3.0) our proposed (EB) estimators for the present problem are

(3.10) $u(X) = (JOX)/AX))p-10x)

where for ¢ > 0, (b), is —c, b or ¢ according as b < — ¢, |b| < c or b > c. Notice
that no information about G, ¢; or ® is required to define ¢, above; and they
depend only on the past observations X, - - - , X, and the present observation X.

4. An upper bound for R(¢,, G) — R(G) and rates of asymptotic optimality of
the EB estimators ¢,. We recall from the preceding section that our EB estimators
¢, introduced in (3.10) depend on the integer r > 1 involved in the estimators of f©
through the kernels K, and K. In this section we will obtain a bound for the excess
risk R(¢,, G) — R(G) for each n > 1, and show that for any ¢ > 0 EB estimators
can be exhibited which are a.o. at the rate 0(n~'**). In the next section we will
show that our estimators cannot be a.o. with rates better than 0(n~'*¢) for some
e > 0.

Theorem 4.1 below gives a bound for R(¢,, G) — R(G). The conditions of the
theorem, though looking a little stringent, reduce to a single moment condition on G
in several exponential families, including normal, gamma and a family with pdf’s
having infinitely many discontinuity points. Let ¢y, ¢;, - - - below denote absolute
constants.

THEOREM 4.1. Recall the definitions of &; and B;, j = 1, 2, from (3.4) and (3.5)
respectively. Let there exist a positive function c(x) on (a, o) which, with

(4.0) h(x) = h,(x) = c(x)g, ‘where g, = con /D <,
gives a & in [r~ ", 1] such that for some t > 1,

(4.1) (EIOP)" ™V E {e(X)Ex|8]) P70 < a0

and, for each j = 1, 2,

(4.2) E[L(X)(c(X))* "~V EZ|07%(8, X)| | < oo

and

(4.3) E[ I(X)(c(X)) > °EZB(6, X)/f(X)] < co.
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Let ¢, be given by (3.10) with h as in (4.0). Then
(4.4) 0 < R(¢,, G) — R(G) < ¢;n =2 =D/@r+D),

A special case of the result of Lemma 4.2 below simplifies and shortens the proof
of the theorem. The proof of Lemma 4.2 in turn, is simplified by the following
general lemma due to Singh (1974).

LemMa 4.1. (Singh (1974)). Let y,y’, Y, Y and O < L be reals. Further,let Y, Y’
be random. Then for every t > 0,

’ ’ t
(4.5) E( L _ Z—I A L) < min{L*, 4},
y Y
where A =2+¢-D7 I~ {Ely = Y[
+(y'/yl +27¢D LY)E|y — Y['}.

Proor. The proof is given in the Appendix of Singh (1977b). 0

LEMMA 4.2. As before, abbreviate f(o) to f Then, for every s > 0and 0 <t <,
(47) 27C7D7 Elg, = g6l < (1 +2)lo6lT(|¢6] >h7")
+min{(2h 'Y, [A 524D ()71
[EIFO = O+ (14270 E|f —f]1]).

ProOOF. Recall that ¢, = f/f and ¢, = (f/f),-.. For this proof only, let
¥ = (¢g),-1 and ¥, = ¢ — ¢,. Then, since |¢, — ¢,| < 27!, by triangle inequal-
ity the left-hand side in (4.7) is exceeded by |¢,|* + A~ ")I[|¢g| > ~'] plus a
quantity equal to

Elo, = wif1(jogl < ") < {I(f P/F) = (fF P/HIA@RHYI(log] < h7Y)
< @Y T O/N) = FP/DIA@RTY)
X 1(|pg| < 7Y
The proof is complete by Lemma 4.1 and by the relation

max{[¥al, =1 16| > h™']} < loolI(ig6l > h7"). i

PROOF OF THE THEOREM. Lemmas 4.1 and 4.2 have greatly simplified and
shortened the proof of the theorem. To complete it, let § be as given in the
theorem. Holder inequality followed by Markov inequality gives, for a ¢ > 1 and
qg=2(r6§ — Dt(t — D7,

48)  E{jog()P(loc(X)| > h~'(X)} < {(Eloe(X)*)"*
- (ER(X)es(X)) V) < {(El0P)""

- (Ele(X)g(X)R08~Dre=DTHTD/I205-0) oy (4,0).
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Also, since h(x) = c(x)s, for i =0, 1,|f@ — fOF =3, ,|f® — fO for every
¢ > 0, by (3.6)

(49)  E[W=20){1f2(x) = fO(X)|/f(X))” |
< 0233(&_1)E[Ej= 1, 2Ij(X){(C(X))z(rs_l)Efswr“j(o’ X)|

+ (e(X)) T2 (EyB(6, X)/£(X))} ]-

Now (2.0) followed by (4.7) with s = 2 and ¢ = 24, (4.8), (4.9) and the hypothesis
of the theorem completes the proof. []

5. A lower bound for R(¢,, G) — R(G) and the best possible rate of asymptotic
optimality of ¢,. In the preceding section we gave sufficient conditions under
which R(¢,, G) — R(G) = O(n~2"~D+/0+27) (Examples of exponential families
satisfying these conditions are given in the next section.) With ¢, ¢4, - + - denoting
absolute constants we will now show that for all n large enough R(¢,, G) — R(G)
> ¢;n 20 D/1+2) 4t every G degenerate at any point in ©, thus proving that ¢,
could achieve almost exact rate.

Throughout the remainder of this section, let G be degenerate at an arbitrary but
fixed (unknown) point # in ©, and denote p, and p,/u by p and f respectively.

THEOREM 5.1. Let ¢, be as given in Theorem 4.1. Let there exist anm > 0 and a
finite I > 0 such that Lebesgue-inf and Lebesgue-sup of the restriction to (I, | + m) of
both c(x) in (4.0) and u(x) are, respectively, positive and finite. Then for all n large
enough,

(5.0 R(é,, G) — R(G) > ¢;n~2r=b/0+2n,
Proor. By our hypothesis,

(5.1 0 < [I*my(x)dx <

and, since § is in O,

(5.2) 0 < inf,;,yyy f(£) < SUPscycpuqy f(1) < 0.

Since G is degenerate at 8, ¢; =6 and by Lemma 2.1 R(¢,, G) — R(G) =
E($, — 0 > E?¢, — 6. Thus, by (3.10), for a B (could be unknown) with 8 > 6,
(R($,, G) — R(G))? is no more than
(53) Elp(X) — 8] > [§7°P[¢n(X) — 0 > t]dt

> E(I(1 <X <1+ (n/2)[E P [ fV - 6f > 1| f|]at
where the argument X in f and f is abbreviated by omission, and P, stands for
the conditional probability given X.

Suppose ! > 1, then at X > 1, f@ is f® introduced in Section 3. For X in
(,I+(e/2)and¢tin (0,8 —@)andforj=1,---,n,let

x — X
u(X))Y, = {h™'K, + 0K, + t|K0|}(—hi)
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where K, and K, are the kernels used in the definitions of f, and f® in (3.3) and
(3.2). Since X,,- - -, X, are (marginally) iid., so are Y,,---,Y,. Let u=
EY, and o® = var(Y,). Then, by arguments given in Singh (1974), pages 79-80, for
all n large enough,
(5.9) p = —ch(h”+ h"" 1+ 4) and o? > csh L

Thus, since the probability under the integral sign on the extreme right-hand side
of (5.3) is Py[Z1Y; > 0] > Py[3U(Y, — p) > cunh(h” + h"~' + 1)] by (5.4); by
Lemma 3 on page 47 of Lamperty (1966), for a £ > 0 and for all sufficiently large
n,

(55 P[fO—0f >4f]] > exp{ _nh

2.2(1r r—1 2
ci(h"+ h"" '+ )
1+
32 (1+9
> exp{ —cgnh®(h” + k"~ + 1)’} by (5.4).

(If 7 <1, then choosing 1 small enough, we make / + n < 1. At x < 1, f@ is £{?,
i =1, 0, and, by similar arguments, we get (5.5).) Now making the transformation
(c6nh3)2 (h"+ h"~' + £) = v we get from (5.3) and (5.5),

(56) (R(¢,, G) — R(G))E > (c6n)_%E{h‘%1([ <X<I+ (77/2))f2'e_’zdt}

where b = (cgnh®): (h” + A" Y(X) - cgl as n—o00 and b’ = (c6nh3)%(h’ + h !
+ B — 0)(X)—> o0 as n— co uniformly in / < X </ + (n/2) from the definition
of 4 in (4.0) and from the hypothesis on ¢(+) in the deflmtlon of h. Consequently,

from (5.1) and (5.2), the right-hand side of (5.6) is cm ~=D/A+2n, 0

6. Examples and sub-theorems. We will now give examples of some important
exponential families where all conditions of Theorem 4.1 reduce to a single
condition of the type E|8*? < .

EXAMPLE 6.1. (Normal N(8, 1)-family). Let u(x) = e */2[(—o0 < x < o).

1 2
Then a = — o0, C(8) = 27) "2 %/2, and
(60) Po(x) = (2m)Fem G0,
-0 <l <00, —00 <x< 0.

SUBTHEOREM 6.1. For the family (6.0), let ® C (—o0, ). Let ¢, be given by
(3.10) with h = con=V*2) [f, fora 5 <8 <1 —(2r)7,

(6.1) E|0|2r5 < oo’
then
R(‘p,p G) - R(G) = O(n—2(r8—l)/(|+2r)).

Proor. The function ¢(x) in Theorem 4.1 is here identically equal to one. By
Holder inequality (6.1) is equivalent to (4.1) with ¢ = r8. Also, EZ(|0]'a(8, X)) <
Ex(10]'a(8, X))*® for 28 > 1, and by (3.4) a,(8, X) < I(6 > 0) + e-91(0 < 0) and
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ay(8, X) < e’I(@ > 0) + I(6 < 0). Thus, since exp{28|6| + 6x — (§%/2)} is uni-
formly bounded in # and x on both {# > 0,x < 1} and {# <0, x > 1}, we see
that (4.2) is implied by (6.1).

Now we will show that for j = 1 (4.3) is implied by (6.1). (The proof for j = 2
follows on the same lines.) Since u(x) = e */2 by (3.5) B,(8, x) < exp{(x* +
1)/2}flexp{—(x + 0)e,y} dv < a,(0, x)exp((x* + 1)/2) for x > 1. Thus
Ey_ (B8, x)I(0 > 0, x > 1)) = exp((x* + 1)/2), and E[I,(X){ ExB,(0, X)I(6 >
0)/A(X)}°] < 2fP(u(x)f(x))' ~%dx = 2[(p(x))' ~° dx. But, for a £ > 0, Holder in-
equality gives

(6.2) IR(p(x))' 0 dx < (SR 7E) (B|x [ roo/a-0)m
< const. {l + (E|0|('+5)8/('_8))1_5}.
Also, since a,(, x)I(8 < 0) = e °I(§ < 0), we have
(63) E[L(X)(ExB\(6, X)I(6 < 0)/f(X))’]
< 2E[ I(X)(u(X)A(X)) " (Exe 18 < 0))°]

< {EL(X)(u(X)f(X))*}" (E[ 1,(x)(Exe~1(8 < 0))"‘"])'/ ‘

where 1 >¢7' > max{(2r)~'(1 + 2r8),8} and ¢ = /(¢ — 1). Then since 8 < 1
and 8¢ > 1, the right-hand side of (6.3) is exceeded by

(6.4) (y=(p(x))' ~° ax)""(EL(X ) Exe~**1(8 < 0))"/".
As in (6.2), [*(p(x))' "% dx < const. {1 + (E|§|*+$%/A=80)1=8) Gince exp(fx —
81’0 — (0%/2))I(8 < 0, x > 1) is uniformly bounded in # and x,
E(I,(X)Eye *°I(8 < 0)) < const.[e ™~/ dx.

Thus (6.4) and hence, the left-hand side of (6.3) are finite if E|§|(!*$%/0-%) < o,
But this and the right-hand side of (6.2) both are finite by (6.1) and the restrictions
on ¢ and §, since £ > 0 is arbitrary . 0

EXAMPLE 6.2. (Gamma G(0, s)-family). For a s > 0, let u(x) = x*~'U(x > 0).
Then a = 0, C(9) = (I'(s))"'(—0) and

:xs—l(_a)S Ox

(6.5) po(x) = TG) e™, x>06<0.

SUBTHEOREM 6.2. For the family (6.5), let ® C (— 0, 0), and for a .5 <8 < 1,
let
(6.6) E|0]*® < co.
Let ¢, be given by (3.10) with h(x) = {xI(x > 1) + I(0 < x < 1)}¢,, where
g, = con” 0+ < min(.5,8 "' — 1}. Then

R(¢n’ G) - R(G) = O(n_z("s—l)/(l-é—Zr))'
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ProOF. We will show that for the § and 4 in the subtheorem all the conditions
of Theorem 4.1 are satisfied. By Holder inequality E(I,(X)XE,|0))*® < E|X8|"° =
T(ré + 5)/T(s). Therefore (4.1) for ¢t = ré is implied by (6.6).

By (34) ay(8, x) =1, and for x > 1, a,(f, x) = exp(— fxe,). Thus, by Holder
inequality, E[I,(X)EZ%(|0]'a,(8, X))] < E|0{*® < oo by (6.6), and

E[L(X)X*™~DEZ(10]a,(6, X))]
<SPS X8 +22x 1 exp{(1 — 28e,)0x}dG() dx < o
since 28, < 1. Thus (4.2) is also implied by (6.6).

Now we will verify (4.3). Since ¢, < .5, from (3.5) for x > 1, B(6, x) <
max{2 7', 1} - x'7* exp(—6fxg,), and for 0 < x < 1, B,(8, x) < max{x'~*, 1.5).
Therefore,

_ 1-8
E[ L) ELB,6, X)/1%(X)] < 2/5(p(x)' ™" dx < 2(f3p(x) ax)' ~* <2,

where the second inequality follows by Holder inequality. Also, for (1 — ¢,8) >
t7'>8(>1-8)and ¢ = t/(t — 1) the Holder inequality gives
(67)  E[L(X)X T>7°EZB,(8, X)/f(X)] < max{2°¢~V, 1}/, - I, where

L =EY'[1(X)X > % %Xx)]’, and

l, = EV'[ Eye™ %]
Note that p(x) is bounded on x > 1. Therefore, since [$°x~@*% dx < oo and
0 <8t <1,/ < oo. Also, since 1 <8t <¢, !, by Holder inequality

(L)" < E(exp(—0Xe,8t')) < 0.

Thus the left-hand side of (6.7) is also finite. Thus we conclude (4.3). 0

EXAMPLE 6.3. (A family of distributions with densities having infinitely many

discontinuities). Let u(x) = ZF((i + D)I(i < x < i+ 1)). Then C(8) = (e’ — 1),
a =0 and

(6.8) Po(x) = 0(e? — De®S2((i + NI(i <x <i+1)).

The proof of the following subtheorem follows by arguments identical to those
used in the proof of Subtheorem 6.2 with s = 1.

SUBTHEOREM 6.3.  Consider the family with density (6.8). Let ©® C (oo, 0). If, for a
8 in [.5, 1)E|0*"® < o, then ¢, given by (3.10), with h(x) = (xI(x > 1) + I(0 < x
< D)eon™/*29,0 < ¢y < min{.5, 8 = — 1}, is a.0. with a rate O(n =2 =D/ +2r))

The following corollary, which is an immediate consequence of Theorem 5.1,
shows that the rates obtained in Subtheorems 6.1-6.3 are arbitrarily close to the best
possible rate O(n =2~ D/(+2)
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COROLLARY 6.1. For the families considered in Subtheorems 6.1-6.3, and for the
EB estimators ¢, there,

R(¢,, G) — R(G) > ¢;n~Hr=D/0+21
Jfor some positive const. ¢, and for all degenerate G and all sufficiently large n.

7. Remarks and discussions. For each integer r > 1 we have exhibited a class
of EB estimators for the general exponential family (1.0). Theorem 4.1 gives
sufficient conditions under which these estimators are a.o. with rates near
0(n =2~ D/U+2) which is the best possible rate with our estimators according to
Theorem 5.1. No assumption on the smoothness of u is made.

The conditions of Theorem 4.1 reduce to a single moment condition on G in the
families (6.0), (6.5) and (6.8), among others. In contrast to this, Lin (1975) has
verified his conditions only in the family where u(x) = 1 or 0 according as x > 0
or x < 0,ie. p = — ge®I(x > 0); and G(6) having a density ((¢))~'0*~'e~°1(0
> 0), 0 <t < o0, (and thus having all moments finite). His estimators are shown
there to be a.o. with the rate O(n~‘®**27'*¢) for some & > 0, which is near
0(n~=/3*¢) only for ¢ sufficiently large.

O’Bryan and Susarla (1976) considered EB estimation in the family of normal
distributions with the support of G in [0, 1]. A novel feature of their work is that
they allowed the sample size to vary from one problem to another. Their rate result,
however, is 0(n~(/»*¢) for some & >0, in spite of the boundedness of the
parameter space.

Subtheorem 6.1 improves Corollary 2.2 of Yu (1971). For a 0 <t <1, if
E|0]'®~97'* < o, then Yu gives estimators a.o. with a rate O(n ") where w =
2t2 + )7 '(r — D@r + 1) . Thus, if E|8|™ < oo for an m sufficiently large, his
rates are near 0(n ~'/%) whereas ours are near O(n "~ ").

Subtheorem 6.2 improves and generalizes Corollary 2.1 of Yu (1971). If, for an
m > 2, E|8|" < oo then Yu gives estimators for the G(6, 1)-family (introduced in
Example 6.2) which are a.o. with a rate O(n~‘*") for every n > 0, where ¢ =
(m = 1.5)/(3m). Under this moment condition, we give estimators a.o. for the
general G(8, s)-family, s > 0, with a rate O(n~""*") for every n > 0, where t* = (m
-2)/(m +1).

Subtheorems 6.1, 6.2 and 6.3 improve, respectively, the results in Examples 4.1,
4.2 and 4.3 of Singh (1976). The supports of the prior distributions there are in a
bounded interval, and rates are near 0(n ~%/%), whereas, in that situation, our rates
here are near O(n ~"). Moreover, in Example 4.2 of Singh (1976) G(8, s)-family only
for s > 1 is considered.

As we have seen, in each of Examples 6.1-6.3, the conditions of Theorem 4.1
reduce to a single moment condition, namely, E|8]|*® < co. We expect the same in
other exponential families too, provided c¢(x) in (4.0) is chosen suitably. It seems,
however, that each exponential family must be treated separately if precise results
there are to be obtained.
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Notice that no information about ® is required to define ¢, in (3.10). If,
however, for known finite constants 4, B, we take ©® C [4, B], our proposed
estimators, instead of (3.10), would be

(7.0) o1(X) = (SOX)/F(X)) 4 5

where (b), 4 1s ¢, b or d according as b <c¢, ¢ < b <d or b >d. Because of this
restriction on ©, the conditions of Theorem 4.1 would greatly be simplified. For a §
satisfying the conditions of Theorem 4.1, ¢* is a.0. with rates O(n ~20¢ = D/(+2)
which is slightly better than that given in (4.4) for ¢, defined in (3.10).

Acknowledgment. The author wishes to express his deep gratitude to Professor
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