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REGRESSION WITH GIVEN MARGINALS'

BY RICHARD A. VITALE
Claremont Graduate School

We consider the class of regression functions U(F, G) = {m(x) = E[Y|X
= x], (X, Y) € II(F, G)} where II(F, G) denotes the set of random vectors
with marginal distributions F and G. A characterization of N (F, G) is given
together with a representation for the projection operator it induces in an
appropriate Hilbert space.

1. Introduction. Let II(F, G) denote the class of random vectors (X, Y) with
marginal distributions F and G (X ~ F, Y ~ G). We shall consider the associated
class of regression functions

M(F, G) = {m(x) = E[ Y|X = x], (X, Y) € II(F, G)}.

The motivation for looking at this class is similar in spirit to that of isotonic
regression (from which we shall, in fact, borrow a result): the extent to which
auxiliary information can be incorporated into the regression process. Knowledge
of marginal distributions, in particular, is natural in certain types of problems—for
instance, a census in which bivariate observations are collected, marginal distribu-
tions are known (as from a previous survey), and regression is desired. Alterna-
tively, one may consider the problem of optimal, nonlinear prediction in a
stationary time series {X;}. If F is the equilibrium distribution of the X;, then the
optimal one-step predictor (squared error loss) is E[ X, |X; = x] € ON(F, F) (see
[3], [5], [6] for related discussions of this problem).

In Section 2, we begin by presenting a characterization of IN(F, G) for a large
class of F and G. Characterizations of the type indicated have been investigated
from a variety of points of view and we refer the reader to [7], [9] for other
discussions and references. It is fair to state that the common ancestor of all such
approaches is the fertile theorem of Hardy, Littlewood and Polya [4, page 49] on
the averaging properties of doubly stochastic matrices. In Section 3, we investigate
further the structure of 9W(F, G) by considering it as a convex subset of an
appropriate Hilbert space and examining the induced projection operator.

2. Characterization of 9R(F, G). In what follows we shall regard F and G as
fixed and satisfying

(Al) F and G are each supported on all of R! and are invertible.

(A2) EY? = [13y’G(dy) < oo.
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The first assumption can be weakened considerably, but we present it to avoid
side-issues. The second ensures that JNU(F, G) is a subset of L,[(— o0, +0); F],
the Hilbert space of real-valued functions on R! which are square integrable with
respect to the measure determined by F (this can be seen directly by noting that
EY? = EyE[Y?X] > Ex(E[Y|X]D.

In characterizing OMU(F, G), we note that if m(x) = E[Y|X = x] € OU(F, G),
then with the application of marginal probability transformations U = F(X),
V = G(Y), we have m(x) = E[G~'(V)|U = F(x)], where U and ¥V are each
uniformly distributed on [0, 1]. This is essentially the object of study in [10] and,
with only minor modifications, the methods employed there yield the following
result.

THEOREM 1. The following statements are equivalent.*
i) m € IM(F, G).
(i) [2m(F Y (T(w))) du > [5G ~\(u) du for all x € [0, 1] (with equality at x = 1)
andall T € 9.
(iii) m lies in the close convex hull (L,[(— oo, + o0); F1) of functions of the form
G 'oTeF

Here 9 = {T : [0, 1] — [0, 1] one-one, Borel-measurable, measure-preserving}. We
note that if m o F~! is nondecreasing, then the strongest inequality in (ii) occurs
upon taking T(u) = u, i.e.,
J&m(F~Yu)) du > [5G ~'(u) du.

The equality condition in (ii) amounts to [ Xm(x)F(dx) = (X2 yG(dy) or Em(X)
= EY. Finally, for the projection problem it will be useful to note that the
mapping h € L[(— o, +®); F]—h o F~! € L,[[0, 1]; p = Lebesgue measure]
induces an isometry between the two spaces. The image M, of IM(F, G) under
this mapping (which is, in fact, 9 (R, G), R the uniform distribution on [0, 1]) can
be described as follows.

CoOROLLARY. The following are equivalent.

1) my € M,
(i) [Zmy(T(w) du > [5G ~\(u) du for all x € [0, 1] (with equality at x = 1) and
alT 9.
(iii) mq lies in the closed convex hull (L,[[0, 1]; u]) of functions of the form
G '-T.

ProoF. Change of variables.

REMARK. From (iii), it is evident that for each T € §, my € My my o T €
M.

3. Projection. Under the assumption (X, Y) € II(F, G), a natural criterion
for judging an estimate 71(x) of the unknown regression function m(x) is the
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squared error loss

E[m(x) — #i(x)]* = [23[ m(x) — M(x)]*F(dx).
It is evident that this loss can be reduced (or at least made no larger) by
constructing a new estimate #i(x) which is the projection of /% onto the convex
OMN(F, G). For this reason, it is of interest to investigate the projection operator
associated with 9NU(F, G) in L,[(— o, +x); F]: that is, for h €
L,[(— o, + ); F], we seek the (unique) element /# € ON(F, G) which yields

[*2[h(x) = A(x) ] F(dx) = inf,,concr, o)/ 22 [ h(x) — m(x) ] F(dx)

(" throughout will denote projection in the appropriate space). A feature of this
projection is that if a constant is added to A, then A remains the same: this can be
seen by expanding

JES[A(x) + ¢ — m(x)]zF(dx) = [T2[h(x) - m(x)]zF(dx)
+c* + 2¢fT2h(x)F(dx)
—2¢[*2m(x)F(dx)
and noting that the first term alone depends on m since, as we have noted,
[EZm(x)F(dx) = [t 2 yG(dy) for m € ON(F, G). This being the case, we shall
have occasion to invoke the normalization
(A3) [IZh(x)F(dx) = [13 yG(dy)
and, equivalently, for / = h o F~!
(A3) Jil(w) du = (3G ~(u) du.
We now investigate the projection operator, isolating the main aspects of the
argument in two lemmas. Some notation will prove to be convenient: let /(x) =
%G ~'(u) du, and let capitalization generally indicate integration, e.g., L(x) =
[5l(u) du. If A(x) € CJ0, 1], then denote by 4*(x) the convex minorant of 4 (i.e.,
the greatest convex function less than or equal to 4).

LEMMA. Let ! € L,[[0, 1]; p] be nondecreasing (a.e.) and satisfy (A3). The projec-
tion I of 1 onto 9N, satisfies
L(x) = f3l(w) du = L(x) = (L — I)*(x).
ProoF. The proof will be given first for step functions and then extended.
(I) For a fixed integer N > 1, suppose that / is of the form

l(u) = 2.1;;_0].[['1["/’ x_,+|](u)’ xj = JW’(I < lj+]~
We argue first that it is enough to restrict attention to candidates for projection
which are similarly nondecreasing step functions: given n € 9, we apply the
Cauchy-Schwarz inequality to get

S3[1w) = n() T due = SN 15[ — () P de > EN (4 = n)?
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where n; = N [}+n(u) du. The lower bound is attained for n(u) identically constant
on subintervals. Moreover, it can be further reduced by rearranging the n; to be
nondecreasing ([4], Theorem 368). If njm are the rearranged values, then we have

Jo[ I(u) — n(u) ] du > [i[ l(u) — n(T)(u)]2 du

where nD(u) = Ef__(,lnj(nllxj , x,,(#)- We now show that nM(u) € M. Since nP(u)
is nondecreasing (a.e.), by the remark after Theorem 1, it is enough to show that
ND(x) = [ZnD(u) du > I(x) with equality at x = 1. The latter condition follows
from the normalization (A3)'. Since I(x) is convex and N ¥)(x) is piece-wise linear,
it is enough to verify the inequality constraints at the nodes {x;}. We have
ND(x) = [FnD(u) du = (1/N)ZkZin™, which is the integral of n(u) over k of
the subintervals. Equivalently, it is equal to [gn(Z(u)) du for some T which
appropriately permutes the subintervals. By (ii) of the corollary, this is bounded
from below by I(x;).
We now have a discrete problem to solve:

minimize SY0!(}; — n,)°

subject to (a) the n; are nondecreasing, and
(b) =g, > I(x) k= 1,- - -, N — 1 with equality at k = N.

With only constraint (b), the problem is treated in [1], pages 46-51, as a generalized
isotonic regression. Letting L and L denote the partial sum vectors of / and the
solution vector / respectively and setting I = (0, I(x,), I(x,), - - - , I(xy)), we have

L=L-(L-1)*
where * here denotes the convex minorant of a vector. A straightforward argument
shows that AZ(L — I)* < AZ(L — I) (A2 denoting a second difference). Hence
ML=M[L—-(L—-1)*]=0AL-A(L-I)*>AM >0

It follows that I is convex and that / is nondecreasing. Thus (a) is satisfied
automatically.
. Translating the solution of the discrete problem into step function terms, we get
L(x) = L(x) = (L — I)*(x).

(I) If I(u) is not a step function, then for each N > 1, approximate /(u) by

In(u) = S [ Nf5oi(u) dull, 5, (4)-

By (I), we have
(1) Ly(x) = Ly(x) = (Ly = 1)*(x).
Now as N —> o0, ly—! and Iy —/ in L,[[0, 1]; p]. Since (L(x) — Ly(x))* <
x[o(n(w) — H(u))* du < [o[ly(u) — U(u)F du, we conclude that Ly(x) —> L(x). Simi-
larly, Ly(x) — L(x). Further, since Ly — L uniformly and * operates continuously
in the uniform norm, (Ly — 1)* — (L — I)*. Taking limits (N — o0) in (1) yields
the lemma.



REGRESSION WITH GIVEN MARGINALS 657

If / is not monotone, then some additional preparation is required to obtain its
projection on 9My,. For / € L,[[0, 1]; u], define I, € L)[[0, 1]; p] to be the increas-
ing rearrangement of /. There exists a measure-preserving transformation S : [0, 1]
— [0, 1], not necessarily one-one, such that [ = Iy o S (8.

LEMMA. Let | € L,[[0, 1]; p] and satisfy (A3Y. Then, if | and l} are the projec-
tions of | and I, respectively onto I,
I'=1-S.
REMARK. The construction for l} has been given in the previous lemma.

PrOOF. We shall make use of a result of Brown [2], page 23, to the effect that S
is the limit of invertible measure preserving maps S, in the weak operator topology.
That is, for any g € L,[[0, 1]; u], '

g°S,>g°S.
Accordingly, we have
I=hLeoS=lml-S§,
and, by the continuity of the projection operator,
~ e g
I'=liml/ - §,.

A simple argument now shows that ?T?:S;n = 2; o §,: we have (by a change of

variables)
inf,,,con /8 (1t © S)() — my(u)]* du

= infmoe%f[lT(u) - (mO ° Sn_ l)(u)]2 du.

The unique m, for which the infima are attained satisfies m, = I, 'S, (from the
left hand side) and my = /, ° S, (from the right hand side).
We conclude that

l=1imlT°S,,=lT°S.
We can now state our result.

THEOREM 2. Let h € L)[(— o0, +0); F) and satisfy (A3). Let (h ° F '), be the
increasing rearrangement of h o F “Ywithho F-'=(hoF _I)T o S. Then the pro-
Jection h of h onto ON(F, G) is given by

Cn o
F=(hoF 1), oSoF
—.
where (h ° F~"), satisfies
e,
fg(h ° F_I)T(“) du = J,(x) — J3(x)
and J(x) = [3(h © F~"),(u) du, Jo(x) = J,(x) — [5G ~(u) di.

ProOF. Together with the indicated isometry between L,[[0, 1]; u] and
Ly[(— 00, + 00); F], the statement combines the two lemmas.
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4. Remarks. Despite the rather formidable analytical representation of the
projection operator induced by IN(F, G), computational techniques have proved
to be accessible. In particular, discretized versions of * and 1, together with the
extraction of the measure-preserving transformation S, are reasonably straightfor-
ward (see [1] for descriptions of some relevant algorithms).
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