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APPROXIMATIONS TO BAYESIAN SEQUENTIAL TESTS OF
COMPOSITE HYPOTHESES

By RoBERT FORTUS
Washington State University

This paper deals with approximations to Bayesian sequential tests of
composite hypotheses. If the distributions of the data form an exponential or
truncation family, then such tests may be described by a continuation region in
the space of n, the sample size, and M, the sufficient statistics, which are of
fixed dimension. In this case Schwarz has been able to describe the asymptotic
shape of the continuation region as the sampling cost ¢ approaches zero. We
have generalized Schwarz’s work by considering more general families of
distributions. In this paper the role of M, is played .by the log likelihood
function, and we show that the optimal Bayesian stopping rule may be ap-
proximated by a stopping rule which depends only on n, ¢, and two likelihood
ratio test statistics.

1. Introduction.

1.1.  Mathematical formulation of the problem. Let X,, X,, - -+ - be observations
taken one at a time. They are i.i.d., with probability distribution P,, where 8 is an
unknown element of the parameter space {2, a separable and locally compact
metric space. The observations have probability density f, = dP,/dA, and A is
assumed to be a o-finite measure. Both the X;’s and @ could be vectors. We are
testing Hy : 0 € Q, vs. H, : § € Q,, where @, and @, are disjoint subsets of . The
loss function is L(#), which is the penalty for a wrong decision when @ is the state
of nature. L(#) is assumed to be positive on £, and 2,, continuous, bounded above
by one, and equal to zero on (2, U ©,), where ' denotes complement. The
existence of an indifference region, a region where the loss due to a wrong decision
is zero, is required for our later results. # has a prior distribution w, and it is
assumed that the support of w is all of ©. The cost of each observation is a constant
c. Finally, assume that at least one observation will be taken, which is the case for ¢
small enough. The definitions made in the following discussion will hold
throughout the paper.

A discussion concerning the exact solution to the problem can be found in
DeGroot (1970, page 300). Let R(w) denote the stopping risk;

(L1) R(w) = min[ [ L(0)dw(8), Jo,L(0)dw(8)].
We want to minimize the total risk, the stopping risk plus the cost of sampling, say
(12) Y, = R(w,) + cn,

where w, is the posterior distribution of 8 given X, - - -, X,. Let ¢ denote any
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580 ROBERT FORTUS

stopping time. Given 8 has prior w, the Bayes risk p.(w) from the optimal
sequential procedure is given by

(1.3) -~ p(w) =inf,,E(Y),

where the inf extends over all stopping times bounded below by one. The optimal
stopping rule is

(14) t* =inf{n > 1:R(w,) < p,(w,)}

1.2.  Review of Schwarz’s work. In most problems finding the exact solution ¢*
is too difficult, so a logical approach is to try to approximate it. The question to
which this paper is addressed is: what stopping rule closely approximates t* as
c—0?

In this subsection we review the work of Schwarz (1962, 1968), who has
considered this problem in the cases that the f; form an exponential family, or an
exponential truncation family.

For an exponential family, S, = X; + - - - + X, is a sufficient statistic of fixed
dimensionality, and R(w,), the stopping risk at time n, can be expressed as
R,(n, S,), a function of n and S,. Let w, denote the distribution of 4 given S,.
From (1.4), it follows that the Bayes continuation region B(c) can be defined in the
(n, S,) plane by

(1.5) B(c) = {(n, S,) : R,(n, S,) > p.(w,)}.
In terms of the function R, (n, S,) and ¢ > 0, Schwarz defines another family of
regions in the (n, S,) plane by

(16) C(e) = {(n. S,) : R(n, S,) >c).

His main result is an explicit expression for the asymptotic representation of B(c)
as ¢ — 0. He reaches the result by first getting the asymptotic representation of
C(c), and then proving that C(c) and B(c) have the same asymptotic shape as
¢ — 0. What he does is demonstrate pointwise convergence of boundaries. If the
support of the prior w is the entire parameter space, as is the case in our
formulation of the problem, the asymptotic shape of B(c) does not depend on w.

1.3.  Approach and findings. Schwarz obtains his asymptotic result for exponen-
tial families by fixing a ray in the (n, S,) plane, and then letting n go to infinity.
Our approach is essentially the same; however, in our work the role of S, is played
by the log of the likelihood function, and B(c) and C(c) are defined in an
appropriate function space. Our results apply to an extremely wide class of families
of distributions, which includes almost any family of mutually absolutely continu-
ous distributions. In this paper we do not consider families of distributions with
truncation parameters. ‘

Our main results are given in two theorems. We show that the boundary of
C(c)/log ¢! converges to a limiting region as ¢ — 0, and also prove that the
boundary of B(c)/log ¢! converges to the same limit. That limit, which does not
depend on the prior distribution of #, can be used as an approximation to the
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boundary of B(c)/logc~! for ¢ small. Since we show uniform convergence of
boundaries, our results are stronger than Schwarz’s pointwise convergence results.
Of course, our uniform convergence results can be applied in the exponential
family case treated by Schwarz.

An approximation to the optimal stopping rule t* follows from our convergence
results. The approximation holds for any prior on # and is a function of two
likelihood ratio test statistics. For ¢ small, our approximation to the optimal
stopping rule is to stop at the first n such that the minimum of the likelihood ratio
test statistics for testing £, vs. @, and @, vs. @}, is less than c.

The paper is organized as follows. Some required, preliminary definitions,
assumptions and notations are given in Section 2, and the main results appear in
Section 3.

2. Preliminary considerations. In this section we present several definitions,
assumptions and notations which are needed throughout the paper. These include a
definition of the stopping risk as a function of » and a sufficient statistic, and
definitions of regions B(c) and C(c) which are analogous to Schwarz’s B(c) and
C(c) in (1.5) and (1.6).

For n > 1 and fixed x,, - - -, x,, we call the function L,(:|x,, - - - , x,) defined
by

Ln(olxl’ ) xn) = Hr;slfa(xi)’ 0 € Q’
the likelihood function with respect to A", and we call

n=(log L,)/n
the log likelihood function with respect to A”. Throughout the paper we assume
that f, is continuous in # for a.e. x. Let D(§2) be the set of all nonnegative,
continuous functions f on  for which
fZ0,lim,_,f(0) =0,
and

0 < min,_g, ,[supn'_f(ﬂ)] < supy f(9),
and let E(Q) be the set of all functions f on © for which e/ € D(Q). A standing
assumption of the paper is that for all possible realizations (x, - - -, x,) of
Xy, X)), L(:|xy, - - -, x,) € D. Also, a simple application of the factoriza-
tion theorem gives that the likelihood function is a sufficient statistic, so the log
likelihood function is sufficient as well.

Fix T,(:|x,,* + -, x,) = f, and note that, by assumption, f must be in E. The
stopping risk can be expressed as a function only of » and f, and is given by

min, .o, /g, exp(nf)L(0)aw(0)
Jq exp(nf)dw(0) ’
We can compute the stopping risk if we know n and T,,, the sufficient statistic. For

@.1) R,(nf) =

n> 1.
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f € E, some important notations are:

h(f) = supg.e’, i=0,1,
h(f) = supge’,
_ min,_o ,A(f)

2(f) = log(1/71(/)),

and

15(f) = 1/v,(f).

Observe that vy is just the minimum of the likelihood ratio test statistics for testing
Qo vs. @, and Q, vs. Q. Also, the definitions of D and E imply

(22) 0 < min;_o, ,2(f) <h(S),

s0 v;(f) < 1. Itis clear from (2.1) and (2.2) that R, (n,f) >Oforn > land f € E.
Of course we are assuming that w(®,) > 0,i =0, 1.

For ¢ > 0 and n > 1, the region C(c) is defined in (n, n - log likelihood function)
space, and in terms of R (n, f), by

(2.3) C(c) = {(n, nf) : R,(n, f) > c}.
Noting the definition of the optimal stopping rule ¢* in (1.4), we can define the
Bayes continuation region B(c) in (n, n - log likelihood function) space by

(24) B(c) = {(n nf) : R,(n. f) > p.(w])},
where w; denotes the distribution of #-given n and the log likelihood function.

Define a set E* by
(2.5) E*={(n,nf):n>0,f € E},
and let A(c) be any region in E* which depends on ¢. A notation which is required
for Section 3 is A(c)/log ¢ ~!. This notation simply refers to the region in E* which
is determined by the points whose coordinates are the coordinates of the points of
A(c), divided by log ¢~ 1.

The final, standing assumption of the paper is that H, and H, are d-testable
hypotheses for some d > 1. Schwarz defines H, and H, to be d-testable if there
exists a fixed sample size test ¥, = ¥(X,, - - - , X,) of H, vs. H, whose probability
of error is bounded by a number less than ; for any 6 in @, U @, (Schwarz, 1968).
The d-testability assumption is shown there to imply the existence of a b > 0 for
which

(2.6) C(c) D B(c) D C(bc log ™)
for all priors w and ¢ sufficiently small. The relation (2.6) will be used in getting the
convergence of the boundary of B(c)/logc~!. It should be mentioned that the

assumption of d-testability is not very restrictive. Many commonly considered
hypothesis testing problems involve d-testable hypotheses. For verification of (2.6),
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other results concerning d-testability, and examples of d-testable hypotheses, see
Fortus (1975).

3. Convergence of B(c).

3.1. Properties of the stopping risk. The main result of this subsection is that
R, (n, " - v,(f) as n— oo uniformly with respect to f, when f is suitably
restricted to a compact set. We also show that for all such f and n sufficiently large,
the stopping risk is a decreasing function of n. These results will be applied in
subsection 3.2 to get the convergence of 3B(c)/log ¢! as ¢ — 0.

Fix T,(‘|x, - -, x,) = f, and consider the integrals in (2.1). [g
exp(nf)L(8)dw(0) is the nth power of the L, norm of e/ (restricted to ;) relative to
the measure Ldw. Applying a known property of L, norms, we get that

(fg, exp(nf)L(0)dw(0))1/" — ess supg e/, i=01,

as n — oo (Loeve, 1955, page 160). The ess sup here is with respect to the measure
Ldw. Note that n is treated as continuous throughout Section 3.
By the continuity of ¢/¥), the above convergence result can be rewritten as

3.1) (Ja, exp(nf)L(8)dw(8))""" — h(f), i=0,1,
as n — o0. Similarly, '

3.2) (fo exp(nf)aw(8))"" — h(f)

as n — oo. Then it is clear that

(3.3) R,(n )" > v(f) <1

as n— o0.

Before showing that the convergence in (3.3) is uniform, we will define some
more necessary notations. Recall that Q is assumed to be a separable and locally
compact metric space, and let ¢ denote the metric on Q. Let % denote the class of
Borel subsets of 2, and assume that the prior distribution w is defined on %. Let Q*
be the Alexandroff one point compactification of £ (Royden, 1968, page 168).
Then the set E defined in Section 2 can be redefined as the set of all functions f on
Q* for which e’ is continuous, ¢/ Z 0, e/ = 0, and (2.2) holds. Note that by the
compactness of Q*, e/® achieves h(f) at some § = () in Q.

Now define a metric d; on E as follows. For f and g in E,

(3.4) dg(f, 8) = supy|e”® — 5@,

Throughout the rest of Section 3, K will denote any compact subset of E; K will
consist of functions f on Q* such that the functions ¢/ form an equicontinuous
family. In fact, by the compactness of Q*, the family of functions ¢/, f € K, is
uniformly equicontinuous (Dunford and Schwartz, 1964, page 267). That is given
e > 0, there exists a § = 8(K, ¢) such that |e/®) — )| < ¢ whenever o(6,, 8,) < &
for all fin K and 8,, 0, in Q*.

For a > 1, define B, to be the set of all f € E for which #(f) > 1/a,i=0,1,
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and also A(f)/hy(f) > 1 + 1/a or h(f)/h(f) > 1 + 1/a. We will show that the
convergence in (3.3) is uniform with respect to f € KB,, where KB, denotes
K N B,. The sets B, are defined in order to allow for possible nonuniqueness of
maximum likelihood estimates of #. If we only considered problems in which the
likelihood function is strictly positive and has a unique maximum, then we would
not need the sets B,. Indeed, let D, denote the set of all g € D such that g() > 0
for all §, and let E; denote the set of all f € E for which ¢/ € D,. Finally, let E,
denote the set of all f € E which assume their maximum only once. If X is
compact and contained in E, N E,, then it is easily shown that K C B, for some a,
so K = KB,.

LemMa 3.1. Let K be any compact subset of E, and let o > 1. Then
R,(n, )" > ()

as n — oo uniformly with respect to f € KB,

Proor. A simple application of Holder’s inequality and Fatou’s lemma gives
that [fg e”L(6)dw(6)]'/", i = 0, 1, and [[ge"”aw(8)]'/" are nondecreasing in n, and
lower semicontinuous with respect to f. Thus, by Dini’s theorem, the convergence
in (3.1) and (3.2) is uniform with respect to f € KB,, so the convergence in (3.3) is
uniform as well (Royden, 1968, page 162).

Lemma 3.2, which follows, is needed only for the proof of Lemma 3.3.

LemMA 3.2. Let K be any compact subset of E, let a > 1,let 0 <e < 1/a, and
let K/ = {0 : &/® > h(f) — €}. Then

inffeKB,.w(Kef) >0.

PrOOF. Let G,(f) = w(KY), and consider the following three statements.

(@& G, (f)>O0forallf e KB,;

(b) liminf, ,;G,(f,) > G, (f), where f € KB, and f, € KB,, n > 1;

(©) infrexp G(f) >0.

The truth of (a) follows directly from the continuity of e/, and the assumption
that the support of w is all of Q.

For f,, n> 1, in KB,, let », be the distribution of e’ with respect to the
probability space (2, F, w). Also, for f € KB,, let » be the distribution of ¢/ with
respect to (2, %, w). If f, — f, then », = » and h(f,) — h(f), where => denotes weak
convergence. Thus, given ¢, there exists an n’ such that |A(f,) — h(f)| < e/2 for all
n > n’, and it can be shown easily, by the extended Helly-Bray lemma, that

lim inf, _ w{8 : e > n(f,) — e} > w{0: e® > h(f) - ¢/2}

(Billingsley, 1968, page 12). Therefore, (b) holds.
Now we will show that (a) and (b) imply (c), and the proof will be done. There
exists a sequence f,, n > 1, in KB, such that

Ge(f;x) - inffEKBuGe(f) =]



BAYESIAN SEQUENTIAL TESTS 585

as n — oo. By the compactness of KX, there exists a subsequence f, — f, and
I =lim infk—»ooGe(fnk) > Ge/Z(f) > 0.

LemMa 3.3. For any f € E, R (n,f)—>0 as n— co. Moreover, if K is any
compact subset of E and a > 1, then R (n, f) - 0 as n — o uniformly with respect to
f € KB,, and there exists an ny = ny(K, ) such that R,(n,f) is a decreasing
Sfunction of n for all f € KB, and n > n,,.

ProoF. The first assertion follows directly from (3.3). The assertion that
R, (n,f) >0 as n — oo uniformly with respect to f € KB, follows from Lemma
3.1, and the fact that y,(f) < 1/(1 + 1/a) for f € KB,.

The final assertion of the lemma remains to be proved. Pick any f € KB,. By the
definition of B,, without loss of generality, we can assume that A(f)/ho(f) > 1 +
1/a. Let h*(f) = (ho(f) + h(f))/2, and let g(0) = e/® /h*(f); then the stopping
risk can be expressed by

_ min;_,, /g 87(0)L(6)aw(9)
(3.5) R,(n,f) = D)

Now consider the denominator in (3.5). Observe that

d n
=, [Jagfdw] = fagf log grdw = D.

We will show the existence of an n, = n(K, a) such that D > 0 (that is, the
denominator in (3.5) is an increasing function of n) for all n > n,.

(3.6) D= fo<g,<1 14 log gfdw"'fg,>| g log gsaw
> —e! + 1
Let 0 <e < 1/a. By Lemma 3.2 and the definition of g, there exists an / =
I(K, a, €) such that

3.7 w{0 : g{0) > sup, g{0) — e/h*(f)} > L
Since f € KB,, hy(f) > 1/a, so h*(f) > 1/a. Also, it can be shown easily that
2+2/a

supg g/(0) > ¥ ija b(a).

Thus, from (3.7), it follows that

(3.8) w{0 : g(8) > b(a) — ae} > L

Set ¢ = (b(a) — 1)/2a in (3.8), and consider I in (3.6). It is clear from (3.8) that
I> (b(a)/2+ 1/2)" log(b(a)/2 + 1/2)1,

where b(a)/2 + 1/2 > 1. By the above inequality, there exists an n; = n,(K, a)

such that 7 > e~ ! (and thus D > 0) for all n > n,.

Observe that if a,(f) < h*(f), then supg g{0) < 1,i =0, 1, and the numerator
in (3.5) is a nonincreasing function of n. Now consider the case that #,(f) > A*(f).
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To finish this proof, it is enough to show the existence of an n, = ny(K, a) such
that the numerator in (3.5) is a nonincreasing function of n for n > n, If
hy(f) > h*(), it follows easily that

(39 hy(f) > ho(f) + 1/2a,

Let e = 1/4a> Since the convergence in (3.1) is uniform with respect to f € KB,,
there exists an n, = ny(K, a) such that

(3.10) {fae ™ L@O)aw(0)} " > hi(f) ¢
for n > n,. Clearly,
(3.11) (o™ L(B)aw(9)}'" < h(f)

for all n. The inequalities (3.9), (3.10) and (3.11) imply that
min; o, 1fn,.enM)L(0)dW(0) = fnoe"f(”)L(a)dw(O)
for n > n,. Thus, for n > n,, the numerator in (3.5) is /o g/(9)L(6)dw(8), which is
a nonincreasing function of .
The n, in the statement of the lemma is the maximum of 7,(X, a) and ny(X, a).

LeEMMA 3.4. Let di be the metric on E which is defined in (3.4), and let T be the
metric on [0, co) which is defined by (x,y) = |x — y|, x > 0 < y. Finally, let d be
the metric on [0, 00) X E which is defined by

(3.12) d[(x.f), (7, &))" =[de(f, 8)" + 7(x,)’]
for fand g in E and x > 0 < y. Then R,(n, f) is jointly continuous in (n, f).

PrOOF. It is sufficient to show that if (n, f,) —4(n, f) as k — oo, then R, (n, f,)

— R, (n, f). The result follows from (3.4), (3.12), and the dominated convergence
theorem.

3.2. Convergence. In this subsection we define what is meant by convergence
of sets, and then show that dC(c)/log ¢ ~! and 9B(c)/log ¢ ~! converge to the same
limiting set as ¢ — 0. The convergence result leads to a reasonable approximation
to the optimal stopping rule ¢*.

Recall that R, (n, f) > 0 for n > 1 and f € E. By Lemmas 3.3 and 3.4, R(n, f)
—0 as n— o0, and R, (n, f) is continuous in (n, f). Thus, for fixed f and ¢ small
enough, there exists an n > 1 such that R (n, f) = c¢. For f € E and sufficiently
small ¢ > 0, define n* = n*(c, f) by

(3.13) . n* =inf{n > 1: R,(n,f) = c}.
LeMMA 3.5. Let K be any compact subset of E, and let a > 1. For ¢ > 0 and

f € KB,, let n* = n*(c, f) defined in (3.13). Then n* — co as ¢ — 0 uniformly with
respect to f € KB,.
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Proor. Pick any f € KB,, and suppose that n*(c, f) < n,. Then
(3‘14) minfEKBm l<n<n,Rw(n’f) <c

By the continuity of R,(n,f) and the compactness of KB, X [1,n,], R (n,f)
assumes its minimum over KB, X [1, n;]. That minimum clearly is bigger than 0,
because R, (n, f) > 0 for all f € KB, and n > 1. Therefore, (3.14) is not true for ¢
sufficiently small. There exists a ¢, > 0 such that our original supposition is false
for ¢ < ¢,

Let d be the metric on [0, c0) X E which is defined in (3.12), and let E* be as in
(2.5). It is clear that E* C [0, o0) X E, so (E*, d*) is a metric space, where d* is the
metric d restricted to E*. Now define a metric p on all compact subsets of E* as -
follows. If 4 and B are compact subsets of E*,

(3.15)  p(4, B) = sup inf,e 4; e 5d*(a, b) + sup inf, ¢ 5, 4 4d*(a, D).
For compact K C E, a > 1, and sufficiently small ¢ > 0, let

(3.16) CE(c)={(n*n*-f):f EKB,},
where n* is the n*(c, f) in (3.13). Also, let
(3.17) Hg .= {(n,nf): f € KB,,n > 0}.

LeMMA 3.6. For any compact K C E, a > 1, and c sufficiently small,

3C(c) N Hy , = C¢ ,(c).

PROOF. Let n, be the ny(K, a) in Lemma 3.3, so R,(n, f) is a decreasing
function of n for all f € KB, and n > n,. By Lemma 3.5 there exists a ¢, > 0 such
that if ¢ < ¢,, then n*(c, f) > n, for all f € KB,. Assume that ¢ < ¢y, and recall
2.3).

Because n* > n, for all f € KB,, every neighborhood about a point (n*, n* - f)
in C;f o(¢) contains a point (n, nf) for which R, (n, f) < c; that is, every neighbor-
hood about a point in C¢' ,(c) contains a point which is not in C(c). It is clear that
every neighborhood about a point in C,f o(¢) contains a point in C(c¢). Thus,
Cg (c) € 3C(c) N Hy ,. To show that 8C(c) N Hy , C C¢' ,(c) for ¢ < ¢, appeal
to the continuity of R, (n, f) in (n, f) and the definition of C;f (0).

LemMmA 3.7. For any compact K C E,a > 1, and sufficiently small ¢ >
0, C§ .(c) is a compact subset of E*.

Proor. Pick any ¢ > 0, and suppose it is small enough that the conclusion of
the previous lemma holds. Let ¥, n > 1, be any sequence in C¢ ,(c). Then

Ve = (n*(c’ £, n*(e, £ fn)’

for f,, n > 1, in KB,. We need to show that ¥, has a subsequence which converges
to a point in Cg ,(c).

By the compactness of KB,, f, has a subsequence f, which converges to some
f € KB,. By Lemma 3.3, R (n, f) >0 as n— oo uniformly with respect to f €
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KB, so it is clear from the definition of n* that
l SqueKB,,n*(c’f) <o

for fixed ¢ > 0. Therefore, n*(c, £, ) is a bounded sequence of positive numbers,
and has a convergent subsequence n*(c, f,,k ) Now we can conclude that
j

Vi, = (n(c. £y ) n*(c: £y, ) - ) >alts o) = W,

where f € KB, and ¢ > 0. By Lemma 3.6, C¢ ,(c) = 3C(c) N Hy ,, which is a
closed set, so V € Cg ,(¢).

Now we will give a definition of convergence of sets in E*. For ¢ > 0, let A(c) be
a region in E* which depends on ¢. Then we will say that A(c) converges to a limit
L € E* as ¢ >0, and we will write that A(c) — L, if and only if

(3.18) A(c) N Hg , —>,L N Hg,
as ¢ —» 0 for any compact K C E and a > 1. Because p was defined on compact

subsets of E*, (3.18) makes sense only if A(c) N Hy , is compact for ¢ sufficiently
small, and L N Hy , is compact.

THEOREM 3.1. Let C(c) be as in (2.3), and let v,(f) be as defined in Section 2.
Then,

(3.19) 9C(c)/log ¢! - {(v5(f), vs(f) - f) : f € E}

as ¢ — 0.

ProOF. Let L denote {(ys(/f), va(f) - f) : f € E}, and observe that 3C(c)/log
¢™'n Hyg, = (0C(c) N Hy ,)/log c™'. Then by our definition of convergence,
we need to show that (3C(c) N Hy ,)/logc™'—,L N Hg, as ¢—0, for any
compact K C E and a > 1. It is clear from the compactness of KB, and the
definition of y;(f) that every sequence in L N Hy , has a convergent subsequence,
so L N Hy , is compact. By Lemmas 3.6 and 3.7, for ¢ sufficiently small, 3C(c) N
Hy . = C¢ o(c), which is a compact subset of E*. Thus, we need to show that

(3.20) Cgo(c)/loge™' >, L N Hy,
as ¢ —0.
Let n* be the n*(c, f) in (3.13). By Lemmas 3.1 and 3.5,
R (n* /)™ > 11(f)

as ¢ — 0 uniformly with respect to f € KB,. From the definition of n*, it follows
that ¢'/" — y,(f) as ¢ — 0 uniformly with respect to f € KB,. Then

= 1/v(f) = v:(f)

n*/logc™!'—

1
log(1/7,())
as ¢ — 0 uniformly with respect to f € KB,. Therefore,

(3.21) d*[(n*, n* - f)/log ¢ 7", (v3(f), vs(f) - )] =0
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as ¢ — 0 uniformly with respect to f € KB,. The convergence in (3.20) follows
from (3.15), (3.16) and (3.21).

LeEmMMA 3.8. Suppose K is any compact subset of E, a > 1, ny is the ny(K, a) in
Lemma 3.3, B(c) is the Bayes continuation region defined in (2.4), and (', n'f) is any
point in 0B(c) N Hy ,. Then there exists a cy = c|(K, a) such that n’ > ny when
¢ < ¢

PrOOF. Recall the assumption that H, and H, are d-testable, and let ¢ be small
enough so that (2.6) holds for some b > 0. Clearly, there exists a sequence
(ne, nefy), k > 1, such that (n,, n.f,) & B(c), and (n,, n.f,) — (n', n’f). By (2.6),
(n, nfy) @ C(be log ¢ ™), so R, (n,, f,) < bclogc™! for all k. Thus, by the con-
tinuity of R, (n, f),

R, (n',f) < bclogc™'.
The rest of the argument is very similar to the proof of Lemma 3.5. Suppose
n’ < ny. Then

Min; ¢ xp 1 <nanRw(M f) < be log el

By the compactness of KB, X [1, n], the continuity of R (n, f), and the fact that
R, (n,f) > 0 for all f € KB, and n > 1, the above inequality does not hold for ¢
sufficiently small.

THEOREM 3.2. Let B(c) be as in (2.4). Then
(3.22) 3B(c)/log ¢! — {(v5(f), vs(f) - f) : f € E}

as ¢ —0.

Proor. For any compact K C E and a > 1, let (n’, n’f) be any point in
0B(c) N Hy ,, and let L = {(y5(f), v3(f) - f) : f € E}. We will show that

(323) a*[(n', n'f)/log ¢!, (v3(f), s(f) - f)] =0
as ¢ — 0 uniformly with respect to f. Then by (3.15) and (3.23), we will have that
dB(c)/log c™' N Hy ,—,L N Hy,

as ¢ —» 0, and the conclusion of the theorem will follow from our definition of
convergence of sets.

By Lemmas 3.5 and 3.8, there exists a ¢, = ¢,(K, @) such that n*(c, f) >
ng, n*(bc log ¢™', f) > n,, and n’ > n, for ¢ < c,, where n, is the ny(K, a) in
Lemma 3.3 and n* is defined in (3.13). In the proof of Lemma 3.8, we showed that
for any (n’, n’f) € 0B(c) N Hy , and c sufficiently small, R (n’, f) < bc log c!
for some b > 0. Then it follows from the definitions of n* and n, that

(3.24) n > n*(bclogc™, f)
for ¢ < ¢,. Similarly, it can be shown that for ¢ < ¢,
(3.25) n' < n*(c, f).
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In the proof of Theorem 3.1, we showed that
(3.26) n*(c, f)/log ¢~ - v3(f)

as ¢ — 0 uniformly with respect to f € KB,. Since log(bc log c™!)"! =logc™! +
o(log ¢ ™),

(3.27) n*(bclog c™', f)/log ¢ 7' - v5(f)
as ¢ — 0 uniformly with respect to f € KB,. Thus by (3.24) through (3.27),
(3.28) n [log ¢ > v;(f)

as ¢ — 0 uniformly with respect to f. From (3.28), we immediately can conclude
that (3.23) is satisfied as ¢ — 0 uniformly with respect to f, so the proof is done.

Certainly, the limit in (3.22) is a reasonable approximation to the boundary of
B(c)/log ¢! for ¢ small. Because 0C(c)/log ¢! also converges to that limit, it
makes sense to use the stopping rule z,, which is defined by

t,=inf{n > 1:(n,nT,) & C(c)} =inf{n>1:R,(n, T,) <c},

as an approximation to the optimal rule ¢*. A simple heuristic argument shows that
C(c) looks like {(n, nT,) : v,(T,)* > c} for ¢ small. Thus, a reasonable approxima-
tion to z* for ¢ small is

# =inf{n:v(T,)" <c}.
By the definition of y,, £, is the first » such that the minimum of the likelihood
ratio test statistics for testing £, vs. £, and £, vs. £}, is less than c.

In the exponential family case, Schwarz showed that the second-order approxi-
mations to the continuation regions depend on the prior distribution of 4, through
its atoms and zeros of its density (Schwarz, 1969). Fushimi (1967) found that
without a second-order correction, the approximations remain bad for ¢ as small as
.00000001. Observe that the limit in (3.22) and ¢, are independent of the prior w.
However, second-order approximations to B(c) and C(c) could depend on w.
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