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ON DYNAMIC PROGRAMMING AND STATISTICAL DECISION
THEORY'

By MANFRED SCHAL
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The main aim of the present work is to establish connections between the
theory of dynamic programming and the statistical decision theory. The paper
deals with a nonMarkovian dynamic programming decision model that includes
Markovian decision models and Markov renewal decision models as special
cases. The analysis is based on the total cost criterion where the convergence
condition on the expected total cost is such that the discounted and the negative
(unbounded) case are included. The striking feature of the present model is the
fact that the law of motion is not completely known, which leads to a treatment
of the model by the approach of statistical decision ‘theory. The assumptions of
the present paper are discussed for a sequential statistical decision problem.

1. Introduction. The paper presents a dynamic statistical decision model that
generalizes both the decision model of the theory of dynamic programming and the
sequential (or nonsequential) model of statistical decision theory. The model is
based on a nonstationary nonMarkovian dynamic programming model. The statis-
tical aspect arises from the fact that the model allows for situations where the law
of motion ¢ is not completely known. As usual in a statistical decision problem, a
leading feature will be the assumption that the law of motion is merely known to be
an element of a given class {¢%, & € ®). Thus the total expected cost R(%, 7)
depends not only on the policy # € A but also on the parameter ¢ € © and is,
therefore, called the risk function.

The main aim of the paper is to provide sufficient conditions about the action
spaces, the class of admissible laws of motion, and the cost functions for the
following properties.

1. compactness of the space of policies A—with respect to an appropriate topol-
ogy;

2. a sort of convexity of A;

3. lower semicontinuity of # — R(«#, 7) on A for every ¢ € 0;

4. (equi-) continuity of ¢ — R(#,7) on O, w € A.

These properties are known to supply the foundation for a series of theorems in

statistical decision theory, some of which are given in the present paper. More

precisely, we prove

(a) the existence of minimax and Bayes policies;
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(b) the strict determinateness of the decision problem viewed as a zero sum
two-person game;

(c) the convergence of the minimal total expected cost from finite stage play to the
minimal total expected cost from infinite stage play;

(d) the existence of a least favourable a priori distribution;

(e) the continuity of % — inf_c,R(3, 7).

The compactness of the space of policies was already proved by Schél (1975b)
for the case where the law of motion is completely known. However, the topology
used there depends heavily on the law of motion. Hence this result does not
immediately apply to the present more general situation. This difficulty is over-
come in this paper by a reduction of the dynamic statistical decision model to a
dynamic decision model where the law of motion is known and only the cost
functions may depend on the parameter 4 € ©. After this reduction, the analysis
of the present paper can be based upon the results of Schél (1975b). In Schél (1976)
an application to inventory models is given.

2. The general dynamic statistical decision model. We use N to denote the set of
the positive integers and we use R (resp. R) to denote the set of the real numbers
(resp. augmented by the point + o). For any set S endowed with some o-algebra,
P (S) stands for the set of all probability measures on S.

The basic decision model is given by a tuple (S,, 4,,K,, 0,7, (12,9 €
0), (¢?, # € ©); n € N) having the following meaning:

(i) S, stands for the state space at time n and is assumed to be a standard Borel
space, i.e., S, is a nonempty Borel subset of a Polish space and is endowed
with the o-algebra of Borel subsets of S,.

(ii) A, is the space of actions available at time n and is assumed to be a standard
Borel space. We write H, = S; X 4, X --- XS, and H, =S, X 4, X S,
X Ay X - -

(iii) K, is a measurable subset of H, X A4, and specifies the set of admissible
histories. It is assumed that K, C K,_; X S, X 4, and that for every h €
K,_, X S, the section of K, at 4 is non-empty, where K, X §, = S|.

We write K, = [ ) K X S, X A, X - . A strategy of nature—usually
called law of motion—is a sequence q = (g,), Where g, € P(S,) is the initial
distribution and ¢, : K,_; > P(S,), n > 1, is a transition probability. Then
g,(h, -) is the conditional distribution of the state of the system at time » given the
admissible history & € K,,_,. We write q for the set of all laws of motion. A strategy
of the statistician — usually called policy—is defined as a sequence = = (m,) of
transition probabilities 7, : K,_; X S, — % (4,), such that =,(h, -) assigns proba-
bility one to the section of K, at h € K,_; X S,, n € N. We write A for the set of
all policies.

REMARK 2.1. We may also allow for situations where the statistician is the first
to take a decision. This situation is included by the present model upon defining S,
as a singleton.



434 MANFRED SCHAL

An application of the theorem of Ionescu-Tulcea (cp. Neveu (1965)) yields that
any g € g and 7 € A uniquely define a probability measure P = ¢, ® 7, ® ¢, ®
a, ® - - - on the product space H, and thus a random process
(&5 ap, §35 ay, ¢ - - ) (cp. Hinderer (1970) page 80) where {, and a, describe the
state of the system and the action at time n, respectively. Then PX(K, X S,,, X
Ay X )=PAK )=1,neEN,geq, 7 EA
(iv) The parameter space © is a nonempty set endowed with some o-algebra. We

shall assume that there is given some subset {g”; & € ©} of g which is known
to contain the ‘true’ law of motion.

For some problems in statistical decision theory, e.g., when dealing with mini-
max policies, there is no need of a o-algebra on @. In such situations, ® may be
thought of as a set endowed with the power set of ©.

We shall assume that every family {g(h, -), ¢ €0} Cc 9(S,), h € K,_,, is
dominated by a measure A, depending on A with likelihood function 13(h, -).

(V) (A,) supplies the dominating measures. We assume that (A,) € q.

(vi) (9, h) — 12(h) are the likelihood functions and are assumed to be nonnegative
measurable functions on © X K,_, X S, such that the law of motion ¢*
introduced in (iv) is given through'g(ds,) = 13(s)A,(ds,), and ¢2(h, ds,) =
12(h, s, )\, (h, ds,), h € K,_,, n > 1.

According to (v), A,(h) is a probability measure for every k € K, _,. If instead
A,(h) is given as a o-finite measure for every h € K,_,, then there exists a
probability measure A¥(h) depending on 2 € K, _, such that A,() is dominated by
A*(h) with respective finite density f,(h, -) = d\,(h)/dA¥(h). Then A, can be
replaced by A* and 13(h, s,) by 13(h, s,)f,(h, 5,) and we have the situation of (v)
and (vi). This consideration neglects the fact that f, and A} should depend
measurably on . However, if A, satisfies sufficient measurability conditions in A,
then A* and f, can be chosen to depend measurably on 4. Since g measurably
depends on & for n € N, we may infer from the theorem of Ionescu-Tulcea that for
any 7 € A : (#, B) > P?(B) is a transition probability from © into H .

(vii) The cost function or loss function for the nth period (&, k) — c2(h) is a
measurable function from ® X K, X S, to R bounded from below.

Ford € 0,7 € A, m, n € N let us define

Rn(8, m) = 2., fc]dP;

where R” = 0 for m > n. More precisely, we should write [c
Gpap -, 4, )dP? instead of [c’dP?. But we agree to look at any function f
defined on H, as a function defined on H, which depends on the first 2n — 1
coordinates only. Then R} is a well-defined function from ©® X A to R bounded
from below and measurable in 3 € 0. We set

Zn = infﬂeA,ﬂee,t>nRr:+l(0’ 7).
Then
2.1) R! >R+ 2, for m <n.
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Since z, < R}, , = 0, z, is nonpositive. Throughout this paper we impose

CONDITION (4). Z,— 0 as n— co.

This condition is satisfied in the discounted case (cp. Blackwell (1965)) and in the
negative case (cp. Strauch (1966)) where the cost functions ¢’ are nonnegative.
Condition (A4) implies that the risk function

(22) R(8, m) = Z2,/¢dP;} = lim,_,R{(9, m)
is a well-defined function from © X A into R bounded from below and measurable
in ¥ € 0. The existence of the limit in (2.2) can be justified by Lemma 4.1 in Schil
(1975a). Hence we can extend the domain of R according to

R(p, m) = [R(S, m)p(dd), pEPO) TEA,
where we look at {# as a degenerate probability measure giving mass one to the
point J. Similarly, we write

RY(p, m) = [R{(D, m)p(dd), p € P@O),7EA
Using (2.1) one may conclude from Lemma 4.3 in Schil (1975a) that
(23) R(p, m) = 22, f[[¢'dP}] dy = lim,_, ,R}(p, 7).

3. Optimality criterion. In the present paper we are concerned with the follow-
ing concept of optimality (cp. Bierlein (1963), (1967), Bunke (1964), Menges
(1966)). Let T be a subset of A and A be a subset of P(®). Then 7* € T is said to
be A-optimal in T—we write 7#* € I'*(A)—if

SupueAR( py T*) = infwel‘supueAR(l"" 7).
Obviously for any p € P (0) we have 7* € A*({ u}), if and only if #* is a Bayes
policy against the a priori distribution p, i.e.,

R( M, 77*) = inf-:reAR( K, "7)'

And 7* € A*(%(0)) if and only if #* is a minimax policy, i.e.,

supy coR(#, 7*) = inf, cpsupy coR(, 7),
where use is made of
3.1 supy coR (P, m) = sup,c 9@ R(1s 7), 7 € A.

Further, upon defining for any 0 <p, <1, g € P@®), A= {pou+ (1 —
po)v, ¥ € P(0)},” we obtain the optimality criterion of Hodges and Lehmann
(1952) where ‘

SuPueAR( t, ) = poR( o, 7) + (1 — po)sups coR(D, 7).
If = U ©, is a measurable partition and we choose, for some p;, > 0 with
Sp=1LA={p€ P@®O); u®)=p), we obtain the optimality criterion of
Menges (1966) where
SuppeAR( u, m) = Zp; - supy e@,R(ﬂ’ ).
The optimality criterion of this paper is based on the total cost criterion. The
interesting paper of Mandl (1974) is also concerned with a decision model where
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the transition law is not completely known to the statistician. However, Mandl uses
the average cost criterion and a sort of uniform optimality.

In order to guarantee the existence of A-optimal policies in A it suffices to find a
topology on A such that A is compact and the mappings 7 — R(p, 7), p € A, are
lower semicontinuous (Bunke (1964) Satz 1). (Henceforth we write 1s.c. instead of
lower semicontinuous.) In the case where the state spaces are countable discrete
spaces, several authors used the topology of pointwise convergence (cp. Derman
(1965), Rieder (1973), Wessels (1968), Wald (1950)). Martin ((1967), proof of
Theorem 3.2.1) proposed another topology for the discrete case. In the case where
the state spaces are Borel subsets of the real line, Wald (1950) attacked the problem
by introducing the notion of regular convergence for a sequential statistical
decision problem. :

We shall prefer a different approach guided by the observation that it is
sufficient to find a factorization

Aso— Re
79, —> R(, ;) = R(:, m)
of the mapping 7 — R(-, 7) such that ¢ is better structured than A and it is easier
to find an appropriate topology on ¢ than on A. Of course, every topology on ¢
induces a topology on A through the mapping 7 — @,.

For a sequential decision problem, LeCam (1955) found a representation of the
decision functions by families of linear mappings. He assumed, however, that (in
the terminology of the present paper) the loss functions ¢ (s, a, - - - , 5, ) are
linear combinations of functions w,(%, a;, - - - ,a,) - h,(d s, - -, 5,4). This
assumption—though being fulfilled for the usual sequential procedures—is very
restrictive for dynamic programming procedures.

During the revision of the present paper, the author became aware of the paper
of Brown (1977) building on the approach of LeCam. Brown gets rid of LeCam’s
separability assumption on the loss functions and generalizes the model of sequen-
tial analysis such that it covers the dynamic programming model. The conclusions
of Brown and those of this paper concerning the compactness of the space of
policies are similar; however, Brown’s hypotheses do not imply, and are not
implied by, the assumptions of this paper.

In the present paper, we shall use a factorization of the risk function such that ¢
is a subset of ?(H_). For that purpose ?(H,) is endowed with the so-called
ws®-topology as defined in Schél (1975b) and ¢ is endowed with the relativization
of the ws*®-topology.

4. Some measure theoretic requisites. We list some requisite notations and
relations. Let S and A be standard Borel spaces. Let 2(S, 4) denote the set of
Carathéodory functions, i.e., the set of bounded measurable real-valued functions u
on S X A such that every S-section u(s, ) is continuous on A. Let €(4) denote the
set of nonempty compact subsets of 4. For a mapping ¢ : § — €(4), we define, as
usual, graph(y) = {(s, a) € S X 4; a € Y(s)}.



DYNAMIC PROGRAMMING AND DECISION THEORY 437

The following result can be proved as Proposition 11.6 in Schél (1975a) where
the measurability of the sup-function used there can be justified by results of
Brown and Purves (1973) or Himmelberg, Parthasarathy, and Van Vleck (1976).
See also Brown (1977) Theorem 3.10, Kertz (1977) Lemma 1.19, Schil (1977).
(4.1) For any ¢ : S — €(A4) such that graph(y) is a measurable subset of S X A4
and for any u : graph(y) —» R, the following statements are equivalent:

(a) u(s, a) depends measurably on (s, a) and ls.cly on a and u is bounded from
below;

(b) there exists an increasing sequence (u,) in 2(S, A) such that the restriction of
sup,u, to graph(y) coincides with u.

The s-topology on P (S) is the coarsest topology rendering the mappings P —
[fdP continuous for every bounded measurable function f on S. Thus, a mapping
p: A — P(S)is s-continuous if and only if for such functions f : a — [f(s)u(a, ds)
is continuous. The ws*®-topology on 9P (H ) is the coarsest topology for which the
mappings P — (fdP are continuous for every f: H,— R contained in 2(S,
X+ XS8,4;, X--- XA,_,) and for every n € N.

5. Compactness and continuity conditions (B). In this section we shall formulate
conditions which will turn out to be sufficient for the existence of optimal policies.

ConpITION (B). For everyn € N

(Bl) for every (s, - -,s,) €S, X - XS, the section K,,(sh...,s") at
(s, + + -, $,) is compact;

(B2) A, depends s-continuously and 12 depends ls.cly on the actions, ie.,
NS, 5 o 0y 8, o) Ko, -5 — ?(S,,,) is s-continuous;
1G5y 8- 80)islsconK,, ... . foreverys, €S,1<i<n
+ 1;

(B3) c¢’depends ls.cly on the actions.
Obviously, Condition (B) is always satisfied if .S, is a countable discrete space and
A, is a finite set for n € N. Hence, the results of this paper generalize results of
Wessels (1968) and Rieder (1973).

REMARK 5.1. The assumption on 1? implies that 12 depends continuously in
measure on the action. More precisely, one can prove the following proposition: let
A be a measure on any space S endowed with a c-algebra & and let 1(a, -) be
probability densities with respect to A for each a where a runs through any metric
space. If 1 depends Ls.c.ly on a then each of the following equivalent statements
holds as a — a°:

(a) suppeel/A1(a, ) — 1(a’ -)]dN - 0;

(®) J]1(a, -) = 1(a®, )| dA —0;

(©) A(1(a, -) — 1(a% -)| > 8) — 0 for every & > 0.

REMARK 5.2. The assumption on 1% remain valid if 1% is multiplied by a
function depending only on the states. Such a multiplication may be necessary if
one replaces a o-finite measure A, by a probability measure.
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REMARK 5.3. One can give assumptions based on the weak topology rather than
on the s-topology. Then, in Section 7 below, one will refer to Theorem 5.6 instead
of Theorem 6.6 in Schal (1975b) (cp. also Nowak (1975), Kertz and Nachman
(1977a)). However, the only advantage gained thereby will concern the assumptions
on A,. All other assumptions have to be strengthened. Since in any application of
the theory A, is likely to not depend on the histories, it does not seem worthwhile to
give alternative conditions on A,.

6. Example: the sequential statistical decision model. We consider a sequential
statistical decision problem where a stochastic process ({,, » € N) is observed. For
the sake of simplicity of expression we shall consider only such experiments in
which only one observation is made at each stage. Let S, denote the state space at
time n and suppose that there is given a o-finite measure p, on S, and nonnegative

measurable functions f’(s,, - - - ,s,) on © X §; X - - - X S, such that
(ﬂ’ Sttt s S B) _)IBJ;,(SI’ s S sn)lu‘n(dgn)
is a regular conditional probability of §, given (&, §},- - -, §,_))-

We write 4, = A, U {e,} where A4, is the set of terminal decisions available
after n observations and e, represents the decision to observe §,, ;. Further there
are given nonnegative measurable functions b, on ® X S; X - - - XS, and L, on
O XS X+ XS, XA} specifying the cost of observing §,,, and the loss
implied by some terminal decision after n observations, respectively. If the statisti-
cian is allowed to take a terminal decision without any observation, we have the
situations of Remark 2.1 and choose S, as a singleton.

The sequential statistical decision problem is a special dynamic statistical deci-
sion problem upon setting S, and A4,, as above,

Ospan, s, a)=b(d, s, 0, s,) if a=e, 1<i<n
=L@ s, ,8.a,) if ag=ce, 1<i<n,a, €A4);
=0 otherwise;

12(sp, a5 8,)=f2(sp 8+ - 5 5,) dp,/dA(s,) where A, is any probability

measure that dominates w,. In a similar way, every stopping problem or every
stopped decision process can be formulated by use of a dynamic decision model
(cp. Rieder (1975b)).

Since ¢? is nonnegative for n € N, Condition (A) is satisfied. Condition (B) is
satisfied if for every n € N : 4/ is a compact metric space and L, depends ls.c.ly
on the terminal action. Of course, S, should be a standard-Borel space, 4, should
be considered as topological sum of 4, and the singleton {e,}, and K, should be
chosen as H, X A4,,.

The risk function depends on the policy only through the stopping rule and the
terminal decision rule. The model of the present paper allows for stopping times
which are not necessarily finite. If it is assumed as usual that the statistician pays
an infinite amount if he does not reach a terminal decision in a finite number of
steps, he may restrict himself to a.s. finite stopping times.
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7. Results under condition (B). Throughout this section it is assumed that
Condition (B) is satisfied.

7.1. Compactness of the space of policies and lower semi-continuity of the risk
function. Since A = () is an element of g, P} is defined. The factorization of
7 — R(-, m) described in Section 3 will be chosen such that ¢, = P} and ¢ = IT*
where we write

(7.1) II" = {P%; m €A} forany ¢ € g.
Such a factorization is possible because of the following relations:
(7.2) Jeldp} = [&ldP),
where
ENsp s Ay Supr) =
HEN R L G Spa)ET (51 0+ 5 Gy Sppr)-
(7.3) R(®, 7) = 3,[E%dP} = R(9, P}).
(7.4) R(p, m) = 2,/&!dP} = R(p, P})
where EX(Sy, « + + » @y Sy r) = SC2(Sps - - -5 Gy, Sy ) (AD).

THEOREM 7.1. Whatever p € P (©), the function P — R(u, P) is 1s.c. on II* in
the ws*®-topology .

PrOOF. For a proof of the lower semicontinuity of P — [&*dP on IT*, there is
no loss of generality in assuming that ¢ > 0. This may be seen from the fact that
¢? > — M for some M >0 and [éFdP} = (é*[M]dP} — M where c![M]=
13- 12 (c? + M)wd?). Now, it is clear that &* depends Ls.cly on the
actions. Hence, by Fatou’s lemma, ¢* depends l.s.c.ly on the actions. Thus we know
from (4.1) that ¢* admits an extension defined on H,,, which can be written as the
limit of an increasing sequence of functions in 2(S, X - - - XS,,,, 4,
X -+« + XA,). Therefore, P — [é¥ dP is 1.s.c. As a consequence, P — 37_, (¢} dP is
Ls.c. Further, by (2.1) and (7.2) we have the inequality 37_,/é* dP > 27, [é} dP
+ z,, for m < n, P € TI*. Now, an appeal to (7.4) and Proposition 10.1.1 in Schil
(1975a) completes the demonstration. []

The following theorem is one of the main results in Schél (1975b, Theorem 6.6).
There it is assumed that K, = H, X 4,, i.e., all histories are admissible. However,
the result carries over to the present more general situation upon making use of
(4.1) (cp. also Schil 1972), Kertz and Nachman (1977b)).

THEOREM 7.2. TI is compact in the ws®-topology .

Given the relativization of the ws®-topology on IT*, we endow A with the inverse
image under the mapping 7 — P} of the topology on IT. This is the coarsest
topology on A for which the mapping 7 — P is continuous (cp. Bourbaki (1960) I
Section 2.3). Then we can rewrite Theorems 7.1 and 7.2 as
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COROLLARY 7.3. (a) If p € P(O), then m — R(y, 7) is a l.s.c. function on A.
(b) A is compact.

7.2. Existence of optimal policies.

THEOREM 7.4. Let A be a nonempty subset of P (0).

(a) There exists a A-optimal policy in A.

(b) If T is a nonempty closed subset of A, then the set *(A) of all A-optimal policies
in T is a nonempty closed (and hence compact) subset of A.

(c) Forany a: © > R, A, = {7 € A; R@P, 7) < a(P), & € O} is a closed subset
of A and hence a candidate for the set T in part (b) if A, # Q.

PrOOF. (a) is a consequence of (b). On the other hand, (b) follows from
Corollary 7.3 since the lower semicontinuity of R(y,.+), u € A, implies the lower
semicontinuity of sup,c,R(p, -) and the closed subset I' of the compact set A is
compact. Further, by virtue of the lower semicontinuity of R(&, -), {7; R(®#, 7) <
a(#)} is closed for any ¢ € ©. Hence A, = N scol™ R(}, m) < a(P)) is closed.
0

REMARK 7.5. Theorem 7.4 obviously remains true if R(p, ) is replaced by
R(u, 7) — p( ) for some p : A — R. Hence, upon setting p(#) = inf, c,R(?, 7), we
know that there exists a policy #* that is optimal in A with respect to the minimax
regret criterion, i.e., with respect to the criterion function 7 — supy cg{ R(?, 7) —
inf_, _ \R(P, 7)}.

REMARK 7.6. Theorem 7.4 contains as a special case a theorem on the existence
of optimal tests. However, this result is known. It is proved in Witting (1966) for an
arbitrary state space and generalized by Landers and Rogge (1972) to the un-
dominated case.

ReMARK 7.7. The only property of A used for the proof of Theorem 7.4 is the
compactness. When I'*(A) contains more than one element, one may start another
optimization procedure upon replacing A by I'*(A), which is again compact by
Theorem 7.4b, and (¢?), A, T by some other quantities satisfying the same
conditions. Then one obtains another nonempty closed set of optimal policies
contained in T'*(A). More generally, one can start a sequence of optimization
procedures determined by some (c2), A,, T;, where i runs through N, and obtain a
decreasing sequence of nonempty compact sets of optimal policies which has a
nonempty intersection consisting of those policies that are lexicographically opti-
mal for all optimization procedures. Examples can be found in Hodges and
Lehmann (1952), Jaquette (1973), Mandl (1971), Quelle (1976).

From the discussion of the optimality criterion in Section 3 it is clear that
Theorem 7.4 contains the following result as special case.

COROLLARY 7.8. (a) Whatever u € 9P (0), there exists a Bayes policy against the
a priori distribution p.
(b) There exists a minimax policy.
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Corollary 7.8 was proved for a general statistical decision problem by Wald
(1950) Theorems 3.5, 3.7 and Ghosh (1952). Corollary 7.8a is strongly related to a
result by Rieder (1975a) Theorem 8.4. Rieder’s hypotheses are based on the weak
topology (cp. Remark 5.3).

ReEMARK 7.9. If O is a singleton, then the statistician may restrict attention to
nonrandomized policies (cp. Blackwell (1965) Theorem 2, Strauch (1966) Theorem
4.3, Hinderer (1970) Theorem 15.2, Hinderer (1971) Satz 4.1, Schil (1971) Satz 6.1).
This fact remains true if the statistician looks for a Bayes solution (cp. Rieder
(1975a) Theorem 8.1), because a Bayesian decision model can be reduced to a
model where © is a singleton. This fact can also be seen from relation (7.4) above.

7.3. Convergence of the minimal cost from finite stage play to the minimal cost from
infinite stage play.

THEOREM 7.10. Let A be a nonempty subset of ¥ (O).

(@) Then lim, inf, cxsup,cp RY(p, m) = inf, cpsup, e A R(p, 7).

(b) If (m}) is a sequence of policies such that =} is optimal with respect to the finite
horizon n, i.e., with respect to the objective function m — sup,c \R{( u, m), then every
accumulation point w* of (*) is optimal with respect to the infinite horizon, i.e., 7* is
A-optimal in A.

PrOOF. From (2.1) we conclude

(7.5) R (p, ™) > R™(p, ) + 2, m < n,
(7.6) sup, e ART (1, m) > sup, c\R"(p, 7) + 2, m < n.
In view of (2.3) and (7.5), it is readily proved that

(1.7) lim,_,,sup, c AR7'(#, 7) = sup, e R, 7).

As in the proof of Theorem 7.4, we know that the mapping 7 — sup, c A R{(p, ) 1s
l.s.c. When these facts are combined with (7.6), we obtain by Proposition 10.1.3 in
Schél (1975a)

(78) limninfﬂEAsupyeAR]”( K, 77) = infﬂEAlimnsupuEARln( M, 77)'

Combining (7.7) and (7.8) completes the demonstration of (a). Part (b) follows from

Proposition 10.1.2 in Schal (1975a). ]
7.4. Convexity of the space of policies. In order to obtain further results, one

needs some convexity property of A.

THEOREM 7.11. Whatever q € q, 117 is a convex subset of P (H ).

Proor. The assertion is a simple consequence of the following characterization
of TI? (cp. Strauch (1966) Lemma 7.2, Hinderer (1970) Lemma 13.1, Nowak
(1975)). For any P € 9 (H,) : P € I1? if and only if forn € N

Pof ! =go, Po(§y, - - ¢, @, §n+l)_l = Po(§y, - - - ’an)_l ® g, 1
As a consequence of (7.4) and Theorem 7.11, one obtains
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COROLLARY 7.12. Whatever may be w,, m, €A and 0 <y < 1, there exists
7 € A such that R(p, 7) = YR(p, m) + (1 — Y)R(p, 7)), p € P(O).

7.5. Strict determinateness of the decision problem viewed as a zero sum two-person
game.

THEOREM 7.13.  Sup, c ¢eyMin, e AR(p, 7) = min, c,supy coR(P, 7).

ProOF. This follows from the minimax theorem of Kneser, Fan, Sion (cp. Sion
(1958) Theorem 4.2') where ‘inf’ can be replaced with ‘min’ by a lower semicontinu-
ity argument. [J

At the end of this section, we remark that Corollaries 7.3 and 7.12 may be used
to prove theorems on complete classes of policies. For example, Assumptions (8),
(9) and (10) of LeCam (1955) are satisfied and hence his Theorems 3 and 4 apply to
the present situation.

8. Results under condition (C).

8.1 Conditions concerning the continuous dependence on the parameter. Several
results in the area of statistical decision theory are based on the compactness of ©
and the continuity of the mappings ¢ — R(#, 7), # € A. In order to guarantee
these properties, we impose the following Condition (C) throughout this section.

ConpITiON (C). For anyn € N

(Cl) K, ... s, is compact for s, € §;, 1 <i < n;

(C2) A\, (s, ap, * + * , Sy @,; ) does not depend on (a, - - - ,a,) and
P, a, - ,a)-> 12 (spap,: -+ ,a,s,,,) is Lsc.on @ X K, ... ) for
alls, € S, 1 <i<n+1;

(C3) (3, k) > ¢’(h) is bounded on ® X K, X S,,, and (},a,- -, a,)—>
cX(sy, ap, - -+ ) is continuous on ® X K, ... . foralls, €S, 1<i<n+

1;

(&) Supﬂe@),weAzjin”Cio' dP} — 0 as n — oo;

(C5) © is a compact metric space (endowed with the o-algebra of Borel subsets of
0).

Obviously Condition (C) implies Condition (B). Condition (C4) implies Condi-
tion (A) and is satisfied in the discounted case. Further we infer from (C4) that
R(#, m) is a bounded function on © X A.

8.2. Continuity theorems.

THEOREM 8.1. sup,ca|R(9, 7) — R($°, 7)| > 0as & > 4°, 4° € ©.

This continuity theorem is related to results of Boylan (1969), Dubins and
Meilijson (1974), Kobayashi, Fujikawa and Kurano (1973), Martin (1967) Theorem
3.3.4, and Whitt (1977). The proof is not given here. For the case K, = H, X A4,
i.e., that all histories are admissible, the proof is carried through in Schal (1976) by
use of Remark 5.1 and the observation that the total variation of the difference of
the distribution of (§, a, * - * , §,) under P2 and P?" is not larger than

2':n=lf>\l(dsl)f71(sl; da))f - - - fM(dSm)l?a' T 1:’:—1“31 - 1?n°|-
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The proof can be extended to the present more general situation by observing that
it suffices to show that ¢ — sup, c,|R(¥, ) — R(J°, 7)| is upper semicontinuous.
We endow 9 (0©) with the weak topology. Referring to Billingsley (1968) 1.2
Problem 8, we obtain the following generalization of Theorem 8.1.

COROLLARY 8.2. sup, ca|R(p, m) — R(p°, m)| —>0as p— p°, p° € P(O).
From Corollary 8.2 we have the following result.

COROLLARY 8.3. For every subset T of A, the mapping u — inf, R(p, 7) is
continuous on ¥ (0).

8.3. Existence of least favourable a priori distributions. Let T be a subset of A and
A be a subset of P (0). Then p* is said to be a least favourable a priori distribution
for I'in A if :

inf, e pR(p*, 7) = Sup}LEAinfﬂErR( B, ).

THEOREM 8.4. Let T be a subset of A and let A be a closed subset of P (0). Then

there exists a least favourable a priori distribution for T' in A.

Proor. The compactness of © implies the compactness of P(©) (cp.
Parthasarathy (1967) Theorem II 6.4). Thus A is a compact subset of %P (0).
Further, by Corollary 8.3, u — R(u, 7) is continuous, hence g — inf, o R(p, 7) is
upper semicontinuous and attains its supremum on A. []

Theorem 8.4 was proved for a general statistical decision problem by Wald
(1950) Theorem 3.14.

The results of Sections 7 and 8 supply the foundation for a series of further
results which can be obtained by using only the known decision-theoretical
methods. For example, it will be found that the Assumptions 1-3 of Hodges and
Lehmann (1952) are satisfied. Furthermore, results corresponding to Theorems 3.9
and 3.20 by Wald (1950) are easily proved for the model of the present paper. Also,
the continuity and finiteness of the mapping % — R(#, 7) implies the admissibility
of every Bayes policy against an a priori distribution whose support is ® (cp. Blyth
(1951), Ferguson (1967) 2.3 Theorem 3, Zacks (1971) Theorem 8.1.2).

Acknowledgment. The author is grateful to the referees for several useful
remarks.
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