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UPPER AND LOWER PROBABILITY INFERENCES FOR THE
LOGISTIC FUNCTION

By SANDRA A. WEST
Worcester Polytechnic Institute

A general system of inference which leads to upper and lower posterior
distributions based on sample data has been proposed by Dempster (1967). This
general theory of inference is applied to the two-parameter logistic function,
given the data from independent binomial populations. Inferences are devel-
oped for fixed regions about the two parameters and about interesting combina-
tions of these parameters. The resulting upper and lower probabilities are
generated by a random polygonal-type region, or more exactly by specific
extreme points of this region. For these extreme points, the exact marginal and
joint distributions are derived; approximate distributions are also derived.

1. Introduction. Dempster’s general theory (1967, 1968) is applied in this paper
to derive methods of inference for the two parameter logistic function. The data
consist of independent samples of successes and failures from each of ¢ binomial
populations. For population i, the probability of success, p;, is given by

P,-=[l+exp(—a—’3Ti)]—1’ i=1,2,--,1

where a and B are unknown parameters and 7; is a numerical value, say “level,”
associated with the population. Such a model arises in bio-assay, lifetesting, and the
study of psychosensory response systems, more generally, in analyzing experiments
yielding quantal responses and so is broadly applicable.

Dempster’s theory of inference, a generalization of Bayesian inference, allows
prior information to be included, if available, but it is not essential as in standard
Bayesian analysis. Dempster’s system yields upper and lower probabilities rather
than a single posterior probability, here for a—f event sets, for example, those
generated by logit(p) = logp(1 — p)~' = a + BT or —a/B, the value of T for
which p = .5.

Dempster’s theory is outlined in Section 2. The upper and lower probabilities for
a-f3 event sets are found by integrating over these sets, appropriate densities
derived in Section 3. The probabilities themselves for certain particular cases are
determined in Section 4. Because these probabilities will be somewhat difficult to
evaluate in practice, approximations to them are derived in Section 5. The accuracy
of these approximations is investigated in Section 6 using Monte Carlo methods.
Section 7 contains some general comments on the upper and lower probability
inferences.
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2. The model and method of inference. Before developing the new inference
model a brief description of the general inference system is given, and the model
for the binomial parameter p is presented. For a more detailed and rigorous
explanation, the reader is referred to Dempster (1967, 1968).

The basic objects in Dempster’s theory are a pair of spaces, say U and S. The
first space U carries an ordinary probability measure p but the events of interest
are identified with subsets of S. In application the space U generally represents an
underlying and unobservable population being sampled, and the randomness
associated with a sample individual drawn from U is represented by the probability
measure . S is generally the product space of an observation space ¥ and a
parametric space €. A bridge is provided between U and S by a mathematical
transformation I, which maps each point of U onto a subset of S. Given
(U, S, p, T), upper and lower probabilities are determined for subsets of S.

The probability distribution over U induces a distribution of random subsets of
S. The subset I'u may be viewed as a random set in S generated by the random
point u in U. Subject to the condition that T'w is nonempty, I'u generates the
desired inferences. Letting V' = T'u and F denote any fixed subset of S, then
conditional on ¥V # ¢ the upper and lower probabilities of F are defined as

2.1) PHF)=P{(FNV)#¢}/P{V +#¢)
(22) P.(F)=P{V CF,V+#¢}/P{V+#¢),

assuming P{V # ¢} > 0.

A probability model like (U, S, u, I') may be modified into other models of the
same general type by conditioning on subsets of S. A simple but important class of
models can be characterized by random intervals on the line. As an illustration and
for future reference the model producing upper and lower probabilities for the
binomial parameter p is presented.

Let y;, be an observable taking the values 0, 1 with probabilities (1 — p), p
respectively. Suppose that underlying each observation y; is a random variable u,,
which is uniformly distributed on [0, 1] and where
(23) »=0 if p<u <1

=1 if 0<u <p.
That is, a single binomial observable y, is represented before observation by the
model (U, Y X P, pu,T), where U = {40 <u; <1}, Y= {y|y,=0or y, =1},
P = {p|0 < p < 1}, p is the uniform distribution over U, and
Ty, = {(y,p)ly;=0 and 0<p<wu or y;=1 and 4 <p<1}.

An observation of y; = 0 implies that 0 < p < u;, thus creating a random closed
interval [0, %] of p values governed by the uniform distribution of ;. Similarly, an
observation of y; = 1 leads to the random closed interval [u,, 1].

Suppose n independent observations are made yielding y,, y,, - - - ,y,, where
2%.1y; = r. The rule for combining independent sources of information, as given
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in Dempster (1967, 1968), implies that the combination will again be based on a
random interval, which is the intersection of the individual random intervals arising
from the observations y;. Specifically, the random interval which contains all
possible p values consistent with the data is

(24) Uy S P SUGey

where ug;, < ) < * - * U, denote the ordered random variables u, uy, - - - , u,
and where 4 = 0 and u, ;) = 1.

The random interval in (2.4), which is nonempty with probability one, generates
the desired upper and lower probabilities, which should be interpreted as condi-
tional probabilities given the data. This is just one of many applications of the
theory of random closed intervals (Dempster 1968b, West 1977a). The simplicity of
random closed intervals on the line is quickly lost when one considers random sets
in a plane.

The specific model developed in this paper lies between these two classes. The
upper and lower probability inferences are indeed generated by a random region in
the plane. However, this two dimensional region is induced by a number of
independent random intervals on the line. For the rest of this section the new
inference model is developed and essential random variables are defined.

Suppose n,, n,,  + * , n, trials are performed at ¢ levels, say T, Tp, - - -, T,
respectively, where 0 < T} < T, - - - < T,. Consider the situation in which the
number of successes R, at level T}, has a binomial distribution with the probability
p; for success, where

p,.=[l+exp(—a—,BT,.)]_1, for i=1,2---,t

Based on the observed values of R, = r;,i = 1,2, - -, t, upper and lower proba-
bility inferences for interesting regions about a and S are desired. These probabili-
ties are generated by the random region in the space of the «, B parameters which
is induced by the random intervals in the separate binomial parameters p;. That is,
the ¢ independent binomial parameters give rise to ¢ independent random closed
intervals

Uy < P < Uge1y i=12---,t

Using the logit transformation each random interval of p; values maps into a
random strip of (a, B8) values

X, <a+ BT, <Z, i=12---,1
where X; = In U,\(1 — U,)~" and Z =In U, (1 = U, )" (Note that
if , =0 or n; the random strips are actually half-planes.) These ¢ random a, B
strips must intersect if all the random p intervals are to be consistent with at least
one (a, B). The intersection of these random strips is a random region, denoted by
V (illustrated in Figure 1). This region may be described as the range of a, B values
for which a logit curve can be made to pass through the intervals

[ Uiy Usnsn)s [ Uiy U] -+ * 5 [Uep Uiy ]
at levels T}, T, - - -, T,, respectively.
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Accordingly, ¥ is the important random subset of (a, 8) values, and the
conditional distribution of ¥ given that it is nonempty is the key to this paper. Let

F = {(a, B)lc < fla, B) <4},

where ¢, d are any real numbers, and f is some monotone function. With probabil-
ity one,

(25) (VN F)=¢esupygpenfla, B) <c or inf, gyeuf(a, B) >d
V C Feinf, gyeuf(a, B) > ¢ and sup, g)enfla, B) <d,

thus from (2.1) and (2.2)

(26) P*(F) =1 — P{sup, pyeif(a, B) <c} — P{inf(, gyeif(a, B) >d}

(2.7) P*(F) = P{inf(a,ﬂ)eyf(a, B) >c and SUP(q4, ) d‘(a, B) < d}.

FiG. 1. The shaded region is a realization of the random region V for the case t = 3. In this instance, the
“left- and right-most” points of V, N, and Ny, are formed by the lines S| and W, and the lines S5 and W,
respectively.
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For simplicity the following notation is now introduced. In the a, 8 plane,
random line S;; B = —aT,7'+ X,T,”!
random line W;: B= —aT, '+ Z,T,7!
S; N W,, point of intersection of lines S; and W,
randomstrip V;: X, <a+ BT, < Z;
fori=1,2,---,1t,
V=vV.n¥V,nVvVy---nV,.

Any particular instance of the region ¥ which contains at least one point is a
closed polygon. Specific vertices of ¥ will be of special interest in the discussion of

certain upper and lower probabilities; two such vertices that generate inferences
about each of the parameters will now be defined.

DEerINITION 2.1. The “left and right most” points of V, denoted by N, =
(a,, B,,) and N, = (a,,, B,) respectively, designate the vertices of V satisfying

a, <a<a, forall a €V,
and since all 7; > 0, it follows that
B, <B<B, forall B V.

In deriving the densities of these extreme points it is necessary to know the list of
possibilities for each vertex. It is easily checked that N, is formed by the intersec-
tion of two lines such as §; and W), and Ny is the intersection of S; and W, where
i <j. That is, for each vertex there are #(+ — 1)/2 mutually exclusive candidates of
the form

(2.8) N,=S§nW, Ne=S§nW, 1<i<j<ut
Additional vertices needed for inferences pertaining to functions of a and B,

such as a + BT or —a/ B, are discussed briefly in Section 4 and developed fully in
West (1977b).

3. Exact densities of extreme points of V. In this section the conditional
densities of N, and N, given ¥ nonempty are derived.

THEOREM 3.1. Given R, =r, i=1,2,- - ,t (where at least one r, # 0, ny,
k=23,---,t— 1) and denoting the conditional densities of N, and Ny given V
nonempty, by fo,(a, B) and fio(a B) respectively, then
(3.1) Jor(e, B) = C-L(ry,ry - - 15, B) - Poy(a, B)

(3.2) Sio(a, B) = C-L(rpry: - r;a B)- Pi(a, B)

—w<a,f < oo,
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where C is a normalizing factor. Specifically,

(3.3) C™'=P{V+#¢)}

(:’:)[exp(a + BT,) )™

[1+ exp(a + BT,)]™ ’

(3-4) L(r], O TIREN PP 3 B) = Ij[tk=l

which is simply the likelihood function from t independent binomial samples, and
(T, — T)rn, — 1)

[1 + exp(a + BT)][1 + exp(—a — BT))]
(7; - T;)(”J - "i)’}‘

[1+exp(—a — BT)][1 + exp(a + BT)]

(3~5) Pm(“, :3) = 2j>i

(3-6) Plo(a’ :B) = 2j>i

Note that in the above notation the dependence on the data has been suppressed.
The derivation of fy(a, B) will be outlined. First assume r,# 0,n,i =
1,2, - -, t. By definition, fy,(a, ) may be symbolically written as

P{N,=(a, B)|[V#¢}=C P{N,=(a,B) and V # ¢},

which can be found directly by summing the contributions from the #(z — 1)/2
mutually exclusive possibilities given in (2.8). That is, letting N, ; denote S; N W,
then

(37) fou(e,B)=CZ;s,P{N,=N,; and N;;=(a,B) and V # ¢}

= CZ;5P(a, B) G;)(a, B),

where

(3.8) Pij(a’ B) = P{NL =N, and V?&‘P'Nij = (a, ,3)},
and

(3.9) Gf(a, B) = P{N;; = (a, B)}.

P, (a, B) is most easily derived by a geometrical argument, which essentially
involves obtaining the probability that a given point lies within independent pairs
of random lines. From (3.8), P, (a, B) denotes the probability that the point of
intersection (a, B8), formed by the lines S; and W, is the “left-most” point of V.
However, if N,; is a point of V' then its only possible position in V is as the
“left-most” vertex; thus it is only necessary to find the probability that this point
belongs to V. Recalling that V' =V, N V,, - - - NV, where V}, V,, - -+ V, are
independent random strips, then the probability that the given point belongs to V'
is simply the probability that this point belongs to each strip; that is,

(3.10) P, (e, B) = Iimy P {(&, B) € VilN;; = (a, B)}.
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Recalling that S, and W, are the bounds of V,, then for k = i or j, the given point
(a, B) belongs to the random strip ¥, with probability one. In the case of k # i, j
the point (a, 8) belongs to ¥V, if and only if (a + B7)) is included between X, and
Z,. Thus, for k # i, j

P{(a, B) € ViN,; = (a, ,B)} = P{X, <a+ BT, < Z,}.
Recalling the inverse logit transformation, this last probability is equivalent to
P{ Ugpy <[1+ exp(—a — ,lS'Tk)]~1 < U(,kH)}
and hence,
h
(r:)exp[(a + BT )r]

[1+ exp(a + BT,)]™ '

The density G ;(a, B) is simply obtained from the joint density of X; and Z,
which in turn is obtained from the joint density of U, and U, +1) which are
independent beta random variables. Letting f; (a, B) = P, (a, B) - G, (a, B), it
follows that

3.11) P, (o, B) = Wymy, ki s

I<ijL(rl’ LoV ’rt; a, B)
[1+exp(a + BT)][1 + exp(—a — BT))]’

where K;; = (T; — T)r(n; — r;). Summing f; (a, B) for j > i, one obtains f,(a, B)
as stated in (3.1).

In the case of some r;, = 0 or n;, say r, = 0 and r, = n,, the preceding derivation
is changed only in that P, (a, 8) =0, for i = e,j > e, and for i <k,j = k. The
expression for fy(a, B) is as stated in (3.1), with r, = 0 and r, = n,. The derivation
of fio(a, B) is similar.

Note that the quantity C ~! has certain interesting features and deserves some
attention on its own right. For example, C ~! which is equal to the probability of ¥
nonempty, may be useful in determining the goodness of fit of the logit model.
Also the effect of removing outlying observations may be assessed by comparing
the two different values of C ~!. Approximations of C ~! will be given in Section 5.

In passing it is noted that the marginal densities in Theorem 3.1 bear a
resemblance to Bayesian posterior probabilities with “prior densities” P,, and P,
which are weighted averages of priors, the weights depending on the data. These
densities are obtained via a Bayesian analysis in West (1977b).

(3.12) Sl B) =

4. Exact upper and lower probabilities. This section is concerned with upper
and lower probabilities for certain types of regions in the (a, 8) plane. All such
probabilities are conditional on ¥ nonempty.

4.1. Marginal P* and P, for a and .
Consider the fixed region of B values of the form: { 8|8 > b}, for any real
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number b. Projecting the random region V¥ onto the B axis results in the random
interval [ B,, B,,] of B values, and hence,

(4.1.1) P*{B >b} =P{B, >b} = [Fgu(B)dB
where go,(B8) and g,,(8) are the marginal densities obtained from f,,(a, 8) and

fiole, B), respectively.
In particular b = 0 is of special interest, since it is an indication of whether the

sequence of p’s is increasing or decreasing, Similarly,
(4.1.2) P*{a > a} = [Tho(a)da, P,{a > a} = [Phy(a)da,

where () and h,,(a) are the marginal densities of a,, and a,, respectively.

Next consider the two sided interval of a-values of the form: {«|a; < a < a,)}.
The upper probability is determined solely by the marginal densities of a, and a,,;
that is, from (2.6)

(4.1.3) P*[aj, ay] =1 - P{a, >a,} — P{a,, <a},
which may be computed from (4.1.2). From (2.7),
(4.14) Pylay, ay] = P{a, > a), a, < a,}.

The lower probability requires the joint density of a, and a,,, which is given in the
appendix. However, it is fairly easy to show that the lower probability lies in the
following interval

Py(—o0,a;] = P*(—0,a,] < Py[a}, a;] < Pe(—0, ay] — Py(— 0, a,].
Similar expressions can be determined for a two sided interval of B-values.
In some situations it may seem more appropriate to condition on some subspace
of the parameter space. Suppose it is decided to condition on I = {(a, 8)| 8 > 0}.

Letting F = {(a, B)|a > a}, the upper and lower conditional probabilities of F
given I are defined as,

(4.1.5) P*(F|I) = PX(F n I)/P*(1)
P.(F|I) = 1— P*(F|I).
Applying (2.1) and (2.2) it follows that
(4.1.6) P*(F|I) = P{a, >a,B, >0}/P{B, >0}
PL(FII) = P{a, >a, B, > 0}/P{f, > 0}.

In addition to the P* and P,, one might also consider the upper and lower
expected values. The expected values are defined as

E*(B) = E(B,),  E«(B) = E(B,)
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and similarly,
E*(a) = E(a,),  Ex(a) = E(ay).

It is shown in West (1971), that for each parameter the maximum likelihood
estimate lies between the upper and lower expected values; that is,

Eu(a) <& <E*a), E«B)<B <E*P).

4.2. Other inferences. Consider the fixed region E = {(a, B)|a + BT > c}. Let
A = (ay, By) and B = (aj, Bg) denote the vertices of ¥ such that, (o + B,T) <
(a + BT) < (af + B4T), for all (o, B) € V. Thus
4.2.1) P*(E) = P{ay+ BT > c} = [2 S prfa(a, B) da dB

Pu(E) = P{ag+ BT > c} = [2[Z prfu(e, B) d dP,

where f,(a, 8) and fgz(a, B) are the densities of 4 and B respectively. These
densities are derived in West (1977b). Note that the coordinates of 4 and B are
functions of T. If T < T, (or T > T,) then A and B are simply N, and Ny (or Ny
and N,) respectively. If 7, < T < T,,, k=1,2,---,t, then 4 = 4, and B =
B, where

A, =S, n W, B,=SnW, for k<i<j<t
=S nS, =W,n W, 1<i<k, j>k
=S5nWw, =S, N W, 1<i<j<k
These results follow from the general properties of ¥ and are used in deriving the
densities of 4 and B.

If R = {(a, B)|(—a/B) <k}, the P*(R) and P,(R) can be expressed in terms
of the coordinates of 4 and B. It is shown in West (1977b) that

(4.2.2) P*(R)=P{0<0,0 >0} +P{6<0,B, <0}
+P{8 >0,8, >0},
Py(R)=1-P{§<0,8,>0}—P{6>0,p<0}
+P{8<0,6>0,p,<0,8, >0},
where 0 = aj + Bk and 8 = ag + Bok.

5. Normal approximations. By expanding the In(likelihood) in a second order
Taylor series about the maximum likelihood estimates (&, ), and the In “prior” in
a first order series about (&, 8), the following normal approximations are obtained.
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Letting X = [a, 87, X= [a ,é]’, then the normal approximation for f;,(X) is
(5.1) fouX) = N(@%, £  with @®=X+I""M%E°=1"",
where I is the 2 X 2 information matrix with elements
In(ﬁ) = 2P 112()‘\() = 2= TP, 122()2) =S Th:4,

and MP is the matrix of first partial derivatives of In Py;(X) evaluated at X, the
elements of which are

MIX) =[Poy(X)]'S,5.K:,8,4(4 — P))

5 ovg—1 A Al A

M;?(x) = [P01(X)] 2j>i1<ijqui(qj7;' —D; T;)
An approximation to the constant C is obtained as
(52)  Co=1? exp(—27'M°T"'M°)/[20IL(r,, - - - , 1, R)Ppy(R) .

Analogous to f;,(X), one obtains the following normal approximation for f,y(X).

(5.3) foX) = N@ELEY  with @' =X+1"'M, &' =17},

where M! is the matrix of first partial derivatives, analogous to MY, the elements of
which are

MIX) =[ Pio(X)]'S,5.K 5,44, — B)

Mﬂl(x) = [Plo(i)] _12j>iK;':'ﬁiéj(inT;‘ - PAj];)
Another approximation to the constant C is obtained as
(54) G, =12 exp(—2"'™M'T"'M")/[2IL(r,, - - -, r;; R)Po(X)].

Note that both C~'0" and Cwl‘l provide an approximation to the probability that the
random region ¥V is nonempty.

The justification for these approximations are given in West (1971). The Monte
Carlo studies, discussed in Section 6, indicate that the normal approximations are
quite good, but can be improved upon by the following adjustment to the expected
values. Letting 8 = 27 'I"/(M° + M), then the adjusted expected values, denoted
by, ji’ and ji, are

(5.5) P=i-8 p'=p-a

The accuracy of these approximations is illustrated in the next section.
Note that if the In “priors” are approximated by quadratic functions, the
resulting normal approximations are generally not as good as (5.1) and (5.3).

5.1. A numerical example. The example involves three levels, T, = (i — 1) for
i=1,2,3, with 10 independent trials at each level. The observed number of
successes at each level was: r; =3, r, =8, r; = 6. For this data the maximum
likelihood estimates of a and B are @ = — .345 and 8 = .631.
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From (5.1) o, and B, are approximately distributed as the bivariate normal
density f,(X) with

(5.1.1) 0 =[—473,738]  and $o =[ 345 —212 ]

—-.212 225 |

Similarly, from (5.3) a,, and B, are approximately distributed as f1oX) with mean
and covariance matrix

(5.1.2) j' =[—.160, 423] and E'=Z"

respectlvely The estimates of C relative to these densities are from (5.2) and (5.4):
= 11.218 and C, = 10.467. .

For comparison, an array of numerical values corresponding to each exact
density was constructed. For each array the value of C was computed, with the
result that from both arrays the same number C = 11.19669 was obtained. Com-
paring this value of C with the two approximate values, it is clear that Co is the
better estimate. (Generally, it _appears that whenever 8 > 0, C0 is the better
estimate and whenever 8 < 0, C, is better.)

Using numerical analysis on the appropriate array of exact values, various
quantities were computed. For example, the upper and lower expected values for 8
are

E*B = E(B,) =.798, E.B=E(B,)=479.

Noting that the normal means are both underestimated by about the same
amount and the near symmetry of the means about B, it would seem that the
adjusted means, defined in (5.5), would lead to better estimates. In this case the
adjusted means are

(5.1.3) EB, =790, EB, = 473,

which do give closer estimates; however even the original normal densities lead to
good approximations. The P* and P, computed by numerical integration and by
using the normal approximations, in (5.1.1) and (5.1.2), are recorded in Table 5.1.1,
for a number of events.

TaBLE 5.1.1
Exact and normal approximations of P*(F) and P ,(F)
F P*(F) P (F)
Exact Approx. Exact Approx.

a> —143 98 98 95 95
B>0 94 94 83 .82
B<B .66 67 41 41
a+ B8T;>0 95 95 .88 .87

a+ BT, >0 37 37 .16 .16
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6. Monte Carlo studies of P* and P, inferences. Monte Carlo studies were
undertaken to investigate, under varying conditions, the behavior of the P* and P,
inferences, and also to investigate the accuracy of several possible approximations
for the exact probabilities. For these studies the design parameters are ¢, the
number of binomial parameters or equivalently the number of equally spaced
T-levels; W, the range of p; P,,, the median p; and N the size of the sample drawn
at each level. Studies were made for designs with ¢ = 5, 10; W = .17, .6, .94;
P, = .5; and N = 2, 6, 20. The results are summarized as follows.

1. In each study the array of exact values of the posterior densities resembled an
array of numbers that could have come from a bivariate normal density, with
individual mean values slightly smaller (if a, or 8,) or shghtly larger (if a,, or B,)
than the corresponding maximum likelihood estimate.

2. For each parameter, the upper and lower expected values were nearly
equidistant from the maximum likelihood estimate, which they approached as the
sample size increased.

3. The upper and lower probabilities of a p-level one-sided confidence interval
were above and below p respectively.

4. The inferences became more precise with increased sample size.

5. The main difference between two experiments having the same value for the
sufficient statistic (SR, R;T;), was in the value of C ~!. Of the two experiments,
the one that resulted in sample values that gave more evidence to support a logistic
model, had a larger value for C~'. (This is not surprising since C~! may be
interpreted as the probability of ¥ being nonempty.)

In each study four normal approximations were considered. One set of ap-
proximations, denoted by Al, is the set of normal densities given in (5.1) and (5.3).
A second set, denoted by A2, is the set of normal densities obtained by approxi-
mating the In “priors” by quadratic functions. In the third set of approximations,
A3, the first two moments of the normal density are equal to the corresponding
moments of the exact density. The fourth set of normal densities, Al’, is the
modified version of Al, given in (5.5). The inferences obtained by the numerical
integration of the exact densities were compared to the resulting inferences using
the normal approximations with the following results.

6. Between Al and A2, the results tend to generally favor Al. In every design
Al is as good as, or better than A2 for almost all the quantities. It is clear that A3
does better than Al, most noticeable for N = 2; although in most cases even Al
does a reasonably good job. The results indicate that Al’ is better than Al and as
good as A3. Al’ is much more desirable than A3, since the latter involves the
computation of the mean and variances from the exact grid.

The details of these Monte Carlo studies are recorded in West (1971).

7. REMARKS. The types of inferences discussed in this paper involve essentially
posterior probability statements about regions of parameter values for the logistic
function. These fixed regions may be viewed as hypotheses whose validity is to be
tested.
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The decision maker may think the upper and lower probabilities too conservative
to be very useful, especially if the bounds are widely separated. But the fact that
they are widely separated indicates that there is not much information on which to
base a decision. The difference between the bounds acts as a safeguard against over
confidence. It would seem that the upper and lower probability inferences could be
quite useful in an area such as bio-assay, especially in view of the approximate
nature of standard inferences.

The upper and lower probabilities provide a flexible means of summarizing the
current state of knowledge about some hypothesis, where a state of complete
ignorance is represented by an upper and lower probability of 1 and 0 respectively.
Moreover, the difference between the bounds provides a kind of second order
uncertainty describing the quality of the inference. For a given hypothesis, the
difference, (P* — P,), decreases as the sample size increases, indicating the im-
provement of the quality of the inference as a result of the increase in the number
of observations. One gradually goes from no inferences to more and more firm
inferences as the data accumulates. For extremely large sample size the upper and
lower probabilities will coincide and both will be derivable from a posterior density
proportional to the likelihood. It is noted that the difference, P* — P,, also reflects
the design of the experiment; that is, relative to a given hypothesis the more
efficient the design the smaller the difference between bounds.

The inferences derived in this paper depend on densities which are generally not
integrable in closed form. Consequently, in application one has to either use
numerical integration or some other approximation. Fortunately, the posterior
densities are approximately normal functions even for moderate size samples, with
the result that for all practical purposes, the upper and lower probability inferences
require only tables of the normal density function. Approximations for the joint
density of two vertices of ¥ were not investigated, but it would seem that for
moderately large samples a good approximation would be a multivariate normal
density function.

APPENDIX
The joint density of N, and Ng. In the computation of certain inferences the
joint densities of certain pairs of vertices are needed, at least theoretically. Assum-
ing V # ¢, the joint density of N, = (a, 8) and Ny = (o, B’) defined over
Q= {(a, B, o, B)|a < ', B > B’} is given in the following theorem. (The density
for any other pair of vertices is similar.)
THEOREM Al. Denoting the joint density of N, = (a, B) and Nz = (o, B’) by
A(Z) where Z = [a, B, o', B'] € Q then
fZ)y=0 if (@ —a)/(B=B)<T, or >T,
= s—l,s(Z) if T:s—l < (a’ - a)/(ﬁ - B’) < T:s
=£2Z) if («=-a)/(B=-B)=T,
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fors =2,3,- - ,t, where
fio1,s(Z) = H(Z)- P,_, (Z), f(Z)= H(Z)P(Z)
with

H@) = 237 ) (2 (40" "o 1. )20 (a)" "
Py (Z) =[Z521Z5- (T — T)ri(n — r) gy ]
[T = T)(n = r)rgipy]
P(Z) = (n — r)pi[ 2T, — T)rig;][2iesu (T, — T)rig7]
+rg[BZUT, = T)(n — 0] [Zims (T = T = nip],

and p,,p. denote [1 + exp(—a — BT.)]"', [1 + exp(—a’ — B'T,)]™" respectively.
This density is derived in West (1971).
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