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THE STRONG CONSISTENCY OF MAXIMUM LIKELIHOOD
ESTIMATORS FOR ARMA PROCESSES!

By J. RiSSANEN AND P. E. CAINES

IBM Research Laboratory and Harvard University

The strong consistency of the maximum likelihood parameter estimation
method is established for multivariate Gaussian stochastic processes possessing
autoregressive moving average (ARMA) representations. The demonstration in
this paper exploits the ergodic theorem together with results from linear
prediction theory.

1. Introduction. In this paper we consider the problem of estimating the param-

eters 4,,---,A,, By,* - -, B, in the autoregressive moving average (ARMA)
scheme
(1'1) Yt + Alyl—-l +- - +Auyt—n = BOut +. +Bnut—-n

by the maximum likelihood technique. We take y and u to be real p component
zero mean Gaussian stationary processes, and, in addition, we take u to be an
orthonormal process, i.e., Euu,” = I8, ; where §, , takes the value 1 for t = s and 0
otherwise. Consequently, the parameters {4, - - , 4,, By, - - -, B,} are real (p X
p)matrices. Without loss of generality, y is assumed to be of full rank, i.e.,
Eee,” > 0 for all ¢ € Z, where ¢, ==y, — y*, when y* denotes E(y,|y, i <t — 1),
the conditional expectation of y, with respect to {y;, i <t — 1}. Here Z denotes
the integers.

Since it is assumed that the observed process y is Gaussian, the distribution of a
sample {y,; t € Z_}, where Z_ denotes the nonnegative integers, is determined by
the second order statistics of y. But these statistics are functions only of (4,, - - -,
A,, By, - - -, B,). As a result, the likelihood function depends only upon the data
{ye* ", ¥t € Z,} and the values assigned to (4,, * - , 4,, By, - * * , B,).

We shall denote the list of matrix coefficients (4,, - - - , 4,, By, * * + , B,) by the
P X (2n + 1) matrix expression (4, B). Further, the parameter vector y = (4, B)
will denote a list of the entries of (4, B) taken in some arbitrary order. Clearly the
vectors y are in one to one correspondence with the pairs of matrices (4, B). To
each vector y there corresponds a rational matrix ®(z) associated with the system
(1.1). This is given by

(12) ®(z) = A7V (2)B(z) = @y + Bz + O, 22 + - - -,
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where

(1.3a) AZ) =T+ Az + -+ +4,z"
and

(1.3b) B(z) = By+ B;z+ --- +B,z".

The representation
Vo= Qou + Py + Ppu,_, + - -

is called the innovations representation or Wold decomposition of y (see e.g., [19],
[22]), and in the engineering literature the sequence {®,, ®,, - - - } is described as
the impulse response of the transfer function 4 ~'(z) B(z).

Since y is a stationary process the roots of the polynomial det A(z) must lie
outside the closed unit disk in the complex plane. Now suppose the matrix
polynomial B(z) in (1.3b) is restricted so that det B(z) has no roots inside the unit
circle. Then, modulo right multiplication by orthogonal matrices, the transfer
function @(z) is in one to one correspondence with the second order statistics of
the process y (see [19]). Furthermore, the second order statistics of y are given by
the coefficients of the spectral function ®(z)®”(z~"). As a result, we see that
knowledge of (i) a set of parameters (4, B) for (1.1), (ii) the entries of the rational
transfer function 4 ~!(z) B(z), (iii) the impulse response {®y, ®,, - - - }, and (iv) the
spectral function ®(z)®7(z ") are equivalent, in the sense that knowledge of any
one of these quantities allows, in principle, for the computation of the other three
quantities. In Section 3 we discuss further the question of the parameterization of
(1.1).

The study of the weak consistency and asymptotic normality of maximum
likelihood estimators for (1.1) in the scalar case was initiated by Whittle [21]. In
this paper we prove the strong consistency of such estimators by using an idea
suggested by Kendall and Stuart [12, pages 41-43]. Our result was outlined in [5].
In [8] (see also [7]) Dunsmuir and Hannan also establish the strong consistency of
m.l. estimators for (1.1). They use weaker conditions than those used here, but
employ more elaborate proof techniques.

The samples {y,; t € Z_} generated by (1.1) are not statistically independent,
consequently the present case differs from the situation analyzed both in [12] and
in the classic-paper on maximum likelihood estimators by Wald [20]. We deal with
this by employing the ergodic theorem as suggested in an earlier study by Astrom
and Bohlin [1]. The basic idea of the proof is straightforward in that it consists of a
comparison of the asymptotic value of the likelihood function at various points in
the parameter space.

We construct the likelihood function via the innovations process {e,; t € Z, },
where e, denotes y, — ¥, =y, — E(¥,|y,—1>* * * , ¥o)- This construction is different
from that used in [7, 8, 21] and we believe it to be of independent interest. Notice
that by assumption the observed process y, generated by (1.1), is stationary; in fact,
one may interpret y as the output process of the system (1.1) after it has been
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initialized in the remote past and has then been permitted to attain steady state
behavior. On the other hand, the innovations process e is nonstationary and is
generated by the time varying filter (prediction algorithm) given below in (2.3-2.7).
We remark that the stationary form of the likelihood function is commonly used in
practice because its evaluation requires substantially less computation than the
exact form, see e.g., [2].

A version of the techniques employed in this paper may also be used to establish
the strong consistency of the so-called prediction error estimators [3, 4, 13, 14] for
processes that are not necessarily Gaussian. Furthermore, in [4] the asymptotic
normality of a large class of prediction error estimators is established and an
asymptotically efficient class of prediction error estimators is characterized. How-
ever, for theoretical simplicity it is assumed in [3, 4] that all prediction algorithms
involved in the analysis have attained steady state. Hence these results are not
immediately applicable to the analysis of the behavior of the maximum likelihood
estimator for the parameters of (1.1).

We point out that the strong consistency of m.l. estimators for Markov processes
has been established by Roussas [18]. He uses the ergodic theorem in a proof along
the same lines as that of Wald [20]. The process y in (1.1) is not a Markov process
and consequently the results of [18] cannot be applied directly to the m.l. estima-
tion of y. However, it might be possible to extend these results to the present case
by constructing a Markovian model whose states are estimates of some particular
state sequence of (1.1).

The organization of this paper is as follows: in Section 2 the likelihood function
is constructed and it is shown how this function may be computed in terms of the
prediction errors of the observed process y. In Section 3 the main consistency
theorem is established, while the lemmas required in its demonstration are proved
in the Appendix.

2. The likelihood function. We obtain the likelihood function of the sequence of
observations {yg, - -+ ,y,; ¢t € Z,} by the method of orthogonalization. To de-
scribe this procedure, let H denote the Hilbert space spanned by {y/; 1 <i < p,
t € Z}, where y/; denotes the ith component of y,, and let Y, , denote the subspace
of H spanned by {y/;1<i<p, 0<s <t}. We shall denote the orthogonal

projection of y/ on Y, ,_, by ¥/, and write y, for the vector (3, - - -, ). The
process {y,; t € Z,} constitutes the sequence of linear least squares estimates of
the process {y,; t € Z,} and, since y is Gaussian, y, = E(y,|y,_1, " * * , Vo) As

described in the introduction, we define the innovations process e by
(2.1a) e =y -y, : teZ,;
further we set

(2.1b) 3, = Eee/, tez,.
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Notice that y, = 0, by the zero mean assumption on the y process. Further, since
Eee! > Eee” > 0 we see that =, is invertible for all t € Z, .

The Gaussian density function fy(ye - - -,y ¥) for (yg, - - - ,yy) para-
meterized by = (A4, B) is obtained by iterating the formula
o+ sy ) = finwlve - s v Wi (Der - - S IN-13 V),
where fy(yy|Yo - * > ¥n_1; ¥) denotes the conditional Gaussian density function.
This yields
_ _1 1 -
(22) fN(yO, L YN ’4’) = (2'”) ((N“-l)p)/zl-ﬁ‘;o(det 21) 2 exp — —2—e,T2, let'

In the expression (2.2) the parameter ¢ enters implicitly via the prediction errors
{e; t € Z,} and their covariances {3,; ¢ € Z_ } in a manner explained below.

It has been shown by Rissanen [16] and Rissanen and Barbosa [17] that the least
squares prediction errors {e,; t € Z_} for the process (1.1) are generated by the
time dependent ARMA scheme

(2-3) e + Ct,t—let—l + - +Ct,t—net—n =y»t+Ay .+ - + A4,

t 2 n,
where
2.4) C., =B, B, t>nt—1>j>t—n,

and where the matrices B, ;,
from the equations:

-1
tt n_ ( —n, t— n)

(2'5) Btt n+1 — (R - Bt,t n t n+1,1— n)( n+l,1—n+l)—1’

t>0,¢t >j > max(¢ — n, 0), are obtained recursively

Bt,tBI = (RO t — lBt,Tt—l - _Bt,t—nBt,Tt—n)’ t > 2n,

where all B, ,, t € Z, are taken to be upper triangular with positive elements in
the diagonal. It remains to describe the matrices R, 0 < i < n, which appear in
(2.5), and the initial conditions for the schemes (2.3) and (2.5).

The (p X p) matrices R; are given in terms of the parameter vector y as follows:

R =BB"+BB., +---+B, BT, 0<i<n
Let the (2np X 2np) covariance matrix R be specified by

[ Bou2n_l + .- +Bnun_

(2.6) R=E Bou” +); M +B”u0 [(BOuZn—l + .- +Bnun_|)T,
n—1
N (BOun +- - +Bnu0)T,ynT—l’ Tt

Yo yOT]>0
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Then the initial conditions B, ;, 0 <t < 2n, t >j > max(¢ — n, 0), for (2.5) are
given as the (p X p) matrix elements of the unique (2np X 2np) upper triangular
factor D of R with positive elements on the diagonal:
R =DDT.
R can be calculated in terms of ¢ from (1.1),but explicit expressions for these

terms are not needed here.
The initial conditions for (2.3) are now given in terms of the B,; 0 </
t >j > max(t — n, 0) via

27 N
Bn—l,n—2 te Bn—l,O Bn—2,n—2 vt Bn—2,0 Yn—-2

0 B, , 0 B, , Yo
and ey = y,. .

Having completed the description of the algorithm (2.3) we observe from (2.1)
and (2.3) that the estimates {y,; t € Z_ } are generated by the scheme
(2~8) Yo+ Ct,t—l)?t—l + - +Ct,t—n)?t—n = (Ct,t—l - Al)yt—l + -

+ (Ct,t—n - An)yt—n’ t>n,
with initial conditions y,, - - - , y,_, computed using ey, - - - , e,_, given by (2.7)
above.

ReEMARK. There exist procedures for the prediction of the process y in (1.1)
which use Markov state models (see [9]). We use the ARMA prediction algorithm
(2.3)-(2.7) because it is better suited to proving the technical results in the
appendices. For practical computation of the estimates {y,; t € Z_} there exist
new algorithms (see e.g., [15, 16]) which require an order fewer arithmetic opera-
tions than (2.3)—(2.7) or the procedure in [9].

For a given observation sequence { y,, - - - , Yx}, and parameter i, the function
Jv(Vo * s yns ) is called the likelihood function on the observations at ¢ €
R@"*+ D, We now define the scaled log-likelihood function

: 2
(29)  Ly(ye- - ,yn;¥) =plog2m — N+1 log fn(¥os = * * s w3 ¥)-
From the construction of the process {e,; ¢ € Z_ } it is known that
(2.10) Eee! =3, = B, BT, te z,

where the sequence B, ,; t € Z, is generated by (2.5) and (2.6). Consequently (2.2)
and (2.10) yield
1

11) Ly(ye - - >ym¥) = N+ 121;;0(103 det Z,(¢) + " (V)Z'(W)e(¥)),
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where the argument ¢ is now shown explicitly in the various quantities to empha-
size the dependence upon y = (4, B). _

We have defined Ly(yq, - * - ,Vy; ) because the expression (2.11) is especially
convenient to work with in the remainder of the paper. We observe that
Sv(Yo * * * »Yns ¥) is maximized on a compact set S at some point y* if and only if
Ly(yg, * + * »yns ¥) 1s minimized over S at ¢*. It follows that minimization of
Ly(¥gs * * * » yns ¥) generates the maximum likelihood estimate of the true parame-
ter for (1.1).

3. Main result. There is an inherent nonuniqueness in the parameterization
(A4, B) for the process (1.1). An infinite set of such matrix pairs will yield via (1.1) a
process y with the same innovations representation impulse response and the same
spectral function. This is true even when the McMillan degree (see e.g. [11], page
286) of ®(z) has been fixed. In this case the multiplicity of the representations is
equivalent to the nonuniqueness of observable and controllable realizations of
®(z), in other words, to the nonuniqueness of Markovian representations for y of
minimal state dimension. Such minimal Markovian representations are char-
acterized by the well-known state space isomorphism theorem (see e.g. [11], page
317).

The questions introduced above lead to the problem of the description of a set of
canonical forms for a set of transfer function matrices {®(z)}, i.e., a bijective
relation between a parameter space and a set of impulse responses. Such canonical
forms are sought in either matrix fraction form, i.e., as a pair of polynomial
matrices {4(z), B(z)} such that 4 ~!(z)B(z) = ®(z), or in Markov state space
form, i.e., as a quartet of matrices { F, G, H, J} such that HUIz™' — F)"'G + J =
®(z). Now let {®(z)}; denote the set of transfer functions with McMillan degree
(= minimal state space dimension) §. Then it has been established in [6] (see also
[7], [8]) that there exists a family of local canonical forms for {®(z)}; in state space
form, yielding the charts of an analytical manifold whose dimension depends upon
p and the fixed McMillan degree §. We shall not go into this important topic any
further here, but we shall obtain a suitable compact parameter set S in the
following way: let the true impulse response ® = {(i>0, ti>1, - - - } have a rational
transfer function <i>(z) with McMillan degree 8, i.e., ®(z) € {®(z)}5. Assume the
poles of ®(Z) and the zeroes of det <i>(z) lie outside the closed unit disk in the
complex plane. Further, assume that the matrix (i>o is upper triangular with positive
elements on the diagonal. This latter assumption merely avoids the nonuniqueness
of normalized innovations representations and spectral factors that arises from
right multiplication of ®y(z) :== A, '(z)By(z) by orthogonal matrices (see [24]). Let
a typical element of the appropriate manifold of canonical forms be denoted by 4
and a specified resulting matrix fraction representation by (A4(#), B(#)). Next, let
S, denote the open subset of this manifold for which the zeroes of det 4,(z) and
det By(z) lie outside the closed unit disk in the complex plane, where

Ag(2) =1 + Z7.,4,(0)z" and  By(z) = 2}_4B,(9)z",
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for n sufficiently large. Then S is taken to be any compact subset of S, which
contains the parameter ] corresponding to <i>(z).

Now all formulae of Sections 1 and 2, which were given for the parameterization
Y = Y(4, B), are valid, without any modification, for the matrix fraction repre-
sentations (A(#), B(8)), 8 € S,. Because this is the case we have, as before, that
the maximum likelihood estimators % of § will be generated by minimizing
Ly(yo - - - > yn; 0) over S.

We point out that Dunsmuir and Hannan [7, 8] maximize the likelihood function
over a not necessarily compact parameter set and, in addition, do not require the
poles of ®(z) to lie in a compact set which is known a priori nor the zeroes of
det <i>(z) to lie outside the closed unit disk. However, as remarked earlier, the
stronger conditions of this paper permit the use of simpler proof techniques.

The main result of this paper may now be stated.

THEOREM. Let the stationary Gaussian stochastic process y be generated by (1.1)
and hence have the representation
y,=<i)0u,+<i)lu,_l+°'°, tEZ,

where u is a stationary Gaussian orthonormal process. Let ®(z) = A; ™ \(2)B;(2) with
0 € S as described above, and let 6" minimize

(B1) Ly + s 8) = g Siiallog det 5,(0) + 67(8)27'(0)e(6)

over the compact set S. Then 8~ — § in the manifold topology of Sp a.s. as N — oo.
In other words, the maximum likelihood estimator for the parameter of the process y is
strongly consistent at 0.

Proor. The scheme (2.3)-(2.7) generates the nonstationary process {e, =
e(0),0 € S,t € Z_} when the y process is taken as input. We define a closely
related stationary process {¢(6); t € Z} given by
(32) g+ Ce +- - +Ce_ =yt Ayt tAy._,, EZ
where C; = BJ-BO", 1 < j < n, and B, is invertible by the definition of S. Now it
may be shown (see e.g. [17]) that &(f) is the orthogonal process of least squares
prediction errors, i.e.,

31(0)=)’1_yr*=£n tE Z,
where, as before, y* denotes the orthogonal projection of y, on the subspace
Y_,, . of Hspanned by {y/; 1 <j < p, —o0 <i <t — 1}. From (3.2) it is clear
that the process y* is generated by the scheme
(33) »r+Cyi+ - +Cpx,

= (Cl - Al)yt—l +---+ (Cn - An)yt—n’
te Z.
This is the stationary version of (2.8) as is demonstrated in Lemma 1 in the
Appendix.
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Notice that unless 8 = §, i.., unless A, '(z)By(z) = A5 '(2)Bj(z) = ®(z) the
sequence {&(#), t € Z} is not orthogonal to the sequence of spaces {Y t e
AN

Since y is a Gaussian process y,* is identical to E(y,|Y__, ,_,). It follows that

AT(Eeo(8)eZ(0)A = E(ATeo(8))’, A E R,

is minimized with respect to § € S at so(é) = yo — y¢ for all A € R?. Conse-
quently,

(34) Eey(8 )EoT(o) > E£0(0° )eoT(é ),

for all § € S. Further, the impulse response of the transfer function (3.3) is in
one-to-one correspondence with the impulse response ® of (1.1) when 8§ € S. As a
result, equality holds in (3.4) if and only if 8 = 4.

In the rest of the proof a fixed sample {y,; t € Z} is selected and the sequence
of m.l. estimates is computed in terms of the observations {y,; ¢t € Z_}. This
sample will be taken to be a member of the set Y C {y; y generated by (1.1)} such
that

—o00,t—1°

LN(yO" * LN 0)—>L(0) as N—)oo,
uniformly for § € S, where

L(0) = log det =(0) + EeJ(8)="'(8)ey(9),
and where the matrix 3(#) is defined to be the limit as ¢ — oo, of Z,(0) =
B, (6)B(8). Lemma 1 shows this latter limit exists and equals By(8)B; (#). The
fact that the set % is of measure 1 is proved in Lemma 3. This implies that the
convergence of Ly(y,, * - -, yy; ) takes place almost surely as N — oo uniformly
inf €S.

We shall now show that L(#) > L(#) for all 8 in S. To do this, consider the
function
log det X + trace (QX ')

of the positive definite (p X p) matrices X and Q. It may be verified that the
minimum of this function is obtained for X = Q and the minimum value is clearly
log det Q + p. Now set X = 2(0) and Q = Eey(0)el(8). Then trace (QX ~!) =
Eel(0)Z71(0)¢y(8). 1t follows that

(3.5) L(8) > log det EeT(0)eJ(0) + p > L(d)

where the second inequality follows from (3.4). Equality between L(#) and L()
holds only if § = §, since, for any two positive definite matrices ¥ and W, V > W
and det V' = det W implies V = W.

We observe that since S is compact, and since an analytical manifold is by
definition second countable, the set S is sequentially compact. Now consider the
sequence of m.l estimates {#"; N € Z,} calculated along the given sample
{yvi N €Z,}. Let 6* be a limit point of this sequence in the sequentially

compact set S and let {0”; M=i,i,---,i- - CZ,} be a subsequence such
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that ™ — 6* as M — co. By the minimizing property of §¥
L,0)>L,(0") forall M€ Z,,

where L,,(0) denotes Ly(yo, * * -, ¥ps; 0). Further, by Lemma 3, for every ¢ > 0,
and for some fixed y in ¥, there exists N,, depending on y but not on §%, such that

L, (0™) > L(6™)—¢ forall M >N,
The two inequalities above immediately yield
Ly (6) > L(8M) — &,
for all M > N,. Hence, using (3.5), we obtain
(3.6) L(6*) > L(6) = lim,,_, Ly (6 ) > lim,,_, ;L(8™) — ¢
= L(0*) — ¢,

for all ¢ > 0. It follows that L(f) = L(#*) and so * = §. Consequently the
sequence {#V; N € Z,} converges to 6 for all y € Y. This proves the strong

consistency of the sequence of the m.l. estimators {#§V; N € Z,} and concludes
the proof of the theorem.

APPENDIX
LemMA 1. (1) There exist n + 1(p X p) matrices By@#), - - -, B,(8) and two
positive numbers K and a, 0 < a < 1, such that, for all § € S,
(A.L1) 1B, () = B(8)|| < Ka",
i=0---,n, teZzZ,.

In other words, the matrices B, ,_ () generated by the algorithm (2.4)—(2.6) converge
geometrically as t — oo and uniformly with respect to § € S.

(2) All the roots of the det E(z) lie outside the closed unit disk when E(z) = EO +
Biz+ -+ +B,z"

ProOF. (1) We begin by demonstrating that the output of the scheme (2.8)
asymptotically approaches the output of the scheme (3.3). This enables us to show
that || B, (0) — EO(B)H < Ka', t € Z_, and then, further, to establish (Al.1) for
i=1,---,n. The second part of the lemma is proven by giving representations of
the left-hand side of (1.1) in terms of (2.3) and (3.2), respectively.

For each # € S assume that the process y(#) is generated by (1.1) with the

matrices (4, -+, A,, By, - + -, B,) corresponding to 6. As in Section 2 we define
e(0) = y,(0) — E(y,(0)|y,—1(8), - - - ,»0(8)) = y(8) — y(0), t € Z,,
2,(0) = Ee,(8)e(9), teZ,,

where yo(f) = 0. Then for each § € S we may define an orthonormal process
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{w,1 € Z,} by
(Al.2) Yy =e+y =B w+J, teZz,,
since Eee’ = B, BT, t € Z,. Also, for y* denoting y*(0) = E(y,0)|y.8),
i <t— 1)t € Z, we have
(A1.3) Y. =¢ +yt te Z,
and we may define

S = Eee/, te Z.
However, inspection of (3.3) shows immediately that B,B] = =. Now the scheme
(3.3) generating y* may also be represented by

(A1.4) yr=2L T 1€ Z,
where the sequence {I',, € Z_ } is a function of 8. Since the zeros of det B(z) for

all § € S lie in a compact set which does not intersect the closed unit disk there
exist positive numbers K, and «, a < 1, independent of 8§ € S, such that

1Tl € Ko, tez,.

The space Y, ,_, is a subspace of Y__ ,_,. It follows that ¢ is orthogonal to
Y03 .1 and consequently the orthpgonal projections of the components of y; and
y onY, , _, are both equal to y, for 1 <i < p. Let us write

=6+ tez,,
where
y = 2ti::)rt—i—lyt’ tez,,
and
(AL.5) v, =2 Ty tez,.
Then
(AL.6) ¥ = Dlla < 1»* = &llg = 17lla teZ,,

when ||x||4 = (Ex Tx)%. (The situation in (Al.6) is made clear by drawing the
appropriate simple diagram; this shows y, is closer to y* than the point §' €
Yo, ,—, fori=1,---,p) By (Al.5) and the stationarity of y,

_ i | yoll &
Vel g < Klzi-l—oo"" ! I“yi”H = Kla__T)“'H, tez,.

Observe now that by (1.1) and (1.2), ||yl y = =2, trace ®,®7, and so ||yl is a
continuous function of § over S. Consequently, for some positive K, independent
of 6,

(ALT7) 17 lla < Kpa, t€Z,,

for all # € S. Finally, from B, ,w, — ¢ = y* — »,, (A1.6) and (A1.7) we conclude
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that
(AL.8) |B, W, — &ll g < Kya', teZ,.
But we have the identity
E(e, — B, ,w,)(g — B,’,w,)T =3 - B, ,B], — E(5, —y*)wB],
—EB, w(5, — "), 1€ Z,,
and so
trace(B, B, — =) < lle, = B, will% + 2115, = ylluleln 1 €2,
Clearly |le|lx < ||¥ollgs t € Z,. Hence, using (Al.6), (Al7), (Al.8) and the
boundedness of ||yl over S, we obtain .
trace(B, B, — 2) < K;a%, tez,,

1

for some positive number K. Now for any matrix 4, (trace 44 7)2 is a norm on 4.
But all norms on any given finite dimensional vector space are equivalent, hence
for some positive K,

”Bt, tBt,Tt - 2 < K4a2', te’z,,
where

2. 2
IXI1° = 21 <i < pXis for X = (Xij)’

Next, let B, = B,, the unique upper triangular factor of = with positive elements
on the diagonal. Now the computation of such a (Cholesky) factor yields a
continuous function of the elements of =; and the same is true of the Cholesky
factor B, , of B, ,B], = Z,. Hence

”Bt,t - Eo” < Ko, te’z,,
for some positive K and some new «, 0 < a < 1. But this is the claim in (Al.1) for
i=0.

To prove the first part of the lemma fori = 1, - - - , n we write ¢, = 5017,, te Z,
where the process # is orthonormal. Then from (A1.8) and the inequality above we
obtain
(A19) &, — wlla < Ksa, t€Z,,
for some positive constant K independent of § € S. However, from (1.1), (2.3)
and (Al.2):

(A1.10) o,=Bu,+Bu,_,+ -+ +Bu_,=B w + - +B ,_W_,

Since
o=y, +Ay, .+ FAy_, =+ Ce_+ - +Cg_,
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we may also express v, relative to the orthonormal process # which gives
(AL.11) v, = Byit, + Byig,_, + - - - +B,u,_,, tE€ Z,
where B, = Ev,ii,_;,, 0 < i < n.
Equating the expressions for v, from (A1.10) and (Al.11) yields
B,w,+---+B,,_, = Byit, + - - - +Bi,_,, t>n.

Now (2.5) shows that the B, ,_; are uniformly bounded fort € Z,, 0 <i < n, and
0 € S. Consequently, rearranging the equation above as

Bx, t(wt - ﬁt)

wt—n

+- - +Bl,1—n(wt—n - at—n) = (EO - Bz,z)'zt +--- + (En - Bt,t—n)ﬁt—n’

and using (A1.9) we obtain part (1) of the lemma.

(2) To prove part (2) it is convenient to use the infinite matrix R defined by
()
Unt1

v,
R =E )’njl ( sl o ‘)’oT)~

[ Yo ]

The initial (2np X 2np) block of R, is the matrix R given in (2.6) and the
remaining nonzero (p X p) matrix terms are given by (R,,), ; = R,_,forn>j—i
>0, and (R,),; = R”, for n >i —j > 0, where Ry, - - -, R, were defined in
Section 2. Since the process y is of full rank the matrix R, is positive definite, i.e.,
all its initial fp X fp sections are greater than kI, t € Z,, where I, , is the
identity matrix of the indicated size and k > 0.

Let B_, denote the unique upper triangular infinite matrix with positive elements
on the diagonal such that R = B_BZ. The positive definiteness of R implies
that the inverse of R, and, thus, of B exist as bounded operators; in particular
this means the rows of B ' are square summable.

Consider the dynamical system

(Al.12) w,+ B "(B,,_ W,_,+ -+ +B,,_,w_,) =B v, t>n,
obtained from (Al.10). The block elements { H; b j EZY of the block rows of
B! define the impulse response of (Al.12). Consequently, the solution to (Al.12)
is given by
(A1'13) W, = H,,,v, + Ht,t—lvt—] + .- +Ht,t—nvn + nt,n(wn—l’ R Wo)a

t 2n,
where 1, ,(w,_,, - * -, wp) is the homogeneous solution to (Al.12) which is also

given in terms of {H, ;;i,j € Z,}. The square summability of the rows of B’
then implies that ||n, ,(W,_, -+, wp)||z >0 as t — oo.
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From (Al.11) we get in the same manner

(AL.14) #,=Hy, + -+ +H_,v, +n,_,(th_p,- - -, itp), t>n,
where { Hy, H,, - - - } is the impulse response of the system
(AL.15) i, + By \(Byig,_, + - - - +B,i,_,) = By v, tEZ,.

We shall prove that this system is asymptotically stable.

Substituting for v, in terms of «, from (A1.10) in (Al.13) and (Al.14) yields -
(A1.16) we=M u+- - +M gy + T’t,n(wn—-l’ c ’WO)’ tez,,
i, = Nou, + -+ +Nug+ n,_,(h,_,- -+, i), tez,,

..j» Ni» i,j € Z . The components n, , and 7,_,, of
M,, and m,_,, respectively, are linear functions of w,_,, - - -, w, and

-, Uy, respectively. Consequently they belong to Y_. ,_;. Since
U, 15 Uy 4o+ * - are orthogonal to Y_ , it follows from (A1.9) and (A1.16) that

”M,n—lun—l + - +Mt,0u0 + T’t,n(wn—l’ ] Wo)
= (Nicpsrthoy + -+ +Notg + (8,3, - - -, )l g =0, as - o00.
But M, , »0and 7, , — 0 as t —» co for fixed k. Consequently,
INcnaitaor + + =+ Noug + m,_, (@, ""170)“11—’0 as 1 — oo.

It then follows from (Al.16) that {HO, H,, - - -} is square summmable. This
implies, in turn, that det(B, + B,z + - - -+ +B, z”) has all its roots outside the
closed unit disk and so the proof of Lemma 1 is complete.

for certain matrix coefficients M,

u"_l, . .

REMARK. Lemma 1 establishes that B(z) is asymptotically stable independent
of the stability of B(z). However, in this paper, we have assumed B(z) is asymptoti-
cally stable. Further, both 170 and B, are upper triangular with positive elements on
the diagonal. Hence B(z) and B(z) are identical to the unique stable factor of
B(z)B7(z™") subject to this constraint. It follows that B, = B;; 0 < i < n.

REMARK. For ARMA systems such as (1.1) the predictor (2.3)-(2.7) is equiv-
alent to the Kalman filter [9, 11] and its associated Riccati equation. Lemma 1
establishes results for ARMA systems which correspond to the known convergence
results for the Markov state prediction problem (see [23]). However, in Lemma 1
we establish the additional property that the convergence of the matrices appearing
in the predictor (2.3)—(2.7) is uniform over the set S. To our knowledge an
equivalent result has not so far been proved for the Riccati equation directly.

LEMMA 2. When e(9) is generated by (3.2) and 2(0) = By(6)BJ(9)

(A2.1) SV eT(0)=1(0)e,(8) —> EeT(0)="'(0)en(8) as. as N—ooo

uniformly in @ € S, where the expectation is taken with respect to the distribution
indexed by 8 € S.
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Proor. For each @ € S the indicated convergence results from the ergodic
theorem since the process &(f) is stationary and Gaussian and the covariance
sequence of ¢(f) is summable. Let

Wn(8) = 57 20=0t (0)=7'(8)e(8), n€Z,.

N+1

We shall demonstrate that {||0W), /36,8)||; N € Z,} is almost surely bounded
uniformly with respect to # € S and N € Z,. Then, by the mean value theorem
and the compactness of S, we obtain Lemma 2. (The interested reader is referred to
[3] for a detailed presentation of this latter step.).

Let 8, 1 <i < », denote a component of § € S in a given set of local coordi-
nates and write =7'() = I17(#)I1(9) where I17(9) is uniquely defined by being
upper triangular with positive elements on the diagonal. Then, for each i, 1 <i <
v,

PO 1 sr g0y T, LD
D) o)) A 10))o(0)

(A22)

+ (qT(O)IIT(O)II(0)aq5;?)-+ aqs;?)IIT(O)II(O)q(o)).

N+1

The process of derivatives {7,(6) = 9¢,(0)/98;; t € Z}, obtained by differentia-
tion of (3.2), is a stationary stochastic process because it satisfies

(A23) n+Cm + - +Cm_, =§ tE€ Z,
where ¢ is the stationary process,
aC aC, 04 aA,,
(A24) &= _W.le"'(o) - = 20, - &—a(0) + 01y1 1+ a_ayl—n’
te Z.

The derivatives {04;/90, 1 < j < n} exist and are continuous over S. Since
3G, /30, = d(BB, )/d6,, i < j < n, it is clear that {39C;/36,, 1 < j < n} also exist
and are continuous over S. We further note that since II() and 9I1(#)/d6, are
continuous jn § € S, the maximum and minimum eigenvalues of (I17(§)3I1(4) /36,
+ 0I17(#)/30.I1(9)) are bounded over S.

Observe that Ay(z) and B,(z) are asymptotically stable for all § € S, that the
roots of a polynomial are continuous functions of its coefficients, and that S is
compact. Consequently, from (3.2), it follows that for some p, > 1 and some
K, > 0 independent of 8

(A25) le (Ol < Ky ZiZopr l1ye—ill, tE€Z
Further, by (A2.3), (A2.4) and the continuity in § € S of

oG
ao’w’ SJsnp,



MLE’S FOR ARMA PROCESSES 311

we also have

(A2.6) Im(0)] < K225 117l
for some p, > 1 and some K, > 0 independent of 4.

The right-hand sides of (A2.5) and (A2.6) constitute bounding ergodic stochastic
processes, independent of §, and we obtain

AW, (8
I L e [y P

+ (Z20or 17— (E2 o005 15e-ill) ]

for some K; > 0. By the ergodic theorem the right-hand side of (A2.7) converges
a.s. to .

(A28)  KE[(Z2ooi Iy -ill)’ + (Z2opi 1y i) (S0 17 -il1) ]

if this quantity is finite. However it is straightforward to verify that (A2.8) is
bounded. As a result we obtain the desired almost sure uniform boundedness of
{|loWx(6)/06,; N € Z,}.

LEMMA 3. Assume the observed sample { y',; t € Z,} of the process y is gener-
ated by (1.1) with § = 8 and, as in Section 2, define
Ly -+ w3 0) = 37 Eeoflog det Z,(8) + 67(6)27'(0)e,(0)),
NeZz,,

where e(0) and 2,0) = B, (0)B(0), t € Z,, are computed via (2.3)-(2.7) for all
0 € S. Then

Ly(yo - - - »yn; 8) = L(0)
= log det 2(0) + Eel(6)=7'(0)ex(d) as. as N — oo,

uniformly in § € S, where the expectation is taken with respect to the distribution
indexed by 8 € S.

PrOOF. We let
(A3.1a) (A5v(0) - N:-l SV_(log det 3,(8) — log det z(o))), Nez,

and

1
N+1 2i-

(A3.1b) A%(9) = 2 o(e7(0)=7'(8)e8) — &T(6)=7'(8)e,(8)),

NeZz,.
Further, by writing =,(8) = =(8) + AZ,(0) = =(0)(I + =7 Y(9)AZ,9)),t € Z, we
have

AN (9) = ~ + IEI,V o log det(I + =71(9)AZ,(9)).
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By Lemma 1, ||=7'(9)AZ,(0)| — 0 uniformly and geometrically in § € S as
t — oo, and hence the product of the eigenvalues of I + =7'(8)AZ,(8) converges to
1 uniformly in # € S and geometrically in ¢ as t — oo. This implies that Ay () -0
as N — oo uniformly in § € S. We now consider Ay (). Let

(A32) 4(0) = e(0) — &(8) = yt*(o) — J(9), teZ,,
0.(8) ==7'(6) - =7'(9), tez,.
Recall that y(0) and y*(#) are computed using (2.8) and (3.3), respectively, for all
0 € S, but the input process y for these schemes is generated by (1.1) with § = 6.
Using (A3.2) Ay(0) may be written as
(A3.3)
” 1 —_— p—
AN(a) = TVTI_27=O(8:T(0)Q181(0) + z‘itT(a)zt 1(0)81(0) - dtr(a)zt ‘(0)d,(0)),
Nez,.
By Lemma 1, ||Q,(6)|| — O geometrically as ¢t — oo, uniformly in § € S, and by the
ergodic theorem
1
N+1

Moreover, by (3.2) Ee/(8)ey(#) is uniformly bounded with respect to § € S.
Hence, the first sum in (A3.3) converges to zero a.s. uniformly in § € S. Since by
Lemma 1 = '(8) < K, I, for some positive K;, we see that the absolute value of the
second sum in (A3.3) is majorized by

1
N+1
and the third sum by

SN e7(0)e,(0) — EeT(0)e(8) as. as N — co.

SN d7(6) d,(0))5( ~ L ] 21,V=o¢ﬂt,T(l9)e,(6’))E

2K,(

K
S, dT(0) 4(0).

Consequently, to prove the second and third sums in (A3.3) converge to zero it is
sufficient to prove that

(A3.4) ]—V%EI,V,O dr(0)d(8) -0 as. as N — oo,
uniformly in € S.
Manipulating equations (2.8) and (A3.2) yields:
(A3~5) dt(o) + Cl,l—ldt—l(a) +---+ Cl,t—ndt—n(g)
= (Cl - Ct,t—l)et—l(e) +--- + (Cn - Ct,t-—n)et—n(a)’
t 2 n,

where, for each § € S, the initial conditions g,(), - - - , &,_,(#) are given by (2.7)
and we recall that the matrix coefficients in (A3.5) are functions of 6.
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The solution to the scheme (A3.5) is given by:
dt(o) = 2,;:(I'JQt‘, iei(o) + 2’:-_(}\1,1 i 1(0) t > n,
where the second term is the homogeneous solution. By Lemma 1, for some K > 0
and some a, 0<a <1, |G =G, )| <Ka’,j=0,---,n and the limits C

define a stable system. It follows by standard stability analysis [10] that the system
(A3.5) is uniformly asymptotically stable. Moreover, if 1/a’ is the modulus of the

smallest of the roots of det(f + C;z + - - - + C,z"), then for some new a, 0 < o’
<a<l,
(A3.6) ¥, .l < Kya'~/, D, Il < Kza'™, t>i>0,

for some positive constants K,, K;.
Next, by Writing w(8) = 2725Y, ; ,(0) t € Z,, we calculate:

(A37) s T dT(0)d(60) = g ZholT(O)e(0)
+ 20,7(8)S'240, ,£(6)

+2,x‘_/ o€ T(o)‘I’ tj 1(0))
The first sum in (A3.7) is bounded by:

N

2

K;
s 127 0 (0)0,(8) < 57 T 0@ MZ1710|dT(8) 4 (0))

so that this term converges to zero a.s. as N — co. Moreover, since K,, K, and «
may be chosen so that (A3.6) holds uniformly in § € S, and, by (A3.2), the finite
sequence {4;(#),0 <i <n — 1} is uniformly bounded in § € S, the a.s. conver-
gence is uniform in § € S. For the second sum in (A3.7) it may be verified that

A (S5l (0)d )

(A3.8) zltv olw,TEj (]')‘I’t i€ (0)| <

N +1
x (22t 3 e 0))

for some K, > 0. Recall that the process e(d) is ergodic. Hence, 1/:3'Z)||¢,(8)||
converges a.s. as ¢t — oo. The convergence, moreover, as in Lemma 2, is uniform in
0 € S. Hence, for each sample of the process y, in a set with probability 1, the
sums 1/¢3:Z)||(0)||, ¢ € Z,, are bounded uniformly in ¢ and € S. This with
(A3.8) implies that the second sum in (A3.7) converges to zero a.s., uniformly in
0 €sS.

For the last term in (A3.7) we have, with (A3.6),

1
N+1

t-Ozttjl Ols T(o)(ptTt‘I’tj j(o)l
2
3

N +1

< 7-ofza2’—2§,j=oll€i(0)ll (&),
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which, by the same arguments as in the preceding case, is seen to converge to zero
a.s. as N — oo, uniformly in § € S. Consequently, we have proved (A3.4). It then
follows that A(8) — 0 a.s. uniformly in § € S, and with Lemma 2 and (A3.1) we
conclude that Lemma 3 holds.
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