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FURTHER REMARKS ON ROBUST ESTIMATION IN DEPENDENT
SITUATIONS!

By STEPHEN L. PORTNOY
University of llinois at Urbana-Champaign

Results of an earlier paper giving first order optimal robust M-estimators
of a location parameter in certain dependent situations are extended to the case
where the dependency can be modeled by a symmetric form of a (2k + 1)st
order moving average scheme. It is also shown that the results can not be
extended to finding second order optimal M-estimators. That is, no M-estima-
tors can be optimal to the second order unless they explicitly adapt themselves
to the assumed model for dependency.

1. Extensions of earlier results. In [2] the author assumed a special form of a
symmetric third order moving average scheme for errors of measurement, and
expanded the asymptotic variance of estimators in powers of p (the coefficient in
the moving average scheme). The first order terms of this expansion were then used
to find first order optimal M-estimators, and various estimators were compared in
terms of maximum asymptotic variance over the class of e-contaminated normals
under the moving average model. These results can be directly extended to the
following generalization of the moving average model: let S be an n X n symmetric

circulant matrix with first row (lejo, -+ - 0 - - - Oap - - - a;) where
(ay, + -+, ;) are such that S is invertible. Let e = (1 1- - - 1)’ and assume that
the observation vector X = (X, - - - , X,,) satisfies

(1.1) X = fe + SY

where # is an unknown location parameter and Y = (Y,,---,Y,) with

(Y,,* -+, 7, iid. with continuous symmetric cdf G. This is essentially a (2k +
)st order moving average scheme with the first k£ and last k observations modified.
As in [2], if a; are known, dS™'X = fe + dY where d = 1 + 2, and

(1.2) B =3

(since Se = de); and Theorem 1.1 of [2] gives the result that, for any location

invariant asymptotically normal sequence of estimators of #, the asymptotic vari-

ance is bounded below by d%s3 where o2 is the inverse Fisher information for G.
Now as in [2], suppose a sequence of estimators, §,, is given by d, = T(F,) +

o,(n” %) where F, is the empirical cdf and T is a functional on the space of all cdfs

with influence curve I-(x) (an odd function of x). Further, suppose

n3(T(F,) — T(F)) »p9(0, 6?)
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ROBUST ESTIMATION 225

where
(1.3) o? = EIXX) + 232, EI(X) I (X))

and F is the marginal distribution of X;. The following generalization of Theorem
(2.1) of [2] can now be stated:

THEOREM 1.1. Under model (1.1) above, assume F and T are such that
[1p(x)| < C and |Ip(x) — Is(x)|| < G||F — G||

where || - || denotes the “sup” norm, and assume further that EY? < C;, and G has a
characteristic function ¢ (u) such that [u?|py(u)|du < + . Then with o* given by
(1.3) and B by (1.2),
(1.4) o = EIX(Y) — 4BEYI,(Y)[I5(x)g' (x)dx + O(B,)
where g is the density for G and B, = =*_ a2
Proor. Following the proof of Theorem 2.1 of [2], the joint characteristic

functions and densities of the pairs (X;, X;) can be expanded to obtain

EIXX) = EINY) + 0(B,)

EI(X\)I(X;) = =20, EYI(Y)[Is(x)g'(x)dx + O(B,)

fori=2,3,---,k,
EI(X)I(X,)=0(B) fori=k+1,---,2k +1,
El.(X)I(X;) =0 fori > 2k + 1.

Furthermore, as in [2], ||F — G|| = O(,), and the result follows. []

Furthermore, the following results (equations (2.8) and (2.11) in [2]) also gener-
alize:

(i) If (1.4) holds and I;(x) is absolutely continuous,
(1.5) o’ = EIZ(Y) + 4BEYI;(Y)EIL(Y) + O(B,).

(ii) If an M-estimator has kernel, y, (assumed to be an odd function) which is
bounded and absolutely continuous with ¢’ bounded, then

(16) o’ = By (Y)/ (BY(Y))" + 4BEYY(Y)/EY/(Y) + O(By).
Lastly the optimality theorem (3.1) of [2] also generalizes to model (1.1), and the
M-estimator (equation 3.11) presented in [2] is still optimal to order O (3,).

REMARK. The results of this section can be extended to the more usual moving
average model where the matrix S in (1.1) is replaced by S, a symmetric band
matrix with diagonal and superdiagonal elements (laja, - + + ,00 - - - 0). In fact,
under model (1.1) the marginal joint distribution of (Xj.;, Xzip « © - X,_z) is
given by the usual moving average model. Thus, the following lemma shows that
the asymptotic distribution of M-estimators is the same under both models.
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LEMMA 1.2. Let  be the kernel of an M-estimator and suppose  satisfies the
hypotheses of Theorem (A.4) of [2]. Let 6, and 6, be roots respectively of

(X, —6)=0 and ZiZF, (X, -46,)=0.

For definiteness, choose the root nearest a consistent estimator (say the median) if
there is more than one root; and define 8, or 0, to be zero if there is no root. Then

@, - 8, =0,1/n).

Proor. From Theorem (A.4) of [2] (see equation (A.1)), for any ¢ > O there is a
continuously differentiable approximation v to y such that ||Jy — Y| <eand

<. la, - .
0n - 0n = - ;2i=1¢(Xi 0n)/‘Bn(€)
where B,(e) —»pb > 0 uniformly in e. Thus, if e = 1/n, B,(1/n) —pb. But

1 ~ 5 1 N
|1 (X, — ) < e+ |2 (X, - 4|

1 1 ‘
<Ll s )0 - gyt e - )

<1l + 2k sup |y(x)| ,

n n

and the result follows. []

Thus, Theorem 1.1 and the other extensions presented earlier hold under model
(1.1) and under the usual moving average model. However, the optimality result of
[2] does not directly extend since the lower bound (d%s3) for the asymptotic
variance of any sequence of estimators (given by Theorem 1.1 of [2]) requires that
S be a circulant matrix. Thus, to extend the optimality result, either the result of
Stone [3] used in Theorem 1.1 of [2] would have to be extended, or the class of
estimators would have to be restricted to those for which appropriate asymptotic
normality could be proven. It should be noted that Koul [1] has obtained such
results for a wide variety of M-, L-, and R-estimators under strong mixing
conditions (and, thus, under the moving average model).

2. Impossibility of finding second order optimal estimators. Since higher order
expansions from the asymptotic variance are given in [2] (Theorem 5.1), one might
hope to find higher order corrections to the first order optimal M-estimator derived
there. In particular, one might hope to find an M-estimator which is optimal to
order #(p?) as in Theorem 3.1 of [2] (where k = 1 and p = «,). The following result
shows that this hope is illusory, and that higher order optimality would require
estimators which explicitly adapt themselves to the assumed model for dependence.
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In particular, consider the class of e-contaminated normal distributions. Let g, be
the density of Huber’s least favorable distribution, G, which may be specified by
defining

W) =~ loggl)=x <k
' =ksgnx |x|>k
where k = k() satisfies equation (3.9) of [2]. We will first extend the expansion of
Theorem 5.1 of [2] to include g, (for which the conditions of Theorem 5.1 do not
hold); and then show that under G, essentially no collection of M-estimators can
have asymptotic variance achieving the lower bound given by Theorem 1.1 of [2] to
order O(p?) (for p small). Note that since any influence curve can be used to define
an M-estimator, the result of Theorem 2.2 directly extends to any collection of
estimators whose influence curves satisfy the conditions of Lemma 2.1 below and
whose asymptotic variance can be expanded to order p? as in Theorem 5.1 [2].

LEMMA 2.1. Let  be an odd function satisfying the hypotheses of Theorem A.4 of
[2]. Assume model (1.1) holds with k = 1, a; = p and G = Gy; and let V({) denote
the asymptotic variance of the M-estimator with kernel  given by Theorem A.4 of [2].
Then, there is a constant b > 0 depending only on G, such that, with Y ~ G,

Q1) V) =hL@) + PEY () + b{1 + EQY) + ¢'(Y))}+(0?)

__BAY) |, EYU(Y)
2) )= s e

J$?(x)gg (x)dx 5 EY(Y) [y (x)gg (x)dx
(Ey(Y))* (BY(Y))
and where o(p?) is completely independent of .

23 AW =2+

PrROOF. From Theorem A.4 of [2],

(24) V() = (BYA(X)) + 2E9(X,)¥(X,) + 2EW(X,)¥(X3))/ (B (X))

where X; are defined by (1.1). Consider the term Ey(X)y(X,). Transforming from
(Yo Yy, Y, Y3) to (Yo, Xy, X, Y;) we find

(2.5) (o> X1 X2 ¥3) = 8o(¥o)&olx; + 81)80(x; + 8,)80(13) (1 - Pz)_l

where

=2 [0%(x; + 53) = p(x; + ¥) ]

1
8, = o2 [0%(x; + yo) — p(x, + y3)]-
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Since gj is absolutely continuous, we have the Taylor expansion (with integral
remainder):

’ 1 "
(2.6) go(x; + 6,) = go(x)) + 8, 80(x)) + 531230()‘1) + ¢,(p)
where
" l ”
ep) = §:+81(x1 + 8, — u)gg(u)du — fslzgo(xl)'

Since gg(x,) is continuous except at =+ k, it is easy to see that as p — 0, e;(p)/ p?—
0 almost everywhere in (yg, x;, X5, ;). To apply the dominated convergence
theorem e,(p)/p? is bounded as follows: let 4 = | Y| + |X;| + |X,| + | Y|, and let
b denote a generic constant. Note that .

2.7) | go(x)| < kgo(x) |85 (x)| < (1 + k?)go(x)-
Also, if p <3 (say), |8,|/p < bA. Thus, for % between x,; and x, + 6,
)
(9) @/0? < 6175 gy + b,
8o(X) }
< bA%gy(x){1 +
gO( 1){ gO(xl)

= bA%gy(x)){1 + D) ~hx}
< bA%gy(x,)(1 + eXI%l)
< bA%go(x1)(1 + )

where /y(x) = log gy(x) and the fact that |/j(x)| < k has been used. (Note that the
bound in (2.8) is integrable with respect to go(¥o)8o(X2)80(V3)dodx dx,dys for p
small enough.)

Now expanding go(x, + 8,) as in (2.6) (with error term e,(p)) and using (2.5),
EY(X))¥(X,) can be expanded as a polynomial in p of 4th degree plus integrals of
error terms of the following form:

D= ffffl4/()‘1)4/(3‘2)‘31(P)go(J’o)(%/ﬂ)gg)(xz)go()’3)|dyodx1dx2dy3-
Using (2.7) and Cauchy-Schwarz

2

2
|D| < bE‘[/z( Y)P2 { ffffi:TJ elz(p)go(yo)go(xz)go(y3)a§)0dx1dx2aj)3 }

< b(1 + BYX(Y))e(p?)
where the last inequality follows using the dominated convergence theorem and
(2.8) (for p small enough). Terms of the expansion of Ey(X;)¥(X,) in p> and o*
similarly lead to error terms with the same bound as for D. Thus, calculating the
other terms of the expansion (as in Theorem 5.1 of [2]) gives

EY(X)¥(X,) = 20EYY(Y) - BY/(Y) + b(1 + BY*(Y))o(p?).
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In a similar manner,
EY(X)) = BY(Y) + p’EY?[y?(x)gg (x)dx + b(1 + EY*(Y))o(p?)
EY(X,) = EY(Y) + p’EY?[Y/(x)g5 (x)dx + b(1 + EY(Y))o(p?)
EY(X\)¥(X;) = p’EYX(EY/(Y))* + b(1 + EY(Y))e(p?).
The lemma follows using (2.4). [

THEOREM 2.1. Let (y,:p >0} be a collection of odd, bounded, absolutely
continuous functions with EY,(Y) > 0 (where Y ~ G,) and such that for some B > 0

(2.9) E{(X(Y)+ ¢y Y)} <B  forall p.

Let v(p) = V(y,) denote the asymptotic variance of the M-estimator corresponding
to y, under model (1.1) with k = 1, ay = p, and G = Gy; and let vy = v(0) denote the
inverse Fisher information for G, Then there is b > 0 and py, > 0 such that for
0<p<p

(2.10) o(p) — (1 + 2p)*v, > bp?.

Note that from Theorem 1.1 of [2], (1 + 2p)®, is the smallest possible asymptotic
variance for any sequence of invariant estimiators; and this bound may be achieved
by applying the M-estimator for yj to the coordinates of S™'X (with S as in (1.1)).

Proor. The proof is divided into three parts. Let Y ~ G, throughout.

(i) Claim: if (2.10) does not hold, there is a subsequence {p,} of values of p
tending to zero such that as n — oo

2.11) p—‘z(o(pn) — (1 +20,'00) >0

n

and, with £,(y) given by (2.3),

(2.12) fz(t,bp") —>c > 4.

To prove (2.12), without loss of generality, let ¢, and y,, be normalized so that
Ey(Y) = Ey(Y) = 1. Given y,, define ¢, and &, so that ¢ (x) = yy(x) + ,h,(x),
where A, is normalized so that Er%(Y) = 1.

From Lemma 2.1 (and the normalization of ¢/, and yy),
(2.13) v(p) = EY;(Y) + 0(p)
- E(o(Y) + 1,,(Y)) + 0(p)
vo + 21, Eo(Y)h,(Y) + t2ERX(Y) + O(p).
Since y(x) is proportional to — gg(x)/go(x),
Eyo(Y)hy(Y) « [hy(x)go(x)dx = — [h(x)ge(x)dx
= ~EZ () = %()) =0
Therefore, v(p) = vy + 2 + O(p).
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Hence, if (2.10) does not hold, there is a subsequence p, — 0 such that (2.11)
holds and ¢, — 0. Furthermore, from (2.13)

Ey; (Y) — Eg(Y).

To prove convergence of f,(y,) (see (2.3)) it remains to consider [y,(x)gg(x)dx
and [Y2(x)gg(x)dx. For the latter, from (2.7), [yA(x)gg(x)| < (1 + k2)x,b2(x)g0(x)
and the extended dominated convergence theorem shows that [ x,b  (X)go (x)dx —
JYa(x)gg(x)dx. Using integration by parts,

J¥p(x)gs (x)dx = 24, (k)gg (k™) — 2/a,(x)gq (x)dx
—2y,(k)gg (k™) — 2/, (x)gg (x)dx.
Since ¢, — 0, ¥, (k) > Y(k); and since |,(x)gg (%) < (k + K31 + ¢2(x))g0(x),
the integrals converge by the extended dominated convergence theorem. Therefore,
if (2.10) does not hold, f,(y, ) — f,(¥). Direct calculation shows that (under the
normalization EYy(Y) = 1),
Ey(Y)=1/D  [Yy(x)g5(x)dx = —2(1 — e)ke(k)/ D

J¥5(x)g5 (x)dx = 2(1 — €)[2@(k) — 1 — 2k¢(k)]/D?
where D = (1 — &) 2®(k) — 1). Computing (2.3), /,(¥p) =2 +2/D > 4, and the
claim follows.

(i) We now show that f,()) > vy(1 + 2p)*> — 4p?EY? for any ¢. To do this,
minimize f,(y) (2.2) over y subject to Ey'(Y) = 1. By the Lagrange multiplier
method it suffices to assume Ey’(Y) = 1 and minimize

fW) = BYA(Y) + 4pEYY(Y) + My(x)go(x)dx.
Since f is convex, standard variational techniques (setting directional derivatives to
zero) show that the minimizing * satisfies

1, ,
Y*(x) = - E)\go(x)/go(x) — 2px.
From the condition,
L= By(Y) = — pAE log £(Y) = 2p = 20 /05

Hence, 3A = vy(1 + 2p) and Y*(x) = — vo(l + 2p) (d/dx) log go(x) — 2px (which
agrees with the result in [2]). Direct calculation now shows that f,(¥*) = vy(1 +
2p)* — 4p?EY?, and part (ii) follows.

(iii) From part (i), if (2.10) does not hold there is p, — 0 such that (2.11) holds,
£H{,)— ¢ >4, and (from (2.9)) the error term in v(p,) as given by (2.1) is 2(p?).
Comblmng this with part (ii), as p, — 0,

llm—(u(p,,) — (1 + 20,)0y) = 11m ( fi(¥,) — (1 + 2p,)’vo) + cEY?
p

—4EY2 + cEY?>0
(since ¢ > 4). This contradicts (2.11) and thus establishes the theorem. []
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