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ROBUSTNESS OF DESIGN AGAINST AUTOCORRELATION IN
TIME I: ASYMPTOTIC THEORY, OPTIMALITY FOR LOCATION
AND LINEAR REGRESSION

By P. J. BICKEL! AND AGNES M. HERZBERG

University of California, Berkeley and
Imperial College, London

A new asymptotic theory for studying the effect of dependence of the
observations in experimental design for the linear model is developed. The
uniform design is shown to be asymptotically optimal in a strong sense for
estimating location and in a weaker sense for estimating the slope of a straight
line regression. Numerical results supporting the asymptotlcs appear in a
companion paper.

1. Introduction. Suppose observations can be taken on a variable y at N time

points, — T < ¢; < - - - < ty < T. Suppose also that an observation at time 7 can
be written

(L.1) Y(1) = Bifi(r) + - - - +BA(0) + &(0),

where the fi(¢) are known functions, the f; are unknown parameters G=1,...,p)

and &(¢) is a random error with ‘centre’ 0. Much attention has been paid to the
problem of selecting the ¢, i.e., designing the experiment, in order to minimize
some measure of the variability of the estimates of the f;. If the errors correspond-
ing to different observations are assumed to be independent and identically
distributed as N(0, 02), the problem becomes a special case of the general theory of
optimal design developed by Kiefer and others; see, for example, Kiefer (1974). It
has, however, been known for some time that the solutions obtained in this way are
sensitive to departures from the assumed linear form of the mean response (Huber,
1975) and the assumed independence of the errors. Here the latter issue will be
pursued, namely robustness against dependence of the errors.

Suppose that the observations Y (#) or the corresponding errors g(f) (i =

1,..., N) have a joint normal distribution with
(12) E{&()} =0,
(1.3) Var(e()} = o*
(14 corr{ Y(1,), Y()} = ve(t; = 1)) i#J,

where 0 < y < 1 and p(-) is the correlation function of a nondegenerate stationary
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process, i.e., p(*) is a positive definite function which is symmetric and p(0) = 1.
This model can be motivated as follows.

If &,(s) and &,(z) are the errors of two observations taken at times s and ¢, then

(1.5) g(s) = €(s) + ¢,

et) = £(0) + ¢,
where ¢'(+) is a stationary Gaussian process with mean 0, correlation function p and
variance yo? while the ¢’ are independent N {0, (1 — y)o*} variables. Note that
even if s = ¢ our observations need not be identical. Such a model naturally
suggests itself in various situations.

An important class of examples pointed out by Morrison (1970) includes
repeated measurements of a biological variable on single individuals. Another
important class includes the situation in which the same observer makes repeated
measurements. The evidence for dependence in such cases is very strong; see, for
example, Pearson’s data as discussed in Jeffreys (1939). Other related work is that
of Hoel (1958), Bloomfield and Watson (1975) and Knott (1975).

If the form of (1.4) is assumed known, the design problem becomes one of
minimizing some measure of the size of the variance covariance matrix X of the

best linear unbiased estimators of B, . . ., §8,, where X is given by

(1.6) == (FTU'F)~L

Further

(1.7) FT = {f(1)} i=1...,p,j=1...,N
is a p X N matrix and

(1.8) U= {vp(t; = 2) + (1 = )8} ihj=1...,N

is an N X N matrix.

The dependence of U on the values of # makes explicit solutions to the design
problem difficult to obtain even in the simplest cases. By keeping T fixed and
letting N — oo, Sacks and Ylvisaker (1966, 1968) were able to develop an asymp-
totic theory for (1.1) and other models. Unfortunately their theory yields explicit
solutions only in a few special cases; moreover, the solutions seem to depend
strongly on the assumed form of dependence.

Here interest will be in situations where the dependence of the observations is
not known too precisely and at least initially is assumed to be negligible. This leads
to a consideration of a different type of asymptotics in which one not only lets
N — oo but also permits p to depend on N and “be close” to the correlation
function for independent errors if N is large. Specifically it is assumed that for N
observations, the correlation function is given by

(1.9) pn(t) = Pl(Nt)’

where, at the very least, p,(f) >0 as t - .
Such asymptotics can be justified on two grounds.
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(i) The variance-covariance matrices of the least squares estimates and a fortiori
the best linear unbiased estimators are of the order of 1/N as in the case of
independence rather than 0(1) as in the Sacks-Ylvisaker theory. Thus the indepen-
dence and dependence situations are comparable and permit one to think in the
usual robustness terms of sacrificing some efficiency of design in the independence
situation in exchange for a great gain in efficiency in the dependence situation.

(ii) If the f are powers, asymptotic results for varying p as in (1.9) can be
translated into asymptotic results for p = p, and varying T = T, = NT. This
seems reasonable since, typically, as the number of observations that can be taken
is increased the interval of time during which observations can be taken increases
also; see Comment 3 following Theorem 2.1.

The initial assumption that p is negligible suggests that instead of considering the
best linear unbiased estimators, designs should be found for which the least squares
estimates perform well. That is, we should consider the asymptotic theory of the
variance-covariance matrix of the least squares estimates, ozi, where

(1.10) $ = (F'F)” '(FTUF)(FTF) .
The limiting behavior of £ for smooth deéigns is given in Section 2. In the

remainder of the paper, attention is restricted to the simplest cases of model (1.1),
i.e., estimation of location and regression through the origin,

r=1
and
fl(t) =1,
H(@) =1,

and simple linear regression.
In Section 3, the formulae derived in Section 2 are used to solve the asymptotic
versions of the optimality problem, namely

0: Minimize N over designs (¢, . . ., ty);
and a generalization appropriate to a robust formulation,
0’ : Minimize N over designs (¢,, . . . , ty)
subject to N(FTF)~! < AT A>1.

The version 0’ formalizes the idea that a reasonable but suboptimal performance
should be required if p = 0 and subject to that requirement one should try to do as
well as possible in the presence of dependence.

The solutions obtained in Section 3 are not completely explicit and depend on
the form of p and on y. In Section 4 a further asymptotic analysis is given which to
some extent reverses the asymptotics of previous sections by letting 77— 0. The
pleasing result is obtained that the classical equispaced design ¢, = {2(i — 1)/(N —
1) - 1}T(@ = 1,..., N)is asymptotically a solution to 0, and to 0" if A > 3, under
weak conditions on p and y.
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In a companion paper, Bickel, Herzberg and Schilling (1977), some exact
calculations are given for p(f) = e~ which enable one to judge the adequacy of
the asymptotics.

2. Asymptotic theory. Consider sequences of designs

{th<"'<tNN} N>1

defined by a continuous nondecreasing function
a:[0,1] [T, T]
through
i—1 .

(2.1) th—a(N_l) . l—l,...,N.
Clearly, any design can be embedded in such a sequence and any such sequence
determines a(+) uniquely. There is usually a ‘natural’ choice of a(+). Thus, the
equispaced design corresponds to a(¢) = (2¢ — 1)T; the design having all observa-
tions at 7 has a = T. There is a simple correspondence between this notion and the
more usual design measures. If £, denotes the design measure of the Nth design,
then the &, tend weakly to & where a() is the inverse of the distribution function
of & ie.,
(22) £A) =A{t:a(r) € 4},
where A() is the Lebesgue measure on [0, 1].

The following regularity conditions for the validity of our asymptotic formulae
are required. For convenience from now on we write p for p,.

A. Conditions on a(t). The function a(z) is twice differentiable on (0, 1) and there
exists a value M < oo such that
(2.3) M~ '<a(t) < M,
(24) la”(2)] < M.

R. Conditions on p(t). (i) The function p() is differentiable on (0, oo) and there
exists M < oo such that

(25) lo'()] < M.
(ii) Moreover, p'(?) < 0 for ¢ sufficiently large and
(2.6) [T le(s)]ds < oo.

Note that (ii) implies that p(¢) is nonnegative for ¢ sufficiently large.

F. Conditions on f,(t). The functions f,(f) obey a first order Lipschitz condition,

2.7) |£() = fil(s)] < Mt — 5|
forall s, t(k = 1, ..., p). Without loss of generality suppose also
(28) LA < M

for all k.
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Note that (ii) guarantees that the function Q given by
(2.9) (1) = Z7Z,p(J1)

is well defined and finite for all # > 0. Here is the key result.
LEMMA 2.1.  Suppose a(*), f,(*) and p(*) satisfy (2.3)—(2.8). Then
(2.10) lzx;ejﬁc( IAC N)P{N(th - tiN)}

= 2/sfi{a(D} fi{a()}Q{a'(r)}dt + o(1)
provided that the first term on the right-hand side of (2.10) is finite.

PROOF. Write
(2.11) N_lzi;ejﬁc(tw)ﬁ(tjw)P{N(l}N - tiN)}
= Z[N_lzi'v—lf}c( N)fl(th) 1+1p{N(tJN IN)}
+NTIEN St :+1{f1( w) — i iN)}p{N(th - ’iN)}]-
Let ry — oo0. Then, from (2.8),
(212) IE/>1+rN{fI( N) f}( N)}p{N(lij 1N)}|
< MT2j>i+rN|p|{N(th - tiN)}'
Since p is eventually nonincreasing and (2.3) holds, the right-hand side of (2.12) is
O[zj‘>i+er{M—l(j - ’)}]
But
Sion0(M ) = o(1)
by the convergence in (2.9). Similarly
(2.13) PRYAC N)fl(tiN)zj>i+er{N(th - tiN)} = o(1).
Write N, for N — 1, iy for (i — 1)/(N — 1).
On the other hand, by (2.4) and (2.5),

(2.14) p{N(tw — 1)} = p{a’(iN)(j -+ 49(1’}\7l i) ]

)y
=pwvmo—0}+wﬂjﬁl,

where |0| <3 M and |§'| <3 M2
From (2.7) and (2.8),

(2 15) IN ]21=1 k( :+1{f1( N) _fl(tuv)}P{N(th - tiN)}l

< Mzmax Elu:+](th lN)lp{ - IN)}I
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But
M, . .
Ly — tiy S FI(J — i)
and by (2.14) the right-hand side of (2.15) is bounded by

(216)  MPmax[ N7 'St — (@) — D) + N 7285t = i)’]

The first term in (2.16) is O(ry/N) in view of (2.3) and (2 6) while the second term
is 0(r%/N?).
Similarly, from (2.14),

(217) N7'ZX £ N)f/(tiN)E'+z+1P{N(1jN - tiN)}

= NS A ()G = ) + o E)

= N2 L) @ {a'(iy) } + 0[ = ’N+'|p{a (IN)J}I] * 0( rN)

If we let ry — o0, so that ry = o(N 3), we can conclude from (2.10), (2.12), (2.13),
(2.16) and (2.17) that

(2-18)N—lzi;ejﬁc(tiN)ﬁ(E‘N)P{N(th - tiN)}
= 2N 'E A6 () @ (@' (in) )
= 2o (D Q{d (1) }dt + o(1)

and the result follows.
The main result of the section follows as an immediate consequence of the
lemma.

THEOREM 2.1.  Suppose a(*), the f,(+) and p(*) satisfy (2.3)—(2.8) and the f,(+) are
not linearly related on a set of positive Lebesgue measure. Suppose also that the
elements of the p X p matrix R(a) exist and are finite, where

R(a) = {[of{a}f{a)Q{a(D}at}  ij=1...,p.
Then the matrix £ given by (1.10) is well defined for N sufficiently large and

(2.19) NE 5 U(a) = W (@) {1 + 2yR(@)W™ Y (a)},
where
(2.20) W(a) =[5 /{a(0)} f{a(z)}dt] hj=1,...,p

and 1 is the p X p identity matrix.

ProOOF. Write

(2-21) FTUF = [Yziséjf}c(tiN)fI(IjN)p{N(th .N)} + 21:1 k( N)fl(tiN)]

k,l=1,...,p
and apply Lemma 2.1 and standard limiting arguments.



ROBUSTNESS OF DESIGN I 83

CoMMENTS. 1. The conditions on a(+) imply that ¢ defined by (2.2) is absolutely
contifivous with continuous density £. We can express W and R and hence U in
terms of £ simply by

(2.22) W(a) = {J e (Df(DdE()) ki=1,....p,
(2.23) R(a) = [ffrfk(t)f/(t)Q [ 5 }dsm] ki=1,....p.

2. If R is not well defined, but the other conditions of the theorem are satisfied
NE may not converge. We do not know what happens if a(+) does not satisfy
conditions (2.3) and (2.4). The expression (2.19) for R(a) can still make sense if we
interpret a’(+) as the a.e. well-defined derivative of the continuous nondecreasing
function a(+) and Q(0) = oo. In some cases it is possible to check that U(a) is still
the limit of N3. For instance, if p = 1 and f,(¢) = ¢, R(a) = oo if a(*) is constant
and nonzero on an interval. If p > 0, it is easy to see that for such a(+), N g — 0.
An example of such an a(+) is the optimal design for linear regression through the
origin when the errors are independent.

3. Suppose that instead of letting p(+) vary with N we fix p(+) but permit
observations to be taken on the interval [— TN, NT] at design points Na(iy)

(i= }, ..., N), where a(*) is as in the statement of the tlleorem. If f(¢) = t*7!
and B, (k =1, ..., p) are the least squares estimates, then X given by (1.10) is just
the variance covariance matrix of B, N* (k =0, 1, .. ., p). Thus asymptotic com-

parisons among different designs in this formulation are also made on the basis of
the matrices U(a).

4. For the special case considered in paper II, i.e., p = 1, fi(1) = ¢, p() = e
it can be shown that NX and N¥ have asymptotically the same limit. Grenander
and Rosenblatt (1957) show the equivalence for the equispaced design, f, as in
comment 3 and a wide class of p’s. We do not know how generally the equivalence
holds in our context.

5. Results related to Theorem 2.1 may be found in Grenander and Rosenblatt
(1957) and Brillinger (1973).

= Al
)

3. Optimal designs for p = 1 and linear regression. Suppose that p = 1. Then,
for the estimates~corresponding to an a(*) satisfying (2.3) and (2.4), the standard-
ized variance, NX, tends to

(3.1)

U(a) = [ f3f2{a()}de] (1 + 2v/is2{a(d} @ (@)} [ fsf3{a(t)) ] "),
Although U(a) is only valid for a(*) satisfying (2.3) and (2.4), we shall ignore
these restrictions and consider the general minimization problems:

O: Minimize U(a) over all a(+) which are the inverses of absolutely continuous
probability distributions on [— T, T].

O’: Minimize U(a) over all a(+) as in 0 which in addition satisfy [§ fZ{a(?)}dt >
A
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We shall show that these problems have solutions and at least partially calculate
these solutions under a strong condition on Q.

R(iii). The function Q is strictly convex on (0, o).

Note that R(iii) holds if p is strictly convex. We then define, for ¢ > 0,
(3.2) H(1) = Q(1) = 1Q'(0).

Now Q(0 + ) = o0, Q is strictly convex, and by R(ii), Q(¢) is decreasing for ¢
sufficiently large,

(3:3) ' 0(0) = 0.
We conclude that Q(¢) > 0 and is decreasing on (0; o0). Therefore,
(3.4 H(i) >0 (¢t>0),

H(0,) =00, H(o0)=0.
Moreover, since
(3.5) H'(1) = —10"(2),
we see that H is strictly decreasing on (0, o). By (3.4) and (3.5), H has a well
defined inverse H ~'[0, oo] — [0, co0] where, of course, H ~'(0) = o0, H ~!(c0) = 0.
We require a condition weaker than R(iv) of Section 4, i.e.,
(3.6) 0 <& < lim inf,_t2|Q'(¢)| < lim sup,_#*|Q'(?)] <&~ ' < o0,

ie, Q(f) = Ut™?),as t > 0.
Define functions g(+, y, 7) by

GB7) qxp1) = (H [ p{l - 70}
if p{l-1,%x)}>0  |x|<T,
=0 otherwise.

TueoreM 3.1. (i) If f,(*) is continuous on [—T, T}, R(iii) and (3.6) hold then
solutions to problems O and O’ exist.

(i) The optimal a*(*) correspond to probability densities p*(+) which either
(a) are of the form q(+, u, 7) for suitable p*, v*; or
(b) are uniform distributions on sets of constancy of fi(+); or
(c) are constant on the set { f}(f) # 0} and arbitrary otherwise.
(ili) The solution to O is always of the form q(s, p*, T*), where u*, T* satisfy the
equations

(3.8) JT rq(e, p*, m)dt = 1,
270 7 )fiac 1
(3.9) 1 - ——.
/z Tfl2th 2y

The rather technical proof of this result relies on solving the associated Lagrange
problem. The proof is given in the Appendix.
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Clearly p* > 0. Solutions g(+, u*, 7*) of O’ as well as O have p* > O0and 7* > 0
under a simple condition stated at the end of the Appendix.

We are unable to show that (3.8) and (3.9) determine p* uniquely except in the
trivial case f(f) = 1. However, we are able to use these necessary conditions to
conclude that the uniform design is asymptotically optimal as T'— 0 if f;(¢¥) = ¢.

EXAMPLE 1. Location. If fi(f) = 1, all g(+, p, 7) are constant on [— T, T]. Prob-
lems 0 and 0’ coincide and the optimal p* is, necessarily, the uniform design

1

*(F) = —
(3.10) (1) = 5=t < T),
=0 otherwise.

EXAMPLE 2. Regression through the origin. If f,(¢) = t, formula (3.7) leads to
two families of functions of differing shapes:

Lu>00<r<T3,

q(t, p, 7)=0 , (Itl 17),
=[H“{u(l - ’rt‘z)}]‘1 ('r2 < |1 <T7),
=0 (¢l > 7).

I po>006=—172>0,

q(t,p, —o)=[H "{p(1+at )" (<T
=0 otherwise.
But (3.6) implies that all functions of type II have [T ;4(t, p, T) = oo and need not

be considered. Since H ~! is decreasing, for fixed 7, /T ;q(¢, , T)dt is increasing in
w from O to oo as p ranges from O to oco. Thus for each 0 <7 < T%, there is a
unique p(7) such that g(+, u(7), 7) satisfies (3.8). A typical member of the resulting
families of densities is shown in Figure 1. The borderline case 7 = 0 of course has
p = H(QT) and is again the uniform density.

Moreover, if 7, < 7,, (¢, u(ty), 7)) and q(¢, p(7,), 7,) cross exactly once for ¢z > 0
from + to —. Therefore, [T ;%(t, ,u(fr) 7)dt is an increasing function of 7 from
1T? when 7=0 to T? as 71— T3i. Thus, we can reparameterize g(*, u(r), 7)
contmuously as m(+, n) say, where n = [T ;t%(t, u(r), 7)dt. Since f3(f) has no sets
of constancy of positive measure, the solution to O’ is obtained by minimizing

G(n) = %[1 + 2vft2Q{ W(tl, m }W(t, 'n)dt]

over n > A. It is easy to see in this context that (3.9) corresponds to the equation,
G'(n*) = 0, where n* corresponds to u* and 7*. If n* is unique, it follows that the
solution to O’ is n* if n* > A and A otherwise since G(T?) = o

EXAMPLE 3. Linear regression. Consider p = 2, f,(¢) = 1, f,(¢) = t. Any optimi-
zation problem here must be formulated in terms of a function of the matrix U
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FiG. 1. The density q (-, 3.5, 0.0891 optimal for T = 1,y = .5, p(t) = e~ %43k,

given in (2.19). However, the solution is much simpler if attention is restricted to
symmetric designs such that a() = —a(l — 1) (0<z<1). Then U becomes
diagonal with diagonal elements

up(a) = 1+ 2v/oQ{a'(£)} dt,
_ \0{a'(¢)}a*(z) ar
w(a) = { [1a?(t) e}~ 1+27f0Q{a,(‘
@) = {130 i) T a
the functionals being considered in Examples 1 and 2. It is easy to see that
minimizing any convex function of (u,,(q), u»(a)) over. the set of symmetric a(*)’s
leads to a solution in the family g(*, p(1), 7).

Note. In the ordinary theory of experimental design with independent errors,
the assumption of normality does not affect the choice of the optimal design at
least asymptotically; see, for example, Cox and Hinkley (1968). We belieye this is
true in the cases we consider also but the matter clearly needs further stugy.

4. Asymptotic optimality as T —0. We have seen that the uniform dgslgn is
optimal for location. It is typically not optimal for regresswn through the QI!gln
For example, if p(f) = e ™, (3.9) is not satisfied for any value of y and F > 0.
However, it is asymptotically optimal as 7 — 0 + undeJ,: some conditions gn the
local behavior of f,(+) and Q(+) at 0. For simpligity we give details for the case
fi(t) = t only. Assume: - \

R(iv). As t — 0, for c, d finite
(4.1) 1Q(1) = ¢ + 0(1),
(4.2) {10(n} = d + o).
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Let U, denote the minimum value of U(a).

THEOREM 4.1. If R(iii) and R(iv) hold and f,(t) = t, then

U2t — DT) + o(T™?)
= 3T 2yeT~' + 1+ 2vd) + o(T ™).

43 U,

LEMMA 4.1. Under (4.1) and (4.2), as t — 0,

(4.9) o(t) =ct™ ' +d + o(l),
and, as x — oo,

@5) (H 0} =22+ o),
(4$6) o(H (%)} = %(x +d) + o(1).

ProOF. Now (4.4) is equivalent to
tQ(t) = ¢ + td + o(1),

an elementary consequence of (4.1) and (4.2). Combining (4.2) and (4.4), we get as
t—-0

(4.7) H() =2 + d + o(1)
and (4.5) and (4.6) follow.

PrROOF OF THEOREM 4.1. Let pr and 7, be the optimal values of p* and 7*
guaranteed by Theorem 3 i(m) We argue %r (4.3) under the assumption 7 > 0. A
similar condition works f0r s sequences 77 < 0 For convemence in computation we

drop the T subscripts on {i and 7. Also we define p= 73T} . By (3.7) and (3.8)
(4.8) =T H (w(l — )] e
—%Tf [H'{(w(1 - pw?)}] 'aw
<2T{H '(w)} "

By (4:9), 4 — oo. Upott applying (4.5) to (4.8) we obtain,

|ii

(4.9)

(4.10) 1= -,,-CT;f,‘;{ w(l = pw™?) — d + eg(w)}dw

where |e;| is bounded afid sup[ler(w)| : w > p{1 — M(T)p~'}"7] >0 for any
sequence M(T)— o, MT) < p. Therefore (4.10) becomes after some algebra,

(a.11) LU= (w1 —p) = d} = 1+ o(D).
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Similarly,
(4.12) 2T [H (1 — 7)) ar

= 2 A [ H (1 = o))} ]

=3¢7'T3(1 = p){u(1 = p)(1 + 20) — d} + o(T?) + 0(pT3)
Also, since Q {H ~'(x)}{H ~'(x)} ' =4c™%? + o(x) as x — o0,

@13)  2/T3Q[H (w1 — 7™ 2)}][ S =)
= %c"T3[f})u2(w2 — 202 + p*'w ™ Haw + o{f,l)/.t(wi —p¥aw} + o(1) ]
=5 TW{(1 = p)Gp + 1) + o(p™")):

If we substitute (4.12) and (4.13) in equation (3.9), we get

(4.14) ,L{(l - 0)Bp + 1) + o(i)}{(l —p)2 +1) - ; + 0(3) + o(i)}_l

I
= u{l - Qw)™"}.

Thus p — 0, and, collecting terms,

1 (1 1
4.15 2=—(——+al)+o(——).
(4.15) =3\ 5 .
Now from (3.9)
@16)  Up=(2Ts2[H (1l — 7)) dr) " (e +3)

-3
(4.17) = 302 (v +§){1 +3p2 + ‘i + o(i) + o(pz)}
by (4.12).
Simplifying further and using (4.15) we obtain
-3

(4.18) Uy = 3{yT_3c + ~CTT(1 + 2yd)} + o(T3").
Since p — 0, (4.14) implies that
(4.19) p=cT '+ o(T™")
and hence, from (4.18),
(4.20) Up =3{yeT7 3>+ T7X1 + 2yd)} + o(T7?).

On the other hand, by (3.1),
UQt— T)=3T"?{1 + 2yQ(2T)}
=3772[1+2y{c@T) "+ d} ]| + o(T?)

= Uy + o(T7?).
The theorem follows.
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NoTE. Asymptotic optimality of the uniform design holds under more general
conditions on f,(+) as Example 1 would suggest. All that is needed is

F(ii). f,(t) = at® + o(¢%)

as t — 0, where a # 0 and b is a nonnegative integer.

APPENDIX

Throughout the Appendix, it is assumed that f(+) is continuous on [— 7, T,
R(iii) and (3.6) hold. In order to prove Theorem 3.1 we need to study some
Lagrange problems.

Let
() P={p:p >0, [ f(OP(1) + p(1)}di < ).
For p for which the integral involved is well defined, let
1
e o) = 1750 e 5 | - o] + ooy
Conditions (3.6) and (3.3) imply that, as t — 0,
(3 () = Q™).

Therefore, V(p) is finite for p € P and conversely V(p) finite implies p € P.
Write q for q(+, p, 7) defined by (3.7).

LeMMA 1. The function V(q) is always well defined and
(4) V(g) = inf{¥(p) :p € P}.

Ifinf{V(p):p € P} > — oo, then ¢ € P. Moreover, if (4) holds and V(q,) — V(q),
q, € P, then

%) JE 27 (O{q,(t, g ) — q(2, s ’T)}zdt —0.

Proor. If py,p € P, let g(e) = V(p,), where p, = p, + e(p — p,). Since, by
(3.6), H(?) = Q(t "), we can apply dominated convergence to conclude that g(*) is
differentiable and

(6) g(e) = ffr(ff(t)[H{p Zt) } -

+ m){p(t) = pol(t) }at.

Moreover, g(*) is convex since H(*) is decreasing and

™

g'(e+h)—g'(e)=hfiT{H( ! )—H(l)}(pm—ps)“(p—po)2>o.

Pesn P
Let p € P. Define

pM=p() if q(mT)>M, g>p
= q(+, u, ) otherwise.



90 P. J. BICKEL AND AGNES M. HERZBERG
Then p™ € P. Let p™ = p,. Then
1
8 d = M_ 2 —_—
® O = fipr-af 0] 7

Since p > 0 and q(-, u, 7) is given by (3.7), the integral is always nonnegative. Since
g(+) is convex, we conclude that

} - u] + W’){P(t) = q(t, p, 7)}at.

©) v(p™) < V(p).
Since p™1q as M — oo, we can apply monotone convergence to conclude that
(10) V(p")¥(q),

where the right-hand side must be well defined and (4) follows.

Note that the integrand in V(p,) can be expanded in a Taylor’s series with
Cauchy’s form of the remainder. Using finiteness of g’(0) and Fubini’s theorem, we
obtain

(1) g(e) = £(0) + g'(0)

+&%[o(1 = N[ —pa’()H {23 '(¥)}](p = po)(x)dxd.
For ¢t >0, let 0 < M(¢) = inf{—x"2H'(x~"): x >}. Since p — p, > & implies
Py > A8, while p — p, < 0 implies py, > (1 — A)p,, the last integral in (11) is greater
than or equal to

3EM(38)1,4,f1(x)(p = po)’dx,

where A; = {p —py >0 or p < pyand p, >6}. Now pute =1, py = ¢, p = g,
and obtain

(12) V(g,) — V(q) > [4,fHx)(g, — g)°dx.
Since we also have
(13) [ 4efHx)(g, — g)°dx < 2T8* max f(x),

(5) follows.

LEMMA 2. Suppose A C [— T, T] and m(A) > 0, where m denotes Lebesgue
measure. Let p, = (1/m(A))1,, the uniform density function on A. Then, for any
¢ >0,

(14) [4Q(pi ")y = min{[,Q(cp~)p:p >0, [,p = 1}.
PROOF. Arguing as in Lemma 1, we can show that p, minimizes (for suitable u)
[4Q(cp™Yp — ufp for all p > 0. Since p, satisfies the condition [,p, =1, the

result follows.
We now relate Problem O to our Lagrange lemmata.

Let
5= {(fZTQ{}%t)} HOP()de, 1P, (D) 1 > 0}.
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Then note that

(1) Since Q is nonnegative, S is a subset of R¥ X R* X R*, where R* =
[0, co].

@) Let

C={(x,y,2):3Ax,y,z)eESDx>x,y=y,2=172}
Then C is convex. This follows since the mapping
o
T 2
p— [T — Np(d)dt
710 <5 |

is convex while the mappings
p— [Lofi(p(dr,  p— [Top(t)dr

are linear. The convexity of the first mapping was shown in (7).
Let C be the closure of Cin R* X R* X R*. Let

Cip={(xm):(x,n1)EC}
C, = {(x,y) (x,p, 1) € C—}.
Let
(15) F(x,y) =y~ '(1 + 2y 7).

Note that F is well defined on C,, and C, since (x, y, z) € C implies 0 < y < Mz,
where M = max f2(+). Then the minimum value of Problem O is

(16) inf{ F(x,y) : (x,y,1) € S} = inf{ F(x,y) : (x,y,1) € C}
> inf. F(x, y).

Similarly, the minimum value of Problem O’ can be related to the infimum of
F(+, 9y over U {Cy, :m > A).

We continue the discussion for Problem O; O’ is handled similarly. Since F(, *)
is continuous and C, compact, the infimum on the right-hand side of (16) is
assumed at (x(n*), n¥*), say. Of course, x(n*) < co. In view of the inequality of
(16), in order to prove the theorem we need just exhibit a probability density p*
such that

(17) [72{(p*) ™"} p* = x(n*),
, [fip* = n*.
To establish (17) begin by noting that since the gradient of F(-, *) does not
vanish, (x(n*), n*) must lie on the boundary of C, and hence (x(n*), n*, 1) lies on

the boundary of C. Hence, a supporting hyperplane passes through it, i.e., there
exist A}, A,, A; not all O such that

(18) Ax(n*) + An* + Ay = inf{Ajx + Ny + Az 2 (x,9,2) €C }.
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Note that (x(n*), n*, 1) must also be a boundary point of S since F(x,y) is
decreasing in x for fixed y. Thus, there exist { p,} such that [p, — 1, [fip, — n*,
1f20(p,7 Hp, = x(n*). In fact, by an application of (3), we can easily show that we
may replace p, by p,/[p, throughout. Thus there exist probability densities g, such
that

(19) [fig, > n*,
[12Q(a, ") g, > x(n*).

This establishes the identity in (16).
We déstinguish several cases in (18).

() A, <0. This is impossible since (x', y’, z') € C, x> x’, implies (x, y’, z') €
C and thus the right-hand side of (18) is — .
(ii) A, > 0. Then
(20) inf{A;x + Ay + Mgz : (x,,2) €C )
=inf{A;x + Ay + A3z : (x,p,2) € S).

(a) A, > 0. Without loss of generality let ‘}\1 = ] and relabel A\, = — p, A; = pr.
By construction and (4), g, given by (19) satisfy

(21) V(4,) = V(a)

Therefore, by (5), we must have

(22) [f3(gn = @)* 0.

Thus,

(23) fia,— Ifia

and, using (3), we have

(24) i#{2(g, Na. — 2(¢7 g} —o0.

If 7 # 0, we can combine (21), (23) and (24) to conclude that
(25) fg=1

and obtain possibility (a) of the theorem. If 7 =0, ¢ = {H " '(p)} ' on [~ T, T].
By (22), we get

Q{H\(W)} . _ Q{H (W)

*) — 2 — ) 2
(26) x(n*) H'(p) i H (1) f[f.aeo]fl,
* — 1 2 — 1 ) 2
n H“(p)ff' H_,(ﬂ)f[f.an]fn,
and
27) L a[2#0]<1.

H™'(p)
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Let

(28) p*(x) = if f(x) #0,

1
H~\(p) .
=Q2T-m[f}+ O])_l(l - m[ ff# O]{H“(,u)}_') otherwise.

Clearly p* achieves (x(n*), n*, 1) and we have possibility (c) of the theorem.

(b) A; = 0. We must have A, > 0 by arguing as before. It is impossible to have
Ay = O since inf A;/p = 0 or — o0 and not A;. Without loss of generality let A, = 1.
Then

(29 *+A=inf{f/{ +A)p:p >0} =—oc0 if fi(x) +A; <0 on a set of

positive Lebesgue measure
=0 otherwise.

Since n* + A; is finite, the first case is impossible. For the second case let
= {x : fi(x) = — A;}. Note two subcases:
(b") m(4) =0,
(") m(4) > 0.

In both cases if the g, are defined by (19)

(30) J(fE + A)g, —0.

It is impossible to have A; = 0 since then F{x(n*), n*} > 1/9* = oo.
Consider the case (b). If 4, is the & neighborhood of 4, we conclude from (30)
that

(31) Jas4n—0
and hence that
(32) lim inf/f7g; > lim inf[, f7q?

> {m(4,)} ~lim inff, | fil g,

= {m(4,)} " 'inf, | f,|
Therefore, since A; # 0,
(33) lim inf, [ fig? = oo.

Hence x(n*) = o0 and case (b’) is not possible.
In case (b”) estimate ‘

6 o5 )a {fAQ(‘)q,,}mf 7

> cnianeffinf{fAeQ(%)p p>0,[,p= 1}
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where ¢, = [, g,. Apply Lemma 2 to get (34) greater than or equal to
cnianefle {m(Ae)cn } .
By (31) ¢, — 1. Letting n — co and then € — 0, we get

. 1

(35) <o) = timifie < )a

> ianfle{m(A)}

= [\s|Q{m(4)}.
Let p* = I,/m(4). Then
(36) [fip* = |\y| = lim,[f}q,
by (30) and
(37 o 55 )fir® = Q{m)l = x(a).

Again p* achieves (x(1*), n*, 1) and we have possibility (b) of the theorem. Thus
assertions (i) and (ii) of the theorem have been proved.

To prove (iii) begin by noting that minimization of F over C, is equivalent to
minimization of

1
i Q(—)prdt
[pdt p
38 Wi =] 4+ Qy—
G8) @) =S pa " P fpar

over all p > 0. Since the minimizing value of p, p*, exists it must satisfy
d

(39) e W{p*+e(p = p*)}eao > 0
for all p > 0. Equation (39) is of the form
(40) f[ff{H(;l:) - n} + m](p -p*) >0

with ¢ = p* and, after putting [p* = 1, we obtain

2T TQ( )flp*dt
ST oftp*dt

@ r=u {fTTf‘p + 1710 v )flp*dt+f"TQ( ;e }

But (41) is just (3.9) and we can show that (42) is implied by (3.8) and (3.9). To see
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this compute as follows. Using (3.8) and the definition of p*, we obtain
1
(43) ff?H(F)p* = u/fip* — pr
1 1
= 35 1720 + 270 5 |fip* —
by (3.9). Substitute in the definition of H and (42) follows.

REMARK. Define (x4, ¥, zo) as in the proof above and suppose it corresponds to
q(e, p*, 7*). If the interval I = {y : (xq, ¥, 29) € S} consists of more than 1 point
then p* > 0. To see this note that by definition y ~'(1 + 2yx,/y) is minimized over
Ibyy =y, Since x, > 0, y, must be the upper endpoint of 1. On the other hand,
by construction, y, also minimizes x, — p*y + p*7*z, over I and hence p* > 0.

We do not know whether 7* > 0 in general. However, as in Example 2, if
ST 2f7(t)dt = oo, no density of the type g(+, p*, 7*) exists for p* > 0, 7* < 0.

Acknowledgment. We are indebted to M. Schilling for the remark that the case
7 < 0 in Theorem 3.1 can be dispensed with.
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