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TESTING THE MEAN OF A NORMAL POPULATION UNDER
DEPENDENCE'

By W. ALBERS’
Technological University Twente, Enschede

Modifications of the t-test are considered which are robust under certain
violations of the independence assumption. The additional number of observa-
tions these modified tests require in order to obtain under independence the
same power as the r-test, is obtained asymptotically.

1. Introduction. In testing the mean of a normal population it is well known
that the ¢-test may be invalidated if the observations are dependent. In fact, the
sensitivity of statistical procedures to violations of the independence assumption
has been studied by several authors. Gastwirth, Rubin and Wolff (1967) showed
that the sign test is no longer distribution-free even when the observations are from
two stationary processes with the same spectrum. Gastwirth and Rubin (1971)
studied the effect of serial correlation of the observations on the level of the
one-sample -test, sign test and Wilcoxon test. Serfling (1968) considered the
two-sample Wilcoxon test under strongly mixing processes. The problem has also
received attention in the engineering literature, see, e.g., Modestino (1969). Finally,
the effect of dependence on robust estimators has been studied by Gastwirth and
Rubin (1975).

In the present paper a modification of the t-test is considered which has
robustness of validity under m-dependence. As concerns the price for this robust-
ness, it is shown that in case of independence the modified test asymptotically
requires mu; more observations than the ordinary r-test. Here « is the size of the
test and u, is the upper a-point of the standard normal distribution function.

Finally it is demonstrated that similar results hold for autoregressive processes.
In particular, it is shown that the required additional number of observations under
independence again tends to mu?, where, in this case, m is the order of the
autoregressive equation.

2. A modified t-test for dependent observations. Let X, - -, X, be normally
distributed random variables (rv’s) with expectation EX; = p and variance o*(X,)
=0>>0, i=1,---,N. If the X, are also independent, the usual test for

{

Hy:p =0 against H, : p > 0 is Student’s s-test, which we shall denote by y,. It
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rejects the hypothesis for large values of

(2.1) t = NX/S,
where X = N ~'S¥_ X, and 2= (N — )"~ (X; — X)~

If the observations are not independent, however, it is well known that i, may be
invalidated, if the same critical value as under independence is used. In this section

we consider the following special case of m-dependence: let (X,,- - -, X,) be
jointly normally distributed with EX, = p and 6*(X,) = 6> >0,i=1,- - -, N. Let
Ry be the N X N matrix of the correlation coefficients p(X;, X)) of X; and X,
i,j,=1,- - -, N.(Hence the covariance matrix of (X}, - - - , Xy) is 6°Ry.) Suppose
that the elements of R, satisfy, for some fixed positive integer m,
(22) p(X X)) =py—yy 1 <]i—Jjl <m,

=0, li = j| >m ij=1-,N,
where p,, k=1,---,m, are constants such that R, is positive definite and

moreover 1 + 23%_,p, > 0.

To determine the performance of y, in this situation, we note in the first place
that N %()? — p)/o is normally distributed with mean 0 and variance 1 + 227 _,
(1 — kN ~p,. Together with the fact that §? - ,¢? this implies in view of Slutsky’s
theorem (see, e.g., Cramér (1946), page 254), that N %(Y — )/ S is asymptotically
normal with mean zero and variance 1 + 22%7_,(1 — kN ~")p,. Now suppose that
the critical value of , is selected such that the size is « under independence and let
u, be such that a = 1 — ®(u,), where @ is the standard normal distribution
function (df). Then for general p,, k = 1, - - - , m, the size of y, equals 1 — ®(u, {1
+ 227_(1 — kN ")pk}‘%) + o(1), which may differ substantially from « if some
Py are nonzero.

To obtain a test in this case which has asymptotically the correct size for all
possible p, and not merely for p, = - - - = p, = 0, the following approach can be
used. First we need appropriate estimators of the p,. The natural choice seems to
be the so-called serial correlation coefficients (s.c.c.’s)

2?/=1X1'Xi+k - NX? — 21x'v=l(Xi - X)(ka — Y)
S¥X2 - NX? (N -1s?

(23) o =

b

k=1,2-"--,

where by definition Xy, , equals X,. These s.c.c.’s have certain optimality proper-
ties. For example, according to Walsh (1962), page 71, in the normal case the most
powerful permutation test for testing independence against p, > 0 is based on p,.
In (2.3) we have given the circular version of the s.c.c. Another possibility is the
noncircular s.c.c.

(VX = X ) (X — X))}/ {(N = 1)S?).

Fortunately it is irrelevant here which version is preferred, since the results of the
paper are the same for both choices, as can be verified easily.
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Next we define the statistic W, on the set B = {1 + 2Z7_,5, > 0} by
(2.4) WZk=S*1+227_p)-

Let W,, be bounded, but otherwise arbitrary, on B. Now we have the following
result:

LemMmA 2.1. Let (X, - - -, Xy) be jointly normally distributed with EX;, = pu and
0%(X;) = 6*> > 0 and suppose that (2.2) holds. Then, for all x,
(2.5) P(Ni(X —p)/W,, < x) - ®(x)
as N — oo, where the convergence is uniform for all 6 and o k=1,---,m, such

that o* and (1 + 227_,p,) are bounded away from zero. Consequently, the test Y\
which rejects Hy : p = O for large values of

(2.6) vV, =NiX/W,

has asymptotically the same size for all p, such that (1 + 227 _,p,) is bounded away
from zero.

Proor. By using Chebyshev’s inequality for the 2rth moment we obtain that
P(S? — 6% > &) = O(N "), for all positive integers r and all & > 0. Likewise
P((N = D7'Z (X, — X)Xy — X) — p0’] > ) = O(N™"). Hence P(p —
px] > €) = O(N ~") and therefore

P(I1 +287_1p — (1 +227_,(1 — kN g, )| > 2me) = O(N ~").

Moreover, as 1 + 237_,p, is bounded away from zero, we also have that P(B¢) =
O(N 7). These results imply together with (2.4) that

W2 —o*(1 +227_,(1 — kN ~""p,) —50.
As N2(X — p) is normal with mean zero and variance oX(1 + 237_ (1 —

kN ~Yp,), it now follows from Slutsky’s theorem that (2.5) holds. From this result,
the conclusion about the test {™ is immediate. []

Note that ¢{ is y,. Let £ be the critical value of Y that leads to size a, then
£ is asymptotically independent of 62 and p,, k = 1, - - -, m, in the sense that
£ 5 u, as N — oo, uniformly for all 6 and (1 + 257 _,0,) bounded away from
zero. In the next section (see formula (3.4)) we shall give an approximation £(™
such that ¢ — £M)| = O(N ~?) under independence. To conclude the present
section, we consider the question whether /(" is optimal in some sense.

LEMMA 2.2. Under the conditions of Lemma 2.1 the test Y™ is asymptotically
equivalent to the optimal t-test for known p,, k =1,- - -, m.

ProoOF. Let Uy = (y) be the inverse of Ry. If p;, - - -, p,,, and hence Ry, are
known, it follows from Scheffé (1959) (see pages 20-30) that the optimal r-test is
based on

2.7) L=(szL ,2}’=1u,-,-)_%2?’=1(2}’=,u,-,)z\’,-,
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where $? = {SIL SV u XX, — S 2V 4, X2/ G =Y 1u,)} /(N — 1). Now
R, is a so-called Laurent matrix, i.e., the elements in any dragonal running parallel
to the principal diagonal are the same. The inverse of such a Laurent matrix is
approximately a Laurent matrix also, and it approaches Laurent form exactly as
N — 0. The fact that the inverse is not exactly a Laurent matrix may be ascribed
to the “end-effects” of a finite series (see Whittle (1951), page 34). Moreover, as the
covariance matrix o?R,, corresponds to a moving average scheme, its inverse o ~2U),
is—again apart from end-effects—the covariance matrix of an autoregressive
scheme (see Whittle (1951), pages 34-35). This implies in particular that the
elements of U, converge to zero at an exponential rate as they become more
remote from the principal diagonal (see again Whittle (1951), page 35). Together
with the fact that U, is asymptotically Laurent, this shows that 2y=,u,. ;18
approximately constant in i. (To be more precise for~each ¢ > 0 there exists a
constant C such that [SY_,u, — N~'E u,;| <efor C<i<N-C)As
the X; possess moments of arb1trary high order 1t follows in view of (2.7) that the
optimal r-test is asymptotically equivalent to the test based on (E_ 2.y, j)%)? /8.
Using once more the (approximate) Laurent form of R, and Uy, we obtain that
(NS 2 u u )1 + 23%_1p) > 1 as N — oo. Hence there also exists asymp-
totic equrvalence between the optimal ¢- test and the test based on {S2(1 +
257_,p,)} "N 2X. Now note that §2 and S2 = (N — 1)~ 'S (X, — X)? are con-
sistent estimators of o? and that p, is consistent for p,, then the desired result
follows in view of (2.4) and (2.6). []

3. Comparing the performance of i{" and v, under independence. The price we
have to pay for the robustness of validity of ¢{™ is, of course, that if all p, happen
to be 0, i.e, if X, - -, Xy are indeed independent, we could have done better by
using y, rather than Y. Since our willingness to use Y{ for a certain m instead of
¢, will heavily depend on the height of this price, we will devote this section to a
detailed comparison of the performance of ¢{™ and y, in the case of independence.
Hence, in the remainder of this section we will always assume that p, = 0 for all k.

In the first place we note that it immediately follows from the previous section
that Y{™ has power

7 (n) = (u — N7p/ {o%(1 + 257 lpk)}%) + o(1)

against alternatives u. As p, =0, k = 1,- - -, m, this coincides to o(1) with the
power 7,( 1) of ¢, and therefore Y™ has asymptotic relative efficiency e = 1 with
respect to Y, when X,, - - -, X,y are independent. This means that if y, requires N
observations to attain a certain power and " requires k, observations to reach
that same power, then ky /N — 1 as N — oo.

In view of this result, the price of using y{™ for some m instead of y, might be
reasonable. To obtain more information on this point, we use the approach
suggested by Hodges and Lehmann (1970). They compare statistical procedures by
studying the asymptotic behaviour of the so-called deficiency dy = ky — N, the
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additional number of observations required by the less effective procedure. In one
of their examples (see page 792), the deficiency of the z-test with respect to the test
based on N1X /o is obtained. By a similar derivation we shall obtain dy(V,,, ?).

First, we note that X is sufficient for u, whereas the distribution of S? or py does
not depend on p. Under these circumstances it follows from Lehmann (1959), Ch.
5.1, Corollary 1 and Example 1 that X and (S?, p,) are independent. Together with
(2.6) this leads to

(3.1 H() = PV > £7)
= EP(NEX > £0W,,|S% by - s )
=1 - E9({&™W,, — N2u}/o),

where W is given by (2.5) and P, denotes probability under u. As W n]o— 1=
Op(N~ 2) we can expand the last expression in (3.1) around £™ — Z,u /.

Before thus obtaining an expansion for #{"™( 1), we first derive some moments of

W, /o — 1). In doing so, we may assume p =0 and o = 1 without loss of
generality since S /o and p, are translation and scale invariant. In the same way as
it was shown that P(B€) = O(N ~"), it can be demonstrated that there exists ¢ > 0
such that P(Bf) = O(N "), where B, = {1 +23%_,p, > ¢} C B. Now W, is
bounded on B/ and therefore E|W,, — 1|"Izc = O(N ~"), where I, is the indicator
function of BS. Hence E(W,, — 1)" = E(W,, — 1)'I; + O(N ™).

On B, we have

= {1 + (S2 - 1) +22m-|ﬁkS2}E
1
- zz;:,( f){(sz — 1)+ 237_15,5%) + O(I(S2 = 1) + 237_ 5, S?),
a
b=12-"

Furthermore, straightforward calculations show that the following expressions are
all O(N "2 : ES?—1), E(,SH+ N\, E(S? - 1)) —2N~', E@}sH — N},
E{(S* — DpS?}, E@:peS*), jyk=1,-+-,m, j#k. The same holds for all
expectations containing three or more factors S2 — 1 or p, S? and for all absolute
expectations containing four or more of these factors. These results enable us to
find E(W,, — 1)"I; to O(N ~?), and hence E(W,, — 1)" to O(N ~?). It turns out
that

(6m + 1)

(32) EW, - 1= -S04 o(v ),
E(W,, — 1) = ———(2"5; D+ o2,

E(W, —1)" = O(N 73,

where n = 3, 4.
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Now we use a Taylor expansion to order 3 for the last expression in (3.1), around
&M — N %,u /0. Then we apply the results in (3.2) to this expansion and note that
the error term is O(N ~2), uniformly in g, as ¢” is bounded. Using the fact that
¢'(x) = — x¢(x) and once more the expansion of ® (cf. Hodges and Lehmann
(1970)), we arrive at

(33) 7P(w) =1 - @& — Nip/o + @N) " {@m + DEM)Nip/o
= (6m + DE™ — @m + DE™M)')) + OV 7).

From 7{”(0) = a it then follows that under independence §™ = £ +
O(N ~2), where
(34) Em =y, + (4N)_l{(6m + Du, + 2m + l)u;:’}.
Using (3.3) and (3.4) we finally obtain the following expansion

(35 w(p) =1 - @(ua - NZ" {1 - (2"’4*]'\[1)“3 }) + O(N-2).

From the definition of deficiency, the fact that y, = {2 and (3.5) we now obtain
(3.6) dy(V,, t) = mu> + O(N 7).

This means that in the normal case protection against the effects of m-dependence
asymptotically requires mu? additional observations. Now u? itself is a reasonably
small number. For example, as a decreases from 0.05 to 0.01, u? increases from 2.7
to 5.4. Hence, especially for small m, one might consider paying the price for using
Y™ instead of y, if the independence of the observations is doubted.

Some final remarks are:

(1) In (2.7) we considered the statistic L of the optimal ¢-test for known p,,
k=1,---,m Using the p, we can estimate the y; J in L. Let L be the resulting
statistic and let y; be the corresponding test. Then it follows from Lemma 2.2 that
Y; is asymptotically equivalent to y{™. Note, however, that since deficiency is a
second-order property this does not imply that both tests have the same deficiency
with respect to y,. But, as V,, resembles t=N 5'¢ /S more closely than L (V,,and ¢,
e.g., have the same numerator) and 4, is optimal for p, = 0, dy(V,,, ) should
certainly not be larger than dN(]:, 1).

(if) A test for which the deficiency with respect to ¢, tends to 0 as N — oo can
be derived from y{ as follows: for some 0 < § <3, replace W2 in (2.4) by (W})?

which equals S2if |3, <N~2*3for k =1, - -, m and which equals W2 other-
1

wise. As P(|p| >N ~2%%) = O(N ") for 0 <& <2 and r > 0 when p, =0, k =

l,- -+, m, the statistic V} = N 56 / W¥ then coincides with ¢ except on a set of

probability O(N ") and hence dy(V%, t) = O(N ~"*'). On the other hand, the test
Y based on V* is asymptotically equivalent to y{™ for all fixed p, such that
px 7 0 for at least one k.
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(iii) As the distribution of g, concentrates around zero rather slowly as N — oo
(cf. Anderson (1971), page 319), one probably needs moderately large sample sizes
before the asymptotic results show a satisfactory agreement with the exact values.
To improve this, one could modify W in several ways, e.g. by replacing p, by
(1 = k/N)p, — Ep,), where E denotes expectation under the assumption that all
Py are zero.

4. Autoregressive processes. In this section we shall briefly show that the

approach of Sections 2 and 3 also applies to autoregressive processes. Let
(X, - -+, Xy) again be jointly normally distributed rv’s with EX; = p and ¢*(X))
=0%>>0,i=1,---,N. However, suppose now that the X, form a stationary
solution of an autoregressive equation of order m, i.e.,
(4.1) (X, —w) =2, ° i=m+1,---,N.
Here a, = 1,q,, - - -, a,, are certain constants and Z, ,,, - - - , Zy are indepen-
dent identically normally distributed rv’s with EZ, = 0 and 6X(Z) = 7> > 0,i =m
+ 1, - -, N. Moreover the a, are such that all roots of the equation =% _,a,w™ ¥
= 0 lie inside the unit disk. This latter condition is necessary and sufficient for the
existence of a stationary solution of (4.1) (see, e.g., Feller (1966), page 90). Note
that it implies in particular that 37 _,a, 7 0.

Using results of Anderson (1971) (Section 5.2) we obtain that N %()7 —u) is
normally distributed with mean 0 and variance

(4.2) (0*Z7_oapr)/ (Z7-o@)’ + O(mN 7).

Hence, hke in Section 2, y, should be replaced by a test x[/*"” based on a statistic
V=NiX X/ W, where W2 is some consistent estimator of the variance in (4.2). To
estimate this expression we not only need the s.c.c.’s p,, but also consistent
estimators 4, for aq,, Kk =1,- - -, m. These are glven by Anderson (1971) (see
Section 5.4) and can be calculated recursively: let b,, - - -, b, _, be the estimated
coefficients of the (m — 1)st order equation, then

B R Yt VN
(4.3) g, = - bnt Zis “l’j"f"‘,
1 + 372 10:bx
4 = b, +b,_,a,, k=1---,m-1

Now define, in analogy to (2.4),
(4.4) V~V2 = S?Z7_odiby/ (2% o‘ik)2
on the set {S7_od.p, > 0} and let W2 be bounded but arbltrary otherwise. Then
results similar to those of Section 2 hold for the test \p‘"' As an example, for
m =1, (4.3) gives 4, = — p, and therefore W2 = S%(1 + pl)/(l )

The deficiency dN( s 1) Of z[/(;") with respect to ¢, under independence can be

obtained largely in the same way in which dy(V,,, 1) was found in Section 3. In the
first place, we remark that 4, only depends on p,, - - -, ,,. Consequently, W2 in



1344 W. ALBERS

(4.4) is a function of S, p,, - - -, p,, only and, therefore, W?2 and X are indepen-
dent. Hence (3.1) continues to hold if ¥, V,, and W,, are replaced by V, vV, and
W, ‘

Furthermore, if o, =0, k =1, -, m, it follows from (4.3) that 4, can be
expanded in powers of p, - - -, p,,, €xcept on a set of probability O(N ~"), with r
arbitrarily large. Straightforward computation yields that on the complement of
this set 4, = — p, + 3{1 + (—1)"},6,3/2 + R, + OC7_1pd), k=1, -, m, where
each R, consists of a finite number of terms either of the form p,p, with i 7 or of
the form p,p;0,. Together with (4.4) this leads to

(4.5) W2 = Sz{l + 227 10 + 22'1'<1=[m/2]+1f)/% + R+ 0(2’12;1!31?)},

again except on a set of probability O(N ~"). Here [m /2] denotes the integer part
of m/2 and R is of the same form as the R, above. .

Noting the similarity of (2.5) and (4.5) and applying the moment results of
Section 3, we obtain that (3.2) continues to hold for Wm instead of W,,, provided
that we replace (6m + 1) by 4m + (—1)". Hence, making the same replacement in
(3.4) gives the critical value of \P(V’") to O(N ~2), while the results for the power and
the deficiency in (3.5) and (3.6) respectively, remain valid in the present case. Thus,
the price for robustness against autoregressive departures from the independence
assumption also tends to mu? additional observations.
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