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DIFFUSE MODELS FOR SAMPLING AND PREDICTIVE
INFERENCE'!

By DAVID A. LANE AND WILLIAM D. SUDDERTH
University of Minnesota

As a natural, intuitive model for inferences about certain characteristics of
finite populations, Bruce Hill has proposed a sequence of exchangeable vari-
ables X, - - -, X,,, which have distinct values with probability one and have
the property that, conditional on X, - - -, X,,, the next observation X, is
equally likely to fall in any of the n + 1 intervals determined by X}, - - - , X,.
Harold Jeffreys had previously assumed such a model (in the case n = 2) for
normal measurements with unknown mean and variance. Hill has shown that,
for n > 1, there exist no countably additive distributions with the prescribed
properties. It is shown here that finitely additive distributions with these
properties do exist for all » and have a number of interesting properties.

1. Introduction. Hill (1968) described a sampling situation in which the
numerical characteristic under observation has an arbitrary or “rubbery” scale, and
prior information about the population distribution on this scale (assumed to be
continuous) is vague. In this situation, Hill argued, the numerical values of a
sample convey negligible information about the overall population values, although
they do induce what might be called a predictive ordering on those values. For
example, it is reasonable to assume that the second observation is equally likely to
be bigger or smaller than the first observation, whether the first is 5 or 50. Here is a
way to formulate this property mathematically: let (X,,- - -, X,) represent a
sample drawn without replacement from the population; let J,, - - -, J,,, denote
the n + 1 (random) intervals into which (X, - - - , X,) partitions R; and let X,
represent a further sample (still without replacement) from the population. Then
the distribution for X, should assign equal weight to each J;, regardless of the
numerical values of X, - - - , X,,. More precisely,

@  Pl(X, -, X)€4and X,,, €J]=(n+ D)7'P(X,,- - -, X,) € 4],

for 1<i<n+1 andeveryBorelset 4 C R".
Clearly, if a fixed population is sampled, (a) cannot be achieved. What is sought is
a prior distribution on populations, such that if “P” represents unconditional
probability with respect to this prior, (a) is true. Such a prior is noninformative in
the sense that no matter what values are observed for the first n individuals
sampled, the n + 1st individual is equally likely to fall between any two of them.

Hill posed the question of the existence of such priors in a broader setting: for
fixed n, he asked for the construction of an exchangeable sequence of random
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variables X, - -, X,,, and a probability measure P such that (a) is true. He
proved that, for all n > 1, no solution exists to this problem if P is required to be
countably additive. He left the problem open in case P is only required to be
finitely additive. Sections 2 and 3 of this paper contain formal statements of this
problem.

In Section 4, we solve Hill’s problem in the context of sampling from a finite
population with known population size m. A class of finitely additive measures on
R™, called strategic product measures, is defined. These measures play the role of
prior distributions on the space of finite populations of size m. Let »™ be a strategic
product measure on R™; another measure on R”, denoted & (»™) is also defined in
Section 4. Under @ (»™), the m coordinate functions play the role of sampling
variables from a population chosen by »™. Theorem 2, together with Lemma 3.2,
characterize the class of strategic product measures »™ such that, under & (»™), the
coordinate functions satisfy (a) for all n < m — 1. In particular, Theorem 2 shows
that solutions to Hill’s problem exist for all finite .

If the population size is unknown, the prior must live on U ;_R™. It is easy to
construct such priors. Just “pick an integer N at random” according to some purely
finitely additive probability on the positive integers. Then construct a strategic
product measure »~ on RY (verifying the conditions of Theorem 2) and its
associated sampling distribution & (»"). Since N is finite but larger than any given
integer with probability one, this construction will yield an infinite sequence of
exchangeable variables verifying (a) for every n. A somewhat more formal solution
to this problem is presented in Section 5.

Sections 6 and 7 discuss various properties of arbitrary solutions to Hill’s
problem. Section 8 introduces a game-theoretic interpretation of these solutions,
and Section 9 compares them with Ferguson priors.

For n = 2, Hill’s problem has a solution in a setting quite apart from finite
populations. This solution involves modifying a construction due to Jeffreys (1932)
dealing with normal measurement error when the mean p and variance o? are
unknown. Again, the problem involves noninformative priors: Jeffreys computed a
prior on the parameter space by assuming (a) (which he considered an obvious fact
in this case) and showing that only the improper prior, 02 du do?, is consistent
with (a). If the parameter space is equipped with Jeffreys’ prior, and X, X, and X,
are assumed to be conditionally independent N(pu, ¢%), then a sampling model
satisfying (a) is obtained. Substituting a natural finitely additive prior for Jeffreys’
prior yields a solution to Hill’s problem for n = 2; this is carried out in Section 10
below.

The material in Sections 3, 4, and 7 indicates that strategic product measures
with widely different properties lead to sampling variables satisfying (a). (For
example, see Theorem 6 and its corollary.) As Hill’s work shows, inference on
certain population characteristics (including percentiles) depends on the prior only
through (a). In this sense, all the priors satisfying (a) are noninformative. Further
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work may reveal inference questions with respect to which some of the priors
constructed here are appropriate and some are not.

The fact that finitely additive priors which lead to sampling variables satisfying
(a) exist has an important consequence for Hill’s theory: Heath and Sudderth
(1976) show that inferences are coherent when (and only when) they are consistent
with a finitely additive prior.

2. The problem. Let R” be real n-dimensional space and S, the set of all
permutations on {1, - - - , n}. Each 7 in S, induces a transformation on R", also
denoted 7, by

7T(X|, ) xn) = (xﬂ’(l)’ T xﬂ(n))'

A probability on R" is a finitely additive probability defined on all subsets of R".
Let H, be the collection of all probabilities 8 on R” which satisfy the following
conditions:

(i) Exchangeability: B(4) = B(w(A4)) for every set A C R" and 7 € S,

(i) Noties: B{x ER":x;=x;} =0for1 <i<j<n

(iii) For 1 <i < n, the event that the nth coordinate function has rank i is
independent of the first » — 1 coordinate functions and has probability 1/n. That
is, forevery A CR" 'and 1 <i <n, '

(2.1) B{xER":(x,- - ,x,_)EAand x,=x;} = ;B(4XR),
where x;, is the ith smallest coordinate of (x,, - * -, x,).

Hill’s problem, as discussed in Section 1, is to show that H, is nonempty for n > 2.

3. An alternative formulation of the problem. There is a natural correspon-
dence between H, and the set 0, of probabilities « on R” which satisfy these two
conditions:

W) a{x:x; <x,<---<x,} =1

(v) for 1 < m < n, the a-marginal distribution of any set of m coordinates (in
ascending order) is the same.

To describe the correspondence, some notation is needed. For x = (x,- - - , x,)
in R” let ord x = (xay * * * 5 X(m)- Also, to each probability « on R”, associate its
symmetrization B = 9P (a), where

1
3.1 P(a)(A4) = mz,es"a{x tw(x) € 4},

for each 4 C R”. Intuitively, the % (a)-distribution is obtained by choosing x €
R" according to « and then putting the coordinates in a random order.

The theorem below demonstrates that Hill’s problem is equivalent to showing
that 0, is nonempty for n > 2.

THEOREM 1. If @ €0,, then P (a) € H,. Conversely, if B € H, and o is the
distribution under B of ord x, then a € 0, and &P (a) = P.
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The proof of Theorem 1 will take up most of the remainder of this section. To
prove the first assertion, fix @ € 0, and let B = P (a). Clearly, B satisfies condi-
tions (i) and (ii) in the definition of H,. To verify (iii), assume n > 1 (for otherwise
(iii) is trivial) and define a mapping 7 — 7 from S, to S,_, by the rule

7(k) = w(k) if (k) < 7(n),

= w(k) — 1if #(k) > «(n).

Intuitively, if m(n) = i, then 7 orders the elements (1, - - -+, n — 1) in the same way
that = orders (1, - -, 1i,- - -, n). (Here and below the notation 4 denotes the
omission of a.) Indeed, the mapping is one-one from S, ; = {7 € S, : #(n) = i}
onto S,_, for each i. Notice that, for7 € S, ,,
(32) T & %) = Oy 0 5 Xat—1)-
Some additional information about the mapping 7 — 7 is recorded in the following
lemma, after which the proof of Theorem 1 will resume.

LEMMA 3.1. Let A C R"" ! and let o be the marginal distribution of o on the
first n — 1 coordinates. Then, for each = € S,,
(3.3) a{x ER" :m(x) EAX R} =a'{y € R":7(y) € 4},
and

(3.4) B(A X R) = —

(n=1)
PrOOF. Letw € S, ;. Then
afx :m(x) €EA X R}

Zﬂzesn_la'{y € R"':7(y) € 4}.

a{x : (Xyap " * " s Xom-1) € 4}
=afx:(x, %, x)E 771(4)}
= o'{y:7(y) €4}
The second equality in this calculation is by (3.2) and the final one uses condition

(v). This proves (3.3).
The calculation below yields (3.4).

B(A X R) = -3, csa[n(x) € 4 X R]

1
= 1 Zres @ [7(7) € 4]
1 !’ ’
= —_(n Y Zres, A [7'(y) EA].

The successive equalities are by (3.1), (3.3), and the fact that each 7" in S,_, is
the image of »n elements in S, under the map 7 — 7.
This completes the proof of the lemma. []

To finish the proof of the first assertion of Theorem 1, let 4 C R"! and let
1 < i < n. It suffices to verify (2.1).
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By condition (iv),
a[x; = x| =1L
Let C; =[x, = x»]. Then
a[7(x) €G] =1or0
according as m(n) = i or w(n) # i. Thus, for B= A4 X R,

B(G N B) =S, cqan(x) € G B)

1
= Ezﬂesn,‘a[w(x) € B]

1
127es, @ [7T(y) € 4]

_ %{(7-_‘1—)!2,@&_#'[”’(” < A]}

1
= ;B(A X R).

One half of the proof of Theorem 1 is now complete. The converse half uses the
following two lemmas, the first of which is adopted from an argument in Hill
((1968), page 688).

LemMA 3.2. Supposen > 1, 8 € H,, and B’ is the marginal distribution of B on
the first n — 1 coordinates. Then B’ € H, _,.

PrOOF. The result is clear if n = 2; so assume n = m + 2 > 2. It remains clear
that B’ satisfies (i) and (ii). To check (iii), let Jy, - - -, J,, be the intervals into
which R is partitioned by the points x,, - - - , x,, and, for i =0, - - - , m, define

U={x€ER":x,,,EJ},
Vi={x€R":x,,, €EJ}.
For A C R™, it follows from exchangeability that
B{U Nn[(x)- -~ X)) €A} =B{Vin[(xp,- -+, x,) EA]}.

Denote the common value by ¢, and let s = 37_ e, = B[(x, - - -, x,,) € A]. Then,
for each i,

&=B{Un[(x) " -,x,) € 4]}
=ZB{V,n Un[(x,- -, x,) €4]}
=S (1+8)/ (m+ )]s
=(s+¢)/ (m+2).

The next to last equality uses condition (iii). It now follows that ¢, = s/(m + 1) =
s/(n — 1), which shows B’ satisfies (iii). []

Set ord,.(x) = (x(1)9 Tty xA(,‘)> Y x(,,)).
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LEmMA 33. Letn>1, BEH,and let AC{y€ER"':y, <y, <---<
Y1) Then for 1 <i <n,

(3.5) Blord(x) € A] = (n — D!IB[(x},- - -, x,_,) E 4].
Proor. Obviously,
(3.6) Blord(x) € A] = S5, B[ord/(x) € 4, x, = X ]-
Consider each of the summands on the right. Examine first the summand for k = i
and notice that x, = x;, implies ord,(x) = ord(xy, - - -, x,_). Thus
3.7

Blordi(x) € 4, x, = x4y] = EﬂES,,_IB[ﬂ(x]’ Ce X)) €A, X, = X))
=(n—=DB[(xp ", x,.) EA, x, = Xy ]
= D (e, x) € 4],

The second equality is by condition (i) and the final equality is by condition (iii).
Suppose now that k # i. Then

(3.8)
B[Ordl(x) € A’ xn = X(k)]
= 2_7;]1 [Ol‘d(xl’ DRI ,%’ . . . xn) E A,,XE] = x(i)’ xn — x(k)]
=Sz Blord(xy, - -+, X, ) € A, X, = Xy X, = X ]

= Blord(x;, - - -, x,_)) € 4, x, = x(]
= B[ordi(x) EA x,= x(i)]’
The second equality follows from condition (i) when j and » are interchanged.
The result (3.5) now follows from (3.6), (3.7), and (3.8). [J

To complete the proof of Theorem 1, let 8 € H, and let a be the B-distribution
of ord x. That « satisfies (iv) is immediate from condition (ii). Also, (v) is a
consequence of Lemma 3.3 in the special case when m = n — 1. For general m, an
inductive argument can be based on Lemma 3.2.

One additional lemma helps to set the stage for the next section. Let 8 € H, and
define, for ¢t € R,

F(t) = B{x € R" : x, < t}.

LemMMA 34. Foreveryt € Rand, fori,j=1,---,n

F(1) = B[x; <t] = B[x <t]

ProOF. By Theorem 1, the S-distribution of ord x is in 0,. Thus, by condition

(v) with m = 1, B[x < ] is the same foralli=1,-- -, n Furthermore,
,B[X(]) < t] > B[Xi < t] > B[X(n) < t],

for all i. Hence, all these probabilities are equal. []
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Let
L={x€R":x;>ti=1-"--,n},
S,={xE€R":x;<ti=1,---,n}

COROLLARY. For 3 € H, and every t € R, B(L,) + B(S) = L.

PrOOF. B(L,) + B(S) = Blxy > 1] + Blxy <tl=1— F) + FQ@). [

4. A solution for arbitrary finite n. Let » be a probability on R and define, for
each positive integer n, the strategic product measure v" on R" by the formula
(4.1) vi(A) = [ JA(xy, L x)v(dx,) - - v(dxy)
for A C R". In (4.1), the set A has been identified with its indicator function. This
useful convention, which is due to de Finetti, is followed below.

If » were countably additive, then »” would be the usual product measure and
the order of integration in (4.1) would be irrelevant. Here the order can be crucial,
as will be seen in Lemma 4.3 below.

The symmetrization % (»") of »" is called a symmetric product measure because it
is clearly exchangeable and is also a product measure in the sense that it agrees
with »" on sets of the form A4, X - - -+ X A4,, A; C R. For countably additive », »"
and % (»") agree on the Borel sets as well.

If ¢t € R and if, for every ¢ > 0,

(4.2) v(t,t+e)=1r(t —¢1)=1)
then » is concentrated at t + (¢ — ). Similarly, if
(4.3) v(a, + ) = 1(0)

for all a, then » is concentrated at + co (— ).

THEOREM 2. Let n > 2 and let v be a probability on R. Then ¥ (v") € H, if, and
only if, v is concentrated at + o or —c0, or at t + or t — for some t € R.

ProOF. Let p, = @ (»"). The following two lemmas are helpful in the proof of
necessity.

Lemma 4.1. If p, € H,, then v{x} = 0 for every x € R.

Proor. If the conclusion were false, then, as is easy to see, u, would violate
condition (ii) (no ties). []

Let F(x) = v(— o0, x] for x € R.

Lemma 4.2. If u, € H,, then for every x € R, F(x) = 0or F(x) = 1.

PrOOF. Suppose, by way of contradiction, that F(f) =A for some t ER, 0 <A
< 1. Let
L={x:x >t-,x,>1},
S={x:x, <t,---,x, <t}
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Both L and S are invariant under permutations of the coordinates and, hence,
t.(L) = »"(L) and p,(S) = »"(S).
By (4.1), »"(L) = (1 — A)" and »"*(S) = A". Therefore,
m(L) + p,(S) =A"+ (1 = ])"
<A+ (1-=2)
=1,
which contradicts the corollary to Lemma 3.4. [

To prove the direct implication of Theorem 2, suppose y, € H,. If F(x) =0 (1)
for all x € R, then, as is easily seen, v is concentrated at + oo (— o0). If F assumes
both values 0 and 1, let ’

t =inf{x : F(x) = 1}.
If F(r) = 1(0), then » is concentrated at ¢t — (¢ + ).
LemMmA 43. (1) If v is concentrated at + o or at t — , then
PV {XxER":x, <x,< - <x,} =1
(ii) If v is concentrated at — o or t + , then
r"{x ER" 1 x, <x,_, < -+ <x} =1L

Proor. The proof will be given for a » concentrated at ¢t — . (The other cases
can be handled similarly or reduced to this one by appropriate transformations.)
Let A, = (— 0, ¢) and, for n > 2, let

A, ={xER":x,<x;< -+ <x, <t}
Then, for n > 2,
JA Xy + s Xy, X,)0(dX,) = A, _y(xy, - - - Xu_1)s

as follows from (4.2). Now use (4.1) to conclude
r"(4,) =" A4, )= =v4)=1 0

The next lemma holds for an arbitrary probability » on R.

LEMMA 4.4. For 1 < m < n, the marginal v" distribution on any set of m coordi-
nates (in ascending order) is v'™.

Proor. It is enough to give the proof for m = n — 1, for then the general case
will follow by an inductive argument. What must be shown is that

»"(A) = »v""'(B)
for BCR" 'and A={x€R":(x;,- ,%,-"",x)€EB). Fix 1 <i<n.
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Then
v (A) = [ JAQGR, Xy X Xy X,)w(dx,) - - v(dxy)

=[] A(u, x;, v)p" " (do)v(dx;)v' ' (du)
= 1/ B(u, 0)p"~ (do)w(dx;)v'~(du)
= [[B(u, v)»" " (dv)v'~'(du)
= [ [B(xp X )¥(dx,_y) - - - v(dxy)
= »""!(B).

For i = 1 or i = n, the calculation is similar but even simpler. []

It is now easy to prove the converse half of Theorem 2. Indeed, if » is

concentrated at + oo or ¢ —, then, by Lemmas 4.3 and 44, v" €0, and, hence,
by Theorem 1, ¥ (»") € H,. If » is concentrated at —oo or ¢t +, let a be the
v"-distribution of r(x), where r(x,,- - -, x,) = (x,, - - -, x;). Then, by Lemmas

4.3 and 4.4, a € 0, and, by Proposition 1, ?(a) € H,. But ?(a) = P(v"). This
completes the proof of Theorem 2.

5. Extension to the infinite case. Consider now the question of the existence of
an infinite sequence of variables X, X, ...such that, for every n, X, - - -, X,
satisfy Hill’s conditions. In view of the preceding results, it is not difficult to see
that such sequences exist and this is recorded in the next theorem.

THEOREM 3. There is a finitely additive probability measure ., defined on the
subsets of R whose marginal on the first n coordinates is in H, for every n.

Proor. The notation of Section 4 will be used. Thus » is a probability on R, »"
is the probability on R" defined by (4.1), and p, = P(»"). Assume that » is
concentrated at t + , t —, + 00, or — o0, so that Theorem 2 implies p, € H, for
every n. The following lemma shows that the p, are consistent with a probability on
R*.

LEMMA 5.1. For 1 < m < n, the u, marginal distribution on any set of m coordi-
nates is i,,.

Proor. By induction, it is enough to treat the case m = n — 1 and, by the
exchangeability of y,, there is no loss of generality in taking the first m coordinates.
Let A C R""! and calculate

p(4 X R) = —nl—,E,,esnu"[w(x) € A4 X R]

1
= =S, esr"[7() € 4]

1
= (_n—_"—l‘)—!z,”les"_lyn_l['ﬂ'/(y) E A]

= lu'n—l(A)‘
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Here the first and last equalities are by definition of u, and p,_,, the second is by
Lemmas 3.1 and 4.4, and the third holds because each 7" in S, _, is the image of n
elements in S, under the mapping 7 — 7, which is defined just before Lemma 3.1.

0

Return to the proof of Theorem 3 and define
Poo(B X R®) = p,(B)

for B C R". By Lemma 5.1, this definition makes sense. Although the Kolmogorov
extension does not apply in the present finitely additive setting, it is possible to
extend p,, to all subsets of R® using a finitely additive technique such as the
Hahn-Banach theorem or transfinite induction (see, for example, de Finetti (1975),
pages 336-337). 1

There is an alternative approach to the proof of Theorem 3 in which the
definition of p,, imitates that of u, on R". First, let »* be the distribution on R*®
such that, under »®, x,; has distribution » and, for every n > 1, given x;, - - - , X,,,
the conditional distribution of x, ., is ». The measure » is strategic in the sense of
Dubins and Savage (1965) and has a natural extension to the Borel subsets of R™
described by Purves and Sudderth (1976). The p,, distribution is obtained by
choosing a point at random according to »* and then putting the coordinates in a
random order. To make the second step precise, let S be the group of those
permutations of the natural numbers which leave all but a finite number of
coordinates fixed. The group S, has an invariant, finitely additive probability y as
is perhaps well known and not too difficult to prove. The measure y can be used to
choose the random order of the coordinates, and p, can be defined by the
following formula:

Bo(d) = [r={x : m(x) € A}y(dn),

where A is a Borel subset of R®, 7 € S, x = (X}, X5, - + * ) € R®, and 7(x) =
(Xaqy Xa@p * * * )-

6. Extreme points of H,. Are there members of H, different from the symmet-
ric product measures % (»") of Theorem 2? The answer is “yes” because H, is a
convex set of measures and, hence, mixtures of elements in H, are again in the set.
The next question is whether there are members of H, which are not mixtures of
the symmetric product measures in H,. The answer remains “yes” as the following
example demonstrates for H,.

ExaMPLE. Let 1 be a translation invariant probability on R and let 8 be that
probability on R? such that the B-distribution of x, is 7 and such that the
B-conditional distribution of x, given X, assigns probability 3 to each of the points
x; + 1 and x, — 1. Formally, for 4 C R?

B(A) =in{x:(x,x+1) €A} +5n{x:(x,x — 1) EA}.
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The measure B is in H, and is not a mixture of the symmetric product measures in
H2-

To check that 8 is in H, is easy. Conditions (i) and (iii) are immediate, and the
following calculation verifies condition (ii):

If r(4) = {(x,») : (¥, x) € A}, then

B(r(4)) =3n(x : (x, x + 1) € r(4)) +3m(x : (x, x = 1) € r(4))
=in(x:(x+1,x) €A4)+in(x:(x — 1, x) € A)
=in(x:(x,x — 1) €A4) +in(x:(x,x +1) € A4)

= B(4).

All but the third equality are definitions; the third equality follows from the
translation invariance of 7.

To see that B cannot be represented as a mixture of symmetric product
measures, note that 8{(x,, x,) : |x; — x,| = 1} = 1 while for any symmetric prod-
uct measure y in H, (and hence any mixture of them) Theorem 2 implies that
¥ {(x1, x5) 1 € < |x; — x,] <M} =0 for all positive ¢ and M.

The measure 8 has the same properties if the conditional distribution of x, given
x, is taken to be that of Y + x, where Y has any countably additive distribution
which is symmetric about zero. The proof that 8 is in H, uses Theorem 3 of Heath
and Sudderth (1976).

Despite the example, it is true that every measure in H, is a mixture of
probabilities which have much in common with the symmetric product measures.
To see this, view H, as being a subspace of the collection F of all functions from
subsets of R" to [0, 1]. Equip F with the topology of pointwise convergence under
which it is compact. Then H, is a convex, closed (and, hence, compact) subset of F,
as is easy to verify. By the Krein-Milman theorem (Dunford and Schwartz (1957),
Theorem V.8.4), H, is the closed, convex hull of its extreme points or, what
amounts to the same thing, every measure in H, is a (finitely additive) mixture of
the extreme points. We have not been able to characterize the set of extreme points
of H,, but some information about them is given below.

Hewitt and Savage (1955) did characterize the extreme points of the exchange-
able measures on R” and R*. However, they restricted their study of finitely
additive measures to those defined only on cylinder sets. Such a simplifying
restriction is not possible here because the event [x, = x;], which occurs in the
definition of H,, is not a cylinder set.

A probability 8 on R" is concentrated at t + (t — ) on the diagonal if, for every
e >0,

B{xER":1<x;<t+e¢i=1"---,n}=1

(B{x€R":t—e<x,<ti=1---,n}=1)
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Similarly, B is concentrated at + oo (— ) if, for every a € R,
B{x ER":x;,>a,i=1,---,n} =1
(B{x€R":x;<a,i=1---,n}=1).

Let C, be the collection of those 8 which are concentrated in one of the senses

above. The measures % (»"), which occur in Theorem 2, are easily seen to be
elements of C,. Let &, be the set of extreme points of H,.

THEOREM 4. Forn > 2,6, C C,.

PrOOF. Let B € &, and F(¢) = B[x, <] for t € R. If, for some ¢t € R and
A € (0, 1), F(r) = A, then B = ABg + (1 — A\)B, where B¢ and B, are probabilities
on R" defined by
Bs(4) = A7'B([x, < 1] n 4),

Bu(4) = (1 =2 7"'B([x, > 1] N 4).
With the aid of Lemma 3.4, it is not difficult to check that B and 8, are in H,. But
this contradicts our assumption that 8 is extreme. Hence, no such A can exist and
F(t) =0or 1 for all ¢. ,

If F(¢) =0 (1) for all ¢, then B is concentrated at + o (—o0) as Lemma 3.4
implies. If F assumes both the values 0 and 1 and ¢ = inf{s : F(s) = 1}, then B is
concentrated at ¢ + or ¢t — on the diagonal according as F(¢) = 0 or 1 as follows
again from Lemma 3.4. []

From Theorem 4 and the Krein-Milman theorem, it follows that, for n > 2,
every measure in H, is a mixture of concentrated measures.

7. The distribution of the range. The range of a vector x € R" is defined to be
r = r(x) = x., — xq) Further information about the measures in H, is obtained
in this section in terms of the distribution of the range r. The first result, which is
almost a corollary of Theorem 4, is that, for n > 2, if the values of x cannot be
arbitrarily large, then r must be concentrated near zero.

THEOREM 5. Let n > 2, B € H, and suppose B has compact support. Then
Blr <e] =1 for every € > 0.

Proor. Since B has compact support, there is a finite interval [a, b] such that
Bla < x4y < Xy <bl=1 Fore>0,leta=1t<t <--- <t,=b bea parti-
tion of [a, b] such that ¢, , — ¢, <efori=0,---,n— 1. Then

[r>e] C Ukoo[xa) < & <X(my]-
Furthermore, for every &,
Blxay <t <xm] = B[xay < t] = B[ Xy < 4] =0,
by Lemma 4.4. [

If n =2, then the example of Section 6 shows that r can have any countably
additive distribution when 8 does not have compact support. However, for n > 3,
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the distribution of r must be concentrated near 0 and oo, as the following theorem
shows.

THEOREM 6. Letn > 3 and B € H,. Then B{x € R" : ¢ <r(x) <M} =0 for
all positive numbers ¢ and M.

ProOOF. The proof is based on the equality

(7.1 rmdyt e +d,
where d; = x; — x;_y),, and on the fact that each of the nonnegative functions
r,d,, - - -, d, have the same distribution under 8. This latter fact is because the

distribution of ord x under B is in 0, (Theorem 1) so that condition (v) in the
definition of 0, applies.

Let ¢t > 0. By (7.1), the event [r > 1] contains [d; > ¢]for each i. However, these
two events have the same measure under 8. Hence, they can differ only by a set of
B-measure zero. Consequently, the events [r >¢] and [d, > ¢, - - -, d, > {] also
differ only by a B-null set. Now calculate as follows:

B[r>t]=B[d >t ,d, >t]
<Bldy+ - +d,>(n— 1]
=B[r>(n— 1]
It follows that B[z < r < (n — 1)¢] = 0 and, more generally, that
(7.2) B[th<r<t]=0
for0 <t <, < 0. []

COROLLARY. Let n > 3 and B € H,. Then there exist B, and B, € H, and
A € [0, 1] such that

(73) B=AB + (1 -MB,
and such that, for every € > 0,
(7.4) Bo[r <e] = B[r>e]=1

Proor. To define the two components B, B, first fix >0 and let A =
Blr <t IfA=1(Q = 0), set B, (B,) = B and let B, (B,) be any measure in H,
which satisfies (7.4). If 0 < A < 1, define

Bo(4) = A"'B(4 N[ r < 1]),

Bo(A) = (1 =N)'B(4 N[r>1])
for A C R". Clearly, (7.3) holds and (7.4) follows from (7.2). It remains only to
check that B, 8., € H,. The conditions of exchangeability and no ties are trivial to
verify. The proof of condition (iii) requires a preliminary observation.

D[dy >t -,d, >t]

As previously noted, the first and last events differ by a S-null set. Thus the same
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must be true of the first and second events. Now let 4 = B X R for some
B C R"'and let C; = [x, = x(y]. Then

B(ANC)=(1=-N""'BAN[r>1]NnC)
=1-N)""BAN[lx—x|>1]nC)
=(1=2)""n""B(4 N[lxy — x;| >1])
=(1=N"n"BAN[r>1])
=n"'8,(4).

The third equality in the calculation uses condition (iii) for 8. This verifies (iii) for
B..- A similar calculation does the same for S, [] :

8. A prediction game. Consider a game with two players, N (for nature) and S
(for statistician). Player N chooses n + 1 distinct real numbers x,, - * + , x,,, and
reveals the first n of them to S. Player S then guesses the rank of x,,, or,
equivalently, S selects an integer j with 1 < j < n + 1, winning a dollar from N if
X, is the jth largest of the x’s and winning nothing otherwise. The value of this
game to S is (n + 1)~ ! because S can attain this in expected value by choosing ; at
random and N can assure that S achieves no more than (n + 1)~' by using as a
randomized strategy one of the probability measures in H,,,. Indeed, if N is
further constrained to select the x; so that they form an exchangeable sequence of
variables, as seems natural if the game is a statistical one, then H, , | coincides with
the collection of optimal strategies for N and the collection of least favorable
distributions for S.

9. Poélya urns, Ferguson priors, and Hill models. The models studied in this
paper have a fascinating relationship to observation variables generated by the
random distribution functions of Ferguson (1973). A complete exposition would be
too lengthy to include here, but it is possible to give the idea by relating both
models to Pdlya urn schemes.

Consider an urn initially containing w; balls of color i fori =1,- - -, n+ 1. As
in Blackwell and MacQueen (1973), a sequence {Y,, k > 1} of random variables
with values in {l,---,n+ 1} is a Polya sequence with parameter w =
(wp, * * * , w,4) if the Y, represent the results of successive draws from the urn in
which, after each draw, the ball drawn is replaced and another ball of the same
color is added.

Let p* be a random probability measure on the Borel subsets of the real line
which has a Ferguson distribution with parameter a and let X, X,,- - - be a
sequence of random variables which, conditional on u* = p, are independent with
distribution p. Suppose for the sake of simplicity that the first n of the X;’s take on
distinct values and let ¥, = i if X,,, = X; for some i <n and let Y, =n + 1 if
X, . is distinct from each X, i < n. Conditional on X, - - -, X,,, the sequence

n

(Y., k > 1}, which classifies observations after the nth according to their agree-



1332 DAVID A. LANE AND WILLIAM D. SUDDERTH

ment (or lack of it) with the first n, is a Polya sequence with parameter w =
a,---,LaR—{X;, " ,X,}) A proof of this is easy using the techniques
and results of Ferguson (1973) and Blackwell and MacQueen (1973).

Now consider a sequence of variables X;, X5, - - - which constitutes an infinite
Hill model as in Section 5. Define Y, to be i if X,,, falls in the ith interval
determined by the first n X;’s. Then, conditional on X, - - -, X,, or uncondition-
ally, the sequence {Y,, k > 1} is a Pdlya sequence with parameter w =
(1, 1, - -, 1). A proof can be based on the calculations in Section 5 of Hill (1968).

Thus predictive distributions based on Ferguson models are quite similar to
those of Hill with the important difference that, for large n, future observations in
the Ferguson case are quite likely to agree with earlier ones, whereas, for a Hill
model, all observations are distinct with probability one. Indeed, Ferguson priors
are known to be concentrated on discrete distributions.

According to a famous theorem of de Finetti (see Hewitt and Savage (1955)), an
infinite sequence of countably additive, exchangeable variables is a mixture of
sequences of independent variables. Blackwell and MacQueen (1973) have shown
that Ferguson priors are the mixing measures for certain generalized Polya
sequences. Perhaps the exchangeable variables corresponding to an infinite Hill
model can be represented as a finitely additive mixture of countably additive,
independent variables. If so, the mixing measure would be a natural prior on the
collection of countably additive, continuous distributions.

10. Jeffreys’ diffuse measurement model. In his development of the theory of
least squares, Jeffreys (1932) considered the problem of measuring an object of
“completely unknown” size in the presence of normal measurement error with
“completely unknown” variance. Like Hill in the sampling context, so Jeffreys in
this measurement context considered it natural to assume that

(@) P(X; > max(X,, X)Xy, X,)= P(X; < min(X), X)X, X))
= P(min(X,, X,) <X;< max(X,, X5)| Xy, X))

1
3
where X, X2, X, are three N(p, o%)-measurements, conditionally independent
given u and o2 Jeffreys then derived the (unique) improper prior distributions for ,u.
and o2 which yield a’, and then he derived the posterior distributions for p and o’
given two or more measurements. The posterior probabilities for u agreed with
Fisher’s fiducial distribution, though the method of derivation was quite different.
These differences are revealed in an amusing and instructive exchange between the
two authors (see Jeffreys (1932, 1933, 1934) and Fisher (1933, 1934)).

Jeffreys, of course, assigned improper priors to u and o? in his 1932 paper. A
modification of his argument from the improper to the finitely additive context
yields a solution to Hill’s problem for n = 3. (Strictly speaking, we will verify the
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conditions of Hill’s problem only on Borel sets.) Identify the normal parameter
space {(p, 0*) : p € R, 0> >0} with the affine group in one dimension by
associating (, 0?) with the affine transformation x — ox + p. To model lack of
knowledge about the true parameters, it is natural to take as prior measure on the
parameter space an invariant measure on this group. So let n be a finitely additive,
left-invariant probability measure on the one-dimensional affine group (see
Greenleaf (1969), page 68), and let 8 be any probability on R* such that, if 4 is a
Borel set, then

B(4) = [N(A|p, o°) dn(p, o),

where N(A|p, 0%) = [/[ (2702~ 2exp(—(1 /2693 (x; — p)?) dx, dx, dx,. That is,
given (p, 6?), the coordinate functions (which we shall write as random variables
X, X, and X;) are independent normal with mean y and variance ¢

Letd =5 |X, — X,/ and m =1(X; + X,). As Heath and Sudderth (1976) show,
the posterior distribution of (g, 6%) given X, and X, is the same as the distribution
of (dKS ~! + m, 2d>S ~?) where K and S are independent standard normal vari-
ables. It then follows, just as in the countably additive case, that we may calculate
the distribution of X; given X, and X, (for details, see Section 11). If we denote this
conditional distribution 3, ,. then, for 4 C R,

(10.1) B, . (A) = [f,2mo)? exp( - u)Z) dx d( . 0%|x,, x;)

where d(p, 6%|x;, x,) is the posterior distribution for (g, ¢ given X, = x, and
X, = x,.

In particular, if ® represents the standard normal cdf, and f is the standard
normal density (and for convenience, suppose x; < x,), then

By {x %) <x<x} = f[cp( e M) - q)( Xlo_ #)] d(p, 0*|xy, x,)

(9

= f[cb{(z%ar)“s(x2 — dks™' = m) |

- o{(23d) "s(x, - dis™" — m)} ]f(k)f(s) dk ds
= f[tb{(ﬁd)_lsd(l - ks7h)

- o{(2id) "sd(~1 - ks™)} ]f(k)f(s) dk ds

= j[@{(2"3(s - k))} - ®(273(~s — ) | f(k)f(s) dk ds.

The last line is free of 4 and m and hence does not depend on the particular values
of x; and x,. Since the same expression is obtained if x; > x,, B, ,,{x : % <x <
X,} is a constant function of the argument (x,, x,).
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Moreover,
:l; = B{(x}, X3 X3): X; < X3 < X, 00 X, < X3 < X1}

= J(x<x) Be, xz{x X < x < Xy }dy (X, X,)

F [ixpam) Bey (X X < x < X1} dy(x, x5)

where y is the marginal distribution of the first two coordinates. By the preceding
paragraph, the integrand is a constant—hence the constant must be 1. Similarly, it
can be shown that

1 .
3 B, x,{x: x < min(x,, x,)}

= B, r,{x: min(x,, x;) <x < max(x,, x,)}
= Bxh xz{X: x > max(xb x2)} a.s. Y.

Thus B satisfies condition (iii) of Section 2 with n = 3; since B clearly satisfies (i)
and (ii), B8 is an element of H,.

11. A formula for predictive distributions. Consider a typical statistical
framework in which X, X,, - - -, X,,,, are independent random variables each
having the (countably additive) distribution a(#). Suppose 8 has a (prior) distribu-
tion p and that »(x,,- - -, x,) is a (posterior) distribution for # given X, =
X, X, =x, Then a (predictive) distribution for X,,, given X, =
Xpt o, X, =x,1i8 y(x, - - -, x,,) Where

(1L.1) Y(xy, - oo %, )(4) = fa(0)(A)v(xy, - - -, x,)(d0),

for A a Borel subset of R. This is a standard formula in the conventional,
countably additive theory. The object of this section is to verify it when the prior
distribution y is only finitely additive and, in particular, to verify (10.1) which is a
special case of (11.1). The proof is based on two lemmas whose statements require
the following definition.

For a nonempty set Y, let 9 (Y) be the set of finitely additive probabilities on
Y. Consider nonempty sets ¥, - - -, ¥,,,andlet Y = Y, X - - - XY, 1 <k <
n + 1. A strategy o on Y"*! is a sequence o, 0y, - - - , 6, where o, € IN(Y)) and,
for 1 < k < n, g, is a mapping from Y, to 9M(Y,,,). Each strategy ¢ on Y"*!
determines a probability, also denoted o, in IN(Y"*'), which is defined by the
formula
(11.2)

og= [ [8n" s Vur)O(V1 - - I Bpt) - "1()’1)(05’2)‘70(03’1)

for bounded functions g from Y"*! to R. A probability in IM(Y"*") is called
strategic if it arises from a strategy in this manner. Roughly speaking, strategic
probabilities are those which can be defined by a system of conditional distribu-
tions. As is well known, countably additive probabilities on sufficiently regular
product spaces can always be defined via conditionals. However, there do exist



DIFFUSE MODELS FOR SAMPLING 1335

finitely additive probabilities which are far from strategic (see Dubins (1975)). All
mention of sigma-fields and measurability is suppressed in the rest of this section.
However, it is easy to see that the conclusions generalize to a situation in which
each Y, is equipped with a sigma-field and only product measurable functions on
Y"*! are considered.

LemMa 11.1. Let o be a strategy on Y, X Y, X Y, and let ¢’ be the marginal
distribution of o on Y| X Y;. Then o’ is also strategic with o) = o, and
(11.3) a1 () = [f9(y3)0y(y1, y)(@3)01(y1)(dy2)
for @ a bounded function from Y5 to R.

PrOOF. Let g’ be a bounded function from ¥, X Y; to R and set
g1y y3) = &1, y3)-
Then
o/g/ . Og

= [118 (31, y3)02(y1, v )(@3)a(y ) (@) ao( @)

= [/8' (71, 73)01(y1)(dy3)o(dy)).
The first equality is by definition of the marginal distribution, the second is by
(11.2), and the third by (11.3). []

LeMMA 11.2. Let o be a strategy on Y, X Y, X Y, and let B be the measure
induced by 6 on Y, X Y, X Y, by reversing the first two coordinates. If the marginal
distribution of B on Y, X Y, is strategic; then B is strategic on Y, X Y, X Y5 and
Bx(y4, ¥1) can be taken to be a,(y,, y,). '

ProoF. Let B’ be the marginal of 8 on Y, X Y,. Because 8’ is induced by a
strategy By, B, it follows that, for bounded functions g’ from Y, X Y, to R,

Jg' dB’ = (/g (y2 »1)Bi(»)(d)Bo(dr2)

= [/8' (¥ y)o1(y (@) oo(d))-
Thus, if g is a bounded function from Y, X Y; X Y; to R,

1118(¥2 715 ¥3) 0y 1 Y (A 3) B1(y2)(dy 1) Bo(dy2)
= [118(¥2 Y1, 73)0(y1, ¥ )(d3) o1(y 1 )(@;)ae(dy,)
= /gdp.

The desired conclusions now follow. []

To derive (11.1) from the lemmas, let ¥, = ©, Y, = R", and Y; = R. Let o be
the strategy on Y; X Y, X Y; such that ¢, = p (prior on ®), 0,(f) is the product
measure «(f)" on R", and 0,(0, y,) = a(f). Next let 8 be the measure obtained
from o by reversing ® and Y, as in Lemma 11.2. By assumption, there is a
(posterior) distribution for # given y,. Thus the marginal of 8 on Y, X ® is
strategic. Hence, by Lemma 11.2, B is strategic and

By 0) = 0,(8,y,) = a(8).
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Now apply Lemma 11.1 to see that the marginal 8’ of 8 on Y, X Y, is strategic
with ‘

B'(y2)e = [/o(y3)a(0)(dy;)Bi(y,)(d0)

for bounded functions ¢ from Y5 to R. This final formula is the same, except for
notation, as (11.1).

The natural way to attempt a construction of a measure in H, is to specify its
successive conditional distributions. One selects a distribution for X, and then a
conditional distribution for X, given X, in such a way that the distribution of
(X}, X,) is an element of H,. Such a construction is presented in the example of
Section 7. However, we have not been able to continue in this fashion and specify a
distribution for X; given (X, X,) so that the joint distribution of (X, X,, X3) lies in
H,. We do not know whether this can be done. Equivalently, we do not know
whether there exist any strategic measures in H, for n > 3.
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