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HOW BROAD IS THE CLASS OF NORMAL SCALE MIXTURES?

By BRADLEY EFRON' AND RICHARD A. OLSHEN?
Stanford University and University of California, San Diego

We study the class of scale mixtures of normal distributions with
mean zero. Given that the cdf F(x) of such a mixture is fixed at two
points, say F(x1) = a1, F(xs) = as, we answer the question of how widely
F(x3) can vary at some third point x3. A brief final section mentions ex-
tensions of our theorem.

1. Introduction and summary. Andrews et. al. [1] restrict their well-known
study of robust estimators to error distributions which are mixtures of scaled

normal variates with mean zero. A typical such mixture has (right continuous)
cdf in the family &,

(1.1) Gt F(x) = §19,07 P(hx)p(dx)

where @ is the standard normal cdf, and g is some mixing distribution. For
example, if 4 itself is taken to be standard normal, then F is the Cauchy cdf.
It will be convenient in what follows to let ¢ put mass points at co and 0, cor-
responding respectively to mixture components of F with all of their mass at
zero or all of their mass placed symmetrically at + co. Formula (1.1) is valid
for x finite and nonzero. Some interesting properties of & are given in [5]
and [2].

Normal scale mixtures are attractive for Monte Carlo studies because they
are easy to work with, [2] and [7]. It is natural to ask how broad is the class
of such distributions. The specific form of the question considered here is as
follows: fix® two values of x, 0 < x, < x,, and two percentile values, { < a; <
a, and let & (x,, x,; a;, a,) indicate those members of .5 satisfying

(1.2) Flo)=ay,  F(x)=a;.

Then at a third value of x, say x,, what are the maximum and minimum of
F(x,) attainable in .% (x,, x,; a;, @;)? In other words, if we fix two percentiles
of F, how widely can we vary a third percentile within the class of normal
scale mixtures? )

Figure 1 illustrates the answer to this question for the class .~ (0.253, 2.400;
.6, .9). The standard Cauchy is in this class. For x, between x, and x, the set
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Fi1G. 1. Bounds on normal mixture cdf’s with F(0.25335) = .6, F(2.3999) = .9. The standard
Cauchy is in this class. The upper and lower boundaries correspond to normal mixtures with
one point of support in (0, ) and one point at either 0 or . The dotted line indicates the
Cauchy cdf.

of attainable percentile values forms a “banana” containing the Cauchy cdf.
The boundaries of the banana are themselves cdf’s. The upper one, between
x, and x,, is a two-point mixture putting mass .802 at 4 = .796 and mass .198
at # = 0. The lower one puts mass .891 at # = .506 and mass .109 at 4 = co.
It turns out that this simple form of solution holds for any choice of x,, x,, a,, .

THEOREM. There exists a unique F* in 5 (x,, X,; &, a,) with mixing distribution
u putting mass on one point h* in (0, oo) and on h = oo, such that
(1.3) F*(x;) = MaX (o ooayap F(Xs)  for all  xye (x5 x;) and
F¥(xs) = min,., o .0 o) F(X;)  for all positive x, ¢ (x,, x,;) .
Likewise there exists a unique F** in (x,, x,; a,, a,) with g putting mass at one
point 2** in (0, co) and on /£ = 0, such that
(1.4) F**(x;) = MU - a0y F(x;) forall x,e (x, x,) and
F**(x3) = MaX (. 4o« F(X3)  for all positive  x; ¢ (x;, X,) .

The proof of the theorem, which is closely related to the Tchebycheff system
considerations of [3] and (implicitly of) [4], is presented in Section 2¢. Notice

4 Indeed, a finite set of mean 0, normal densities with different variances is a Tchebycheff
system on [0, o), but the set of their indefinite integrals is not. It is the latter set with which
we are concerned.
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that the theorem makes it easy to find the upper and lower bounds. The mixing
distribution corresponding to F* puts mass #* at A* and mass 1 — p* at 0,
where p* and A* are obtained by numerically finding a solution to the two

equations

(1.5) w*O(x; b)) + (1 — p*)- S=ay, i=1,2.
Likewise, the equations

(1.6) - p¥*O(x, - ¥*) + (1 — p**) = a,, i=1,2
give F**,

Of course our theorem does not answer the question of whether or not the
class of normal mixtures is broad enough for any particular Monte Carlo study.
It does give some useful information to help with the answer. For instance,
any normal mixture agreeing with the Cauchy at the 60th and 90th percentiles
cannot have F(x) > .77 at the Cauchy 75th percentile. Extensions of the theo-
rem to the case of more than two restrictions F(x;) = «a; are easy to make, but
will only be sketched here.

2. Proof of the theorem. Fix 0 < x, < x, < oo. Asbefore, let &% = .5 (x,,
X,; ay, a,) be the class of scale mixtures of normal distributions for which
E (D(hx,)) = §10,0 P(hx,)pi(dh) = @, and E,(D(hx,)) = a,. Suppose that & is
not empty. Fix x;, x; < x, < x,. Let X = {x,} be the subset of R® with coordi-
nates (E,(D@(hx,)), E,(D(hx,)), E,(P(hx,))) as ¢ ranges over all probabilities on
the Borel subsets of [0, co]. As u varies over the subset of probabilities which
consists of point masses, {x,} traces a curve < in R®. Because the Borel prob-
abilities on [0, co] are all mixtures of these point masses, X is the convex hull
of 2. What Lemma 2 below says geometrically is that all the points of = are
extreme points of its convex hull.

LemMa 1. X is closed, convex, and bounded.

Proor. The set of all probabilities on [0, co] is (weak*) compact, and for
every x, 4 — E,(®(x)) is weak* continuous. This shows that X is closed. Con-
vexity and boundedness are obvious. []

It follows from Lemma 3 below that X hasa nonempty interior and is strictly
convex (that is, X has no flat spots).

LEMMA 2. The extreme points of X correspond to all probabilities y degenerate
at a single point.

Proor. Fix a point x,e X, where p is not a point mass. Then write ¢ =
av + @2 (0 < a < 1, a =1 — a, v and 4 probabilities), such that s < ¢ for each
s e support (v), tesupport (4). Then x, = ax, + ax; and by the construction
of v and 4, x, # x;. Therefore x, is not an extreme point of X. It follows that
the extreme points of X are of the form (®(4,x;), Q(k,x,), P(h,x,)) for some h,,
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0 < ) < co. It is obvious that the points corresponding to 4, = 0, oo, namely
(3, %, %) and (1, 1, 1), are extreme. Concentrate on A, for which 0 < 4, < co.

We now construct a plane which is tangent to X at precisely the point
(D(hox3), D(hyxy), O(hyx;)) of Z°. The existence of such a plane implies that
(D(hyx,), D(hyx,), D(hyx,)) is an extreme point of X. Thus, study L(a, ¢,h) =
L(h) = a®@(hx;) + O(hx,) —c¢ for a,c+ 0. If L(k) =0, then a®(h,x,) +
D(hyx,) = c. If L'(h) =0, then ax;p(hyx;) + x,0(hyx)) = 0. For both L
and L' to be 0 at hy a= —x/x(p(hx,))/(0(heX,)) and ¢ = D(h,x,) —
x,/x35((ho X)) [(0(Ro X;))D(Ry ;). Now, in an abuse of notation, coordinatize R®
as (z,, 2, 2,) and study

L(z,, z,, 2 —z_ﬁwz ﬁM(Dh — O(h .
(235 215 2,) 1 %, o(hoxy) s + %y o(hyxy) (B Xs) (o x;)
{L = 0} is a plane passing through (®(k,x,), ®(k,x,), D(h,x,)). Toshow that the
stated point is extreme in X it suffices to show {L(®(kx,), ®(hx,), D(hx,)), h + hy}
are all of the same sign. Put

f(h) = L(D(hx,), D(hx,), D(hx,))

and observe that: (i) f is continuous on [0, co]; (ii) f(h) = 0 = f’(h,); and
(iii) f is negative for & < h,, and positive for & > k,. Thus, fstrictly decreases
until A, is O there, and strictly increases thereafter. In short, (®(,x,), O(k,x,),
D(h,x,)) is extreme. []

LemMMA 3. Let O<w, <w, < --- <w,< o0, and a,, -+-,a, be nonzero
constants. Then

g(h) = >:7 a, O(hw;) = constant

has at most n solutions in (0, ), and g’(h) = 0 has at most n — 1 solutions in
(0, o).

Proor. The assertion regarding ¢’ follows from a reparameterization of
Problem 75, page 48 of [6], and the statement concerning g follows easily. []

Let Q(h) = a,D(hx,) + a,D(hx,) + a;O(hx,) for an arbitrary constant c; let r
be the number of distinct real roots of Q(4) = ¢ in [0, co]. Because of the
possibility of roots at 0 and oo, Lemma 3 implies that r < 5. The next lemma
shows that sometimes more can be said. Define #’ as the number of roots in
(0, o) plus one-half the number of roots at 0 and oo.

LemMma 4. If Q(h) = c for all h in [0, oo], then r' < §. Thus Q(h) = ¢ has at
most two nonnegative roots, one of which is at 0 or co.

Proor. Lemma 3 implies Q(h) = 0 has at most 2 distinct roots in (0, o).
Since Q(h) = ¢, whenever Q(h) = ¢ for he (0, o) it follows that Q’(h) = 0.

In addition, if A, < k, are 2 roots of Q(h) = ¢, then there exists an h*:
Q'(h*) =0, hy < h* < h,. Therefore, (r + 1) + (r — 7) < 2, where 7 is the
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number of roots of Q(h) = ¢ at 0 and . Rewording, r' + 72 —147r +
2—r<2,2 <3, <30

LEMMA 5. Let
f(x) = a, + Nk, a;D(h;x)
9(x) = by + XE, b, D(k;x) .
Suppose
(a) there are 0 < x; < x, < - -+ < Xy, < o0 for which f(x;) = g(x;), and that
(b) f'(x:;) = g'(x;) for some i.
ThenfE g.

Proor. It follows from (a) that there exist y;, «««, yyp_1, x; < y; < X, for
which f'(y;) = ¢’(y;). (Notice that /" = (f — a,)’, 9 = (9 — b)’.) Because also
f'(x;) = ¢'(x;) for some i, Lemma 3 implies that f — a, = g — b,. Therefore,
(a) implies that f = g. []

The following argument rephrases remarks of Harris ([3], page 529). Let x*
be a boundary point of X. There is a supporting hyperplane at %* which also
contains the extreme points of X of which %* is a convex combination. Thus,
there are numbers a,, a,, @, and a constant ¢ for which 3 a;%* = ¢ and
2 a:; %, = c forall x,e X. In particular, a, ®(hx,) 4+ a,P(hx,) + a;P(hx,) = ¢
for all 2e[0, oo] with equality holding for those extreme points in the sup-
porting hyperplane containing %*.

In view of Lemmas 3, 4, and 5 and the foregoing remarks, for all x,, x; <
X3 < Xy,

max_. F(x,)
is achieved by a unique distribution—call it F*—corresponding to a distribution
¢ supported by r’ < § points, where r’ is computed as before. In general, the
number of points in the support of x is simply the number of times the sup-
porting hyperplane containing %* touches X.

An argument like the last one shows that there is a unique F** which for all
X3, X; < X3 < X, achieves the

min_. F(x,) .

Because F* can be seen to minimize F’(x,) over &, the previous arguments
and Lemma 5 serve to show that F* minimizes F(x,) over & for x, > x,. In
short, there is one “maximizer” inside (x,, x,) which is a “minimizer” outside.
And there is one “minimizer” inside (x,, x,) which is a “maximizer” outside.
The minimizing y inside puts positive mass on {# = oo} whereas p of the maxi-
mizer inside puts positive mass on {# = 0}. That g is unique can be seen to
follow from various facts, the simplest being the cited Problem 75, page 48
of [6].

3. Extensions. The arguments of Section 2 extend readily to the case of k >
2 fixed percentiles. And the obvious analogue to the theorem is true. Thus,
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there are two unique extremal distributions from among those satisfying the
constraints: they respectively minimize, maximize, minimize- - - and maximize,
minimize, maximize- - -; moreover, the analogue to " does not exceed (k + 1)/2.
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