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NONPARAMETRIC ESTIMATION FOR NONHOMOGENEOUS
MARKOV PROCESSES IN THE PROBLEM OF
COMPETING RISKS

By THoMmAs R. FLEMING

University of Maryland

Consider a time-continuous nonhomogeneous Markovian stochastic
process V having state space 4% Let 4 C A° and let Pa4ij(r,t) be the i —j
transition probability of the Markovian stochastic process V4 arising in
the hypothetical situation where states 4° — 4 have been eliminated from
the state space of V. Based upon the concept of Kaplan and Meier’s
product-limit estimator, a nonparametric estimator ﬁAij(T,t) is formulated
which is proved to be uniformly strongly consistent and asymptotically
unbiased. These results generalize those by Aalen for the special case in
which A4° has one transient state.

1. Introduction and summary. Consider a continuous-time nonhomogeneous
Markovian stochastic process V' = {V(1); t € T} where T is a finite interval. As-
sume V" has state space 4° consisting of an arbitrary but finite number of both
transient and absorbing states.

In the theory of competing risks, one considers a subset 4 of 4°and for i,
J € A seeks to estimate P, (7, ) which is the i — j transition probability of the
Markovian stochastic process ', which would exist in the hypothetical situation
where states A — A4 have been eliminated from the state space of V.

Rather than assuming that some of the states are eliminated from the state
space of ¥, Hoem (1969) made the more general assumption that some of the
possible transitions of " are eliminated. While attention in this paper will be
devoted to the former case, the techniques employed and basic results achieved
are also valid for the general situation considered by Hoem. Hoem’s terminology,
“partial transition probability,” for P, (, t) shall be adopted.

Due to a desire to formulate an approach which could be applied to non-
homogeneous Markov processes with an arbitrary finite number of transient
states, the author sought to formulate a nonparametric estimator of P, (<, 7).

Many authors, including Cutler and Ederer (1958), Berkson and Gage (1950),
Gehan (1968), Elveback (1958), Chiang (1968), Littel (1952), Kimball (1960),
and Kaplan and Meier (1958), proposed nonparametric estimators for P, (7, f)
in the special case where 4° had one transient state and two absorbing states.
Kaplan and Meier’s product-limit estimator has been shown to possess desirable
statistical properties, including uniform strong consistency, a property not gener-
ally shared by the other estimators mentioned above.
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1058 THOMAS R. FLEMING

The current author, after defining in Section 2 the competing risks model
generalized for an arbitrary number of transient and absorbing states, formu-
lates in Section 3 the nonparametric estimator f’Aij(z-, 1) of P, (7, 1) for the
generalized model. P, (z, f) is based upon the concept of the product-limit
estimator and is computed from N independent identically distributed sample
processes V.

It is proved in Section 4 that the bias of P, (, f) converges exponentially
to zero as N — oo, and in Section 5 that sup, g, No|Bi(t, 1) — Pz, )] — 0
a.s. as N — oo for ¢ < 4, thus implying the uniform strong consistency of the
estimator. These results generalize those achieved earlier by Aalen (1978) for
the special case in which A° has one transient state.

In Section 6, the absolute distributions are expressed in terms of the partial
transition probabilities and their estimation is discussed.

2. The statistical model.

2.1. The general model. Consider a probability space (Q, F, P). Fix a closed
finite interval T = [f,, ¢,] and consider the nonhomogeneous Markovian stochas-
tic process V = {V(1); te T} where, for each fixed te T, V() has finite state
space 4°. A° consists of a set 4, of s transient states and a set A4, of r absorbing
states. V is assumed to have almost surely left-continuous sample paths, and
hence will be called left-continuous.

Furthermore, if X is any left-continuous process with right-hand limits, we
will define (X)* to be the right-continuous adaptation of X.

Define Pi]-(‘l', t) = P(V(l‘) = ]I V(‘L') = i), i,je A°and Pi(t) = P(V(l) = i); ie A

We shall make the following assumptions:

AssuMPTION 2.1. (Regularity assumption).

lim,_,

1 — Py(r,c +h) _ —vu(7)

; for any ie A,

lim,_, Mhiiﬂ = v,;,(7) forany i=#j; i,jed.

For any i, je A4° v;;(r) is continuous.

Note v;(7) = — X e40,521 Yi;(7)-

ASSUMPTION 2.2. There exists ¢ > 0 such that P(f) > ¢ foranyie 4, n 4
and for any re T where A is as defined in Section 2.2. []

Define the (s + r) X (s + r) matrix 27(f) by (7(?)),; = v;;(f). Notice that
if i e A;, then the ith row of 27(r) is composed of all zeros.

Define B,,(z, t) = {tv;,(s)ds for any i, je A°, and then define the matrices
F(r, t) and B(z, t) by (F(z, 1)),; = Pyy(7, t) and (B(z, 1));; = Bi(7, 1) I denotes
the identity matrix.

Since Assumption 2.1 and the Markov property imply the validity of the
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Kolmogorov forward and backward differential equations,

0
T Py(z, 1) = 2aiea0 Pis(t, t)uj,,(l) .
Thus

Fr, t) = I + {£ Pz, 5) dB(z, 5) .

In the further development of the model in Section 2.2, we will have need
for Feller’s (1940) result that for a given B there exists a unique solution to the
Kolmogorov forward and backward differential equations for .&”which satisfies
the properties of a probability transition matrix; namely

DieaoPuy(s, ) =1, 0 Pys,t) <1, and F(t,1)=1.

2.2. The competing risks model. Recall that the stochastic process ¥ under
study has state space 4°. We wish to study the Markovian stochastic process
V, which arises in the hypothetical situation where the state space of V is re-
stricted to a nonempty set 4, 4 C A"

We will be interested in hypothetical partial transition probabilities of the
form: P, (7, 1) = P(V(t) = j| V() = i) i, je A

For any i, je A, let the intensities v, ;(f) be defined for P, (7, t) exactly as
the intensities v,,(¢) were defined for P, (7, f), so v,;;(¢) and v,,() in general need
not be equal.

The following is an empirical assumption discussed by Cornfield (1957), Gail
(1975), and Tsiatis (1975) which is important to the development of the theory
of competing risks. It, along with the result from Feller (1940) mentioned
earlier, assures that the partial transition probabilities P, (7, t) are well defined.
Empirical justification for the assumption must be considered in each particular
application.

AssuMPTION 2.3. For any i, je A such that i # j, v, ;(f) = v;;(¢).

Consequently 27,(¢), the matrix of intensities when the state space is restricted
to 4, can be obtained from 777(¢r) by deleting the rows and columns of 77(r)
not corresponding to states in 4, and redefining only the diagonal terms by
va(l) = _ZjeA Vij(’)-

Define B (7, 1) by (B,(z, t));; = Baij(7> 1) = §L (7 4(5));; ds for any i, je A.
Also define F(r, 1) by (F(t, 1));; = Pa;(t, t) and let I, be the identity matrix
whose dimension is m which is the cardinality of 4.

Since we now have the validity of the forward and backward differential
equations for &,

(2.1 P, ) =1, + (L Fy(r, 5)dB (7, 5) .
3. Nonparametric estimator. For purposes of estimation, we assume that
we observe N independent stochastic processes {V,(¢); te T}; j = 1, -- -, N, iden-

tically satisfying what has been set forth in Section 2.1.
Assume for notational simplicity that 4 = {1, 2, ..., m}.
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3.1. Counting processes. N(t) is the (s + r)-dimensional vector whose ith
component, N,(?), represents the number of the N observed processes in state i

at time ¢.

For any i, j e A, let the right-continuous transition counting process M, (t, 1)
represent the number of i — j transitions over (v, t] if i # j; and—(number of
i — (A — {i}) transitions over (z, t]) if i = j. The (m x m) matrix M (z, ) is
then defined by

(M (7, 0)i; = M 4i5(z, 1) .

According to the definitions of multivariate counting processes and their
corresponding intensity processes, as given in Section 1 of Aalen (1977), we
observe that for any fixed 4 ¢ A°,

MA(T, 0) = (MAm(T, ‘)9 MA13(T, ‘)’ ] MAlm(T, ‘)a
M (7, ’), M 4oz, ’)a ) MAm,m—l(Ta '))
forms a sequence in N of multivariate counting processes such that, if M, (z, )
has intensity process A ,;(s), then
Ais(5) = w5 ()Ni(s) -

Equip (Q, F, P) with an increasing family of sub-s-fields of F, {F,}, where
Fo=o(V(s);ty<s =<1t 1=<k=<N). Note Mz, .) is adapted to {F,}.

If we define
(3.1) Lyij(z 1) = M7, 1) — §Lvg(s)Ni(s) ds
V1 <i < m, then the next lemma follows from Dolivo (1974) and Boel,
Varaiya and Wong (1973).

LEMMA 3.1. {L (7, t); 1 < i, j < m, i # j},cr isa collection of square integra-
ble martingales; that is, for any i, je A, {L,,;(z, 1);t <t < t}isa martingale such
that SUP. i<, E(L (7, 1)) < oo.

3.2. Definition of %(f, t). For any ie A° let

R,(t) = [N()]™* if Ny(t) >0, andbe 0 otherwise.

Define the (m x m) diagonal matrix .22,(1) by (.22,(t));; = R,() for anyie 4.

Based upon the concept of the product-limit estimator and the cumulative
hazard estimator discussed in Kaplan and Meier (1958), Nelson (1969), and
Breslow and Crowley (1974) and generalized to counting processes by Aalen
(1978) we define

B,(z, 1) = {t Z2,(5) dM (t, s) .

With this as our motivation, we propose the following left-continuous esti-
mator of &(z, t), which can be shown to be based upon sufficient statistics:

(3.2) Gyt 1) = I, + = Py(r, ) 2,(s) dM ,(z, ) .
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It should be pointed out that .Z,(z, ¢) is defined recursively, is easy to calcu-
late even for large values of N, and is intuitively appealing.

We will continue to deal throughout the remainder of this paper with esti-
mators of parameters of the stochastic process V,. Since A4 remains fixed, there
should be no confusion provided by the fact that we will suppress the use of
the subscript 4 in Sections 4 and 5.

4. Asymptotic unbiasedness of .7(r, f). Componentwise, the bias of Az, 1)
converges exponentially to zero as N — oo, as shown by the following theorem.
THEOREM 4.1. (EFA(z, 1) — FH(z, 1);; = O[e"™ =91, i, je A.
Proor. By equation (3.2),
Az, t + h) — Az, 1) = (&P~ Pz, 5)(s) AM(z, s) .

By the left-continuity of ﬁ(r, 5)7(s), Assumption 2.1, and the Markov prop-
erty, it follows, as in the proof of Proposition 2 in Aalen (1978) (the Appendix),
that

% EP (5, 1) = Ypensna %es(OEBul(es HR(ON(D))

(4.1) = Ykeana Vii(DE{Py(T, 1)}
— Zkeana Yii(DEPu(t, DIty y—q} -
Define the diagonal matrix iy, -q bY (Fixw-a)u = Iiy,w=0 and F (7, 1) =
EA(z, t)y — Az, 1), s0 F (¢, 7) = 0.
Then, by equation (4.1) and the fact that (9/0)P;;(7, 1) = T 4c 404 Pu(T, Dvis(0),
it follows that

0

527 (59 = F (0, 97) + E[F(7 )P 1nw=al 7 15) -

Hence, by the Kolmogorov backward equation,
’e% F(r, )P(s, 1) = { (% F, s)} Fs, 1) — F (e, )= Z(5)F(s, 1)}

= —E[A(t, ) Finn-al Z ()P (s, 1) .
Since for i e A4,

P[I[Ni(s)=0] = 1] = P[Ny(s) = 0]
(4.2) =[l— P(s)]¥ < e¥rti-e1 |
ai Tz, ) (s, 1) = O(eMinti=s) .
s
Integrating with respect to s over (z, 1),

T ) = ¢ % F (e, ) P(s, 1) ds .

Hence, the theorem follows by equation (4.2). []
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5. Uniform strong consistency of .(z, r). In this section, we prove Theo-
rem 5.1 concerning the uniform strong consistency of @(r, t). This result
generalizes the significantly more straightforward result achieved by Aalen
(1978) for the special case in which A° has one transient state. In this sequel,
as throughout this paper, convergence refers to N — oo.

To prove the theorem, we will first prove the uniform strong consistency of
B(z, 1) in Lemma 5.8. Using a technique of Aalen (1978) this will follow easily
after we have verified auxiliary Lemmas 5.1, 5.5, 5.6 and 5.7.

Define the (m x m) diagonal matrices II(r) and II-%(r) as follows: for any
ie A, (I(r),; = Py1),

(AI7H0)e = [P(D] if ie4,n 4,
=0 if ie Ad nA.

Forany k =1, ..., N, define the (m X m) matrix M*(z, t) in the following
manner. For anyi, je A4, (M*(z, t)),; = M}z, t) represents the number of tran-

K3

sitions i — j over (v, t] for the process V,, if i # j; and—[number of transitions
i — (A — {i}) over (v, t] for the process V,], if i = ;.

In the next lemma, as throughout the paper, — a.s. denotes convergence
almost surely.

LemMa 5.1. (1/N)M(z, t) — §t II(s) dB(z, 5) a.s. componentwise.

Proor. Since {M*(r,); k =1, ..., N} is an independent, identically dis-
tributed collection of random matrices, by Kolmogorov’s strong law of large
numbers componentwise we have

lim,_., % M(z, t) = lim,_, % T MKz, 1) = EMY(z, 1)

The lemma now follows by equation (3.1) and Lemma 3.1. []

At this point, we will prove a lemma to be used in the proof of Lemma 5.3,
which in turn will be needed in the proofs of Lemmas 5.4 and 5.5.

LEMMA 5.2. Letre A= {1,2,3, ...} and let i,je A Then there exists a,, <
oo such that

E(N=HLy(to, ) < @y, forany NeA.
Proor. Chung (1968, page 47) has stated the next useful result:
If p>0, E(X|")<co, then xPP(|X|>x)=o0(l) as x—o0.
(5.1 Conversely, if x?P(|X| > x) = o(1), then
E(| X)) < oo for 0<e<p.

A second immediate result which will be needed below is given in inequality
(5.2): let re A. Assume {X,},., is an independent identically distributed col-
lection of mean zero random variables such that E(X,*) < co for any re A.
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Then there exists a,, < oo such that
(5.2) forany Ned, EWN?YIL X)) <a,.
Now,
N7 L (1, 1) = N72 00 [ME(t, 1) — S8 vi() iy =01 95]
= N7 DL Lt 1)
The intensity process v, ;(£)]iy, =i of Mfi(t, #,) is bounded by v;. Let U, be

a Poisson distributed random variable with parameter (t, — f,)y, = v,’. Clearly
then,

(5.3) |M5(t,, t,)|  is stochastically smaller than U,
Thus
XTP(|Ly(t 1)| > x) = XM (8, 1)] + v > x)
S xP(U,, > x — ') =o(1),
where the second inequality follows from inequality (5.3), and the equality
follows from equation (5.1) and the fact that the Poisson (v,’) distribution has

finite moments of all orders.
By another application of equation (5.1), we conclude

E(L¥(t,, 1)) < o0 forany red.
The lemma now follows by inequality (5.2). (]
LEMMA 5.3. Let 0 < p < L. Then for any i, je A°,

SUpger N? l% Li,'(to, t)l — 0 a.s.

Proor. We will use the following inequality which is given in Loéve (1963,
page 524):
(5-4) CyPlsupeer Ly, )] > Cy] = S[S“pteT(Lij(io,t)[>CN] |Li;(to> 1) dP .
Fix « > 0 and let C,, = aN4*¥?" where re A. Then by equation (5.4) for
any rel,
C¥P[sup,er |Li(to, )] > Cy] = CYP[sup,cr (L;s(t0 1) > C¥]
= S[supteT!Lﬁuo.anN] (Lia'(to’ tl))zr dp.
Hence by Holder’s inequality and Lemma 5.2,
P[sup,cr |Ly(te, 1) > Cy] < (a4,)(P[sup,er |Li;(t0, 1) > CyDINTCH
o)

1

a 1
N L; (1, ’)‘ > 0‘} < a, N¥"Cyr = —24r

att N? :

P [Supte , Nta-am

Hence, by the Borel-Cantelli lemma and the above, the lemma follows. []
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LEMMA 5.4. Let 0 < p < L. Then foranyic A°,

SupteTNp %Nl(l‘) — E~—]1\7 Nz(t) — 0 a.s.

Suppose either i€ 4, or i€ 4, and A4, has cardinality one. Then the lemma
would follow from Lemma 2.2 of Barlow and van Zwet (1970).

Suppose then i€ 4, and 4, has cardinality greater than one. We can assume
A, has cardinality two since the method of proof can be applied with equivalent
success to any higher finite cardinality. Take A4, = {i, k}.

The process denoted by N,(¢) in the proof of this lemma is actually the right-
continuous adaptation of N(#), (N,(¢))*. However, the validity of this lemma
follows immediately from its proof for this right-continuous adaptation.

Pick any ¢ arbitrarily close to zero.

Because there exists § < co such that for any re T and for j,le 4, v, (1) <
—v,;,;(t) < &, we can subdivide T into a finite number of subintervals such that
for any subinterval [a, §],

{8 —v(Hdt < e.
Clearly Lemma 5.4 will follow if we can show

(5.5)  SUpyeis, N? %Ni(t) - E%Ni(t) 0 as. foreach [a,p].

Adopt the notation
M (t, £) = X je 0,50 Mij(tos 1) and L (1o, )= 37 ;e 40,501 Lij(t0, 1)
Observe that for any 7 < ¢,
(5.5a) Ni(t) = Ny(t) + My(, 1) — M, (7, 1),
M, (7, t) = L, (7, 1) + §¢ —v,(s)Ny(s) ds ,

and
M, (7, t) = Li(t, t) + (L v, (s)Ny(s) ds .

Take a < t < 3. Then
SUPcrs, N7 ‘_1_ N(t) — E LNi(t)‘
sesp V7 |y N

= N?

1 1
3 M) — £ N

1 1
(5.6) + SUPasi<p NP‘N Lyy(a, 1)‘ + SUp,g,<p N7 ‘W L;(a, t)\
1 1
+ {supasisy N7 j_ﬁ Nt = E N,c(t)‘} (12 v4u(s) ds}

+ {supﬂétg'9 N7 l% N(t) — E*]lv Ni(t)“ {§& —vii(s) ds} .
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Obtaining the inequality corresponding to equation (5.6) for
SUP,<;<p N?INTIN (1) — ENTIN, ()|, and solving the system of two inequalities,
one obtains:

[(1 — §& —v.(s)ds)(1 — §& —v,.(s) ds)
= (32 2(5) (1 vuls) )] Uy N* |- Nt — E - N0

1
(5.7) = {Np %/:Ni(a’) —E %Ni(a)‘ + SUP,s.<p N? iﬁLki(a, t)‘

¥ SUPeces, ij% Li(e, r)“ {1 = §2 —vu(s) ds})

+ {N” % Ly, t)l

1
% Ny(a) — ETVTNk(a)l + SUPug.<s N?

+ SUPsiss N7 2 Lo |} {12 v00) do)

Note that ¢ was arbitrary. We can then choose it small enough such that the
term in the brackets on the left-hand side of inequality (5.7) is positive.

Since the right-hand side of inequality (5.7) converges to zero a.s. by Lemma
5.3 and by Chung’s (1968) Corollary 5.4.1, equation (5.5) follows. []

LEMMA 5.5. Let0 < p < %. Then foranyi,jc A,
1 1

SUp,er N” N M, (1, 1) — ETVT M, (1, t)‘ —0 as.
Proor.
1 1
’N M, 1) = E - Mt z)‘

=1 L,.(t,t ! 1 N, E ! N, d.

= v 13(fos 1) + §3, ¥15(5) N i(s) — N i(s) | ds| -
Thus

1 1
U,y V7| Myy(to, 1) = E - M, z)‘
1 1 1 t
= sup,er N? N Lij(to’ t)] + {SUPteT N» W Ni(t) — EW Nl(t)‘} St(l) Vi]-(s) ds .

The lemma now follows by Lemmas 5.3 and 5.4. []

The author is indebted to the referee for the following significant simplifi-
cation of the proofs given above in the important special case p = 0. Using
the fact that a sequence of monotonic functions converging pointwise to a
continuous function also converges uniformly (see Rudin [1965], Chapter 7,
Example 17), Lemma 5.5 for p = O then follows immediately by the strong
law of large numbers. Lemma 5.4 then follows for p = 0 by equation (5.5a),
rendering Lemmas 5.2 and 5.3 unnecessary in this special case.
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LEMMA 5.6. Let 0 < p < L. Then componentwise
sup,.r N?|N#Z(t) — II7(1)] - 0 a.s.
Proor. Following the technique suggested by Aalen (1978), we can write
the following inequality for ie 4, N 4:
(sup.er N?INFZ(1) — I17Y(8)])us
< SUPier NP|N_1Ni(t) — Pi(t)l
= @ inf, ., N7IN(1)

1
+ — NgI[infteTN_lNi(t)éwl :

(5.8)

I[infte T N7IN;(¢)>40]

The first term on the right-hand side of equation (5.8) converges to zero a.s.
by Lemma 5.4. Hence, to prove the lemma, it suffices to show that for any
¢ > 0, there exists N, such that

(5.9) Q = Plling,pw-wynsyn = 0 forall N = Ny
=>1—c.

Let ¢y = min (¢, 3¢). Since sup, ., [N7IN,(t) — Pi(f)] - 0 a.s., there exists N’
such that

P [supte r

% Ni(f) — P(f)| < & forall Nz N’] >1—¢,

implying, since inf,., P,(f) = ¢,

Q:P[infteT%Ni(t) > 3o for all NgN']g l—e>1—c¢.

Letting N, = N’, equation (5.9) follows. []

LemMA 5.7. Componentwise, I1-X(t) is of bounded variation over (z, t,).

Proor. By equation (2.1),

Piy(z, 1) = {0:; + Dkeiieeapna Ve Pir(T5 $)vi;(s) ds} + {§E Pyy(z, s)v;4(s) ds} .

The integrals are bounded monotone functions of t. Hence Pij(z, t) is of
bounded variation. The lemma now follows by Assumption 2.2 and equation
(6.1). O

LemMA 5.8. Let0 < p < %. Then componentwise,

SUPyer Npl-é(toa t) - B(to, t)l — 0 a.s.
PrOOF.

Bt ) = Bt 1) = §1,[NZ(s) — T(9)]d L M(, 9

+ e TT) [d% M(ty, 5) — T(s) dB(1, S)J .

The proof follows by Lemmas 5.1, 5.5, 5.6 and 5.7. ]
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THEOREM 5.1. Let 0 < p < 4. Componentwise,
SUP, gpze, N?| A, 1) — F(r, )] > 0 as.
Proor. Define the left-continuous processes Z/(z, 7) and U(z, 7) such that
dN—?Z/z, t) = d(HA(z, t) — H(z, 1)) and
(5.10) dU(z, t) = Sz, )[d(B(z, t) — B(z, 1))]
where 2/(z, 7) = 0 = U(r, 7). Then by equation (5.10),
(U(z, )" = {:dU(z, s)
= gg{:j[ﬁ(r, s)(B(z, s) — B(z, 5))] — dH(z, 5)[B(z, s) — B(z, )]}
= (s, t))+£é(r, 1) — B(z, 1)]
~ §L[ Az, )(dB(z, 5))(B(z, 5) — B(z, 9))] -
SUP. 2z, N?[(A(z, 0)*[B(z, 1) — B(z, )]] > 0 as.

componentwise by Lemma 5.8. Furthermore,

(§¢ [ A=, s)(dB(z, 9)(B(z, 5) — B(z, )]}
= Dliea Dikea Vs Pik(f’ S)(sz("" 8) — Bi(7, ) dﬁkl(f’ 5)
< Dliea 2ikea SUPcsisy IBU(T’ 1) — B(z, 1)l |Bkz("" )| -

By Lemma 5.8, it follows that
(5.11) SUp.5s,, N?|U(7, 1)) — 0 a.s. componentwise.

Since dB(z, t) = 7(9 dt, dH(r, t) = Az, )7 (¢) dt, d@(z‘, 1) = @(z‘, ?) dB’(z', 1),
and N=*Z/(z, t) = H(r, t) — H(z, 1) it follows by equation (5.10) that

(5.12) d(N-*Z/(t, t)) — N7*Z/(z, )Z7"(t) = dU(z, 1) .
Following the same argument as that given in Section 4, we have
N-*Z/(z, t) = (& d(U(z, 5))FH(s, 1)
= Uz, $)FA(s, t)|iz. — (&~ U(z, 5) dF(s, 1)
= Uz, t) + (& U(z, 5)Z77(s) (s, t) ds .
Hence by equation (5.11) the theorem fpllows. 0

6. Absolute distribution. For clarity, the subscript 4, which has been sup-
pressed in Sections 4 and 5, will be retained again in this section.

Our main focus has been on the partial transition probabilities &,(c, f). Let
us momentarily consider the absolute distribution defined as follows.

Let P (1), with (P (t)); = P,;(t), be the vector whose jth component represents
the probability of being in the jth state of 4 at time ¢, in the hypothetical in-
stance when only states in 4 are present. Hence };;., P,;(f) = 1.

Let N,(¢) be the number of the N processes which are in some state in A4 at
time ¢, 0 N,(#) = 21,4 Ni(?).
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For motivation, we give the following example in which the data has been
artificially constructed.

ExampLE 6.1. Consider a sample of 10 offspring, all of whom have both
parents classified as sickle cell anemia carriers. Each member of the sample is
observed for 75 years, and Table 1 represents the distribution of the sample
amongst the 5 states and shows all transitions which took place.

Assume one would like to estimate P, ,,,(75), which is the probability of an
offspring having died from sickle cell anemia within 75 years of birth in the
hypothetical situation where the risk of atherosclerosis is eliminated.

A natural estimator might be Ny(75)/N,, 5 ,(75) = 2/2 + 2 4+ 2 = .33.

This estimator N,(f)/N,(¢) in effect distributes the probability attached to the
eliminated states {4° — 4} amongst the states in 4 in such a manner as to
preserve their probabilistic proportion to one another.

However, inspection of the data reveals that sickle cell anemia is an early occur-
ring disease, while death due to atherosclerosis and other causes is late occurring.
Hence, those who contract and die from atherosclerosis would almost assuredly
die from some other late occurring disease in the hypothetical situation where
the risk of atherosclerosis is eliminated. Thus one can see from the data that
Py 353(75) is approximately .20 rather than .33.

In general then, the ratio Ny(f)/N () is not a consistent estimator of P,(¢),
for P, (t) as defined in the theory.

On the other hand, note that since atherosclerosis is not present at birth,
P15535(0) = Py(0). Since Ny(7)/N is a consistent estimator of P (), one can
obtain a consistent estimator of P,;(r) when P, (7) = Py(r).

In this section, using results from earlier sections and making the assumption
P,i(t) = Pj(t)/ Lic 4 Pi(r) for some = e T, we will derive an estimator P, ,(r) of
P,;(¢) which will not only be consistent for t+ = = but also for r ¢ [z, 1,].

In the context of this example, with 4 = {1, 3, 5} and je A, our estimator
P, (¢) will be a consistent estimator of P,,(r) for all ¢, since P,;(0) = P,(0) =
P;(0)/3:c4 P(0). Notice from the table that B, ,,(75) = .20, which coincides
with what one would desire after inspection of the data. []

TABLE 1
State Age

Birth 5 20 35 40 50 55 60 65 70 75
(1) Health (no atherosclerosis present) o 9 8 7 6 5 4 4 3 2 2
(2) Living, but atherosclerosis present o o o 1 2 2 3 1 2 2 1
(3) Death from sickle cell anemia o 1 2 2 2 2 2 2 2 2 2
(4) Death from atherosclerosis o 0 o 0 0o O O 2 2 2 3
(5) Death from other causes 0O 0 0O o0 o 1 1 1 1 2 2
N3(#)/Ni1,3,5/(8) .00 .10 .20 .22 .25 .25 .29 .29 .33 .33 .33
Piy,3,51(0) 1.00 .90 .80 .80 .80 .67 .67 .67 .67 .44 .44
P1,3,53(2) .00 .10 .20 .20 .20 .20 .20 .20 .20 .20 .20
Ppa,3,55(t) .00 .00 .00 .00 .00 .13 .13 .13 .13 .36 .36
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As noted in the example above, the results in this section are valid only for the
cases in which the following assumption holds.

ASSUMPTION 6.1. P, (t) = Pi(t)/3ic 4 Pi(r) for some e T. []

Note that Assumption 6.1 is often valid if 33, , Pi(7r) = 1.
Define

Pi(t) = NOINAD)  if Ny >0
=0 if N()=0.
LEMMA 6.1. If Assumption 6.1 is valid at ©, then for p < 4,
N#|P, () — P,y(7)] »> 0 as.
Proor. By Assumption 6.1, if N,(z) > 0,
No|Py() = Pus(7)
Ni(=) _ _ Pi7)
N,(7) 2iiea Pi(7)
< (Sees P {7

= N»

Nj(r) Np
G

0 pe)

;

< (Seea PO {2

O pe)] + wr

N _ s (T
T ZZeA Pz( )

N (7)
——— - ie Pz T
4 — Tl Po)
Hence, the lemma follows from Lemma 5.4 and the fact that

1

~ NVa(®) = Lica P(z) > 0 as. 0
For any r =,
(6:1) P =P/OLUr ) = PLOU + §¢ Pz, 5) dB(, )]
= P,(c) + §:P/(s) dB,(c, 5)
It is natural to suggest ﬁA’(t) = f’/(r)%(r, t), s0
P(1) = P(c) + §& BU()Fu(s) dM,(z, 5)
THEOREM 6.1. If Assumption 6.1 is valid at =, then
SUP,e(c,e)) NP|ﬁA'(t) - P(1)] 0 as. componentwise.

Proor. P/(1) — P,/(f) = P/(t)F(c, 1) — P () Pz, 1) = P(0)[ S (e, 1) —
Gz, D] + [P(r) — P(r)]F4(z, t). Thus the proof is completed by Theorem
5.1 and Lemma 6.1. []
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