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RANK TESTS OF SUB-HYPOTHESES IN THE GENERAL
LINEAR REGRESSION

By J. N. ADICHIE
University of Nigeria, Nsukka and University of Sheffield

This paper considers the general linear regression model Y; =
X7 Bixij + &, and studies the problem of testing hypotheses about some
of the #’s while regarding others as nuisance parameters. The test criteria
discussed, which are based on ranks of residuals, are shown to be asymp-
totically distribution-free.

0. Introduction and summary. In the general linear model Y = X3 + ¢, rank
methods for testing hypotheses about the entire 3 (e.g., 8 = 0) have been dis-
cussed under various regularity conditions by many authors, e.g., Adichie
(1967a), Koul (1969). But the methods suggested by these authors do not easily
carry over to the case where there are nuisance parameters. However, Koul
(1970) proposed a rank order test for 8, = 0 in the case where 3’ = (8, f,) has
only two components; see also Puri and Sen (1973).

In this paper we construct and study rank order statistics suitable for testing
the general subhypotheses in linear regression models of full rank. Sections 1
and 2 contain the construction of a class of signed-rank and rank test statistics
respectively, while in Section 3 the asymptotic distribution of the proposed
classes of statistics is established. In Section 4, the asymptotic performance of
the proposed test is compared with that of the classical procedure, and in Sec-
tion 5, the asymptotic optimality of the test is discussed. Finally in Section 6,
the general result is applied not only to the problem considered by Koul (1970)
but also to the important problem of testing linearity in polynomial regression.

1. Signed-rank test statistics. Consider the general linear model

(1.1) Y= X3 +¢,

where Y is an n X 1 vector of independent observations, X is an n X p matrix
of known constants, 3 is a p x 1 vector of unkown regression parameters
such that

(1.2) E)=0; E@y=0,, a>0

where /, is the identity matrix of order n. It is convenient to write X = (X, X;)
so that (1.1) may be put in the form

(1.3) Y= X5, + X,B + ¢,
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RANK TESTS OF SUBHYPOTHESES 1013

where X, and X, are of order n X k and n x (p — k) respectively, while 8, and
8, are k x 1 and (p — k) x 1 subvectors of 3 respectively. We want to test

(1.4) Hy: 3,=0, B, unspecified,

against the alternative that 3, == 0.

The precise functional form of the distribution function F(y/s) of the com-
ponents of ¢ need not be known, but in this section we shall assume that it
satisfies the following:

AssuMPTION A. The distribution F has a symmetric density f which is ab-
solutely continuous such that the Fisher information I(F) = { (f’/f)’ dF is finite,
where f’ denotes derivative.

In what follows, we shall be concerned with sequences of vectors of random
variables {Y,} and nonrandom matrices {X,}, n = 1,2, ..., but for simplicity
of notation we shall not emphasize the dependence on n. While all limits are
taken as n tends to infinity, the number p of parameters remains fixed. We
shall write the design matrix variously as X = ((x;;)) = (x;, - - -, x,), where x;
denotes the jth column of X. Here assume that X satisfies the Kraft and van
Eeden (1972) conditions, namely:

ASSUMPTION B.
(i) {max, x?;/>;, x};} — 0, foreachj =1, ..., p,
(ii) rank of X, r(X) = p,
(iii) n~'(X’X) tends to a positive definite matrix £ = ((d};)),
(iv) foreach pair, j, k (j # k,j, k = 1, - - -, p) there exists a number y,, # 0,
such that for n > n,,
(a) X, (% + TiXu) =0 for all i
(b) |x;| and |x; + 7,,x,| are similarly ordered.
Two vectors u and v are similarly ordered if

(1.5) (u; —u)v, —v) =0 forall i, .

REMARK. Because of B(iv), the regression model described in this section does
not cover the whole class of regression models of full rank that are usually
treated by the least squares method.

Now let

(1.6) O(@if(n + 1)) = ¢,0), i=1,..-,n
be the scores generated by a function ¢(u) on (0, 1), satisfying the following
condition:

AssuMPTION C. ¢(u) is expressible as a difference between two monotone non-
negative square integrable functions, such that { ¢*(u)du > 0.
For later use, define

(1.7) P, ) = =(f"1NHE N« + 1)[2), 0<u<l,
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and note that I(F) defined in Assumption A may also be written as

(1.8) I(F) = § ¢*u, f)du.
We also need an estimate f5, of the unspecified parameter 3,. For that introduce

the notation ||| = (8’B)}, and assume that the estimate satisfies the following
two conditions:

AssUMPTION D.

(i) The term n¥|8, — B, is O,(1) as n — co, where p refers to probability
under (1.4),

(ii) For all B,, B(Y — X,8,) = By(Y) — B;, where f,(Y) denotes the estimate
computed from Y.

Note that the usual least squares estimate computed under H, satisfies As-

sumption D.
Now foreachi =1, ..., n, set
(1'9) Yi(:éz) = Yz = (Y - XZBZ)@'

where the extreme right-hand side of (1.9) denotes the ith component of the
residual vector ¥ — X, j,.
Define an n-component vector by

(1.10) W(B,) = {¢u(R)sgn ¥y i=1, ..., n)

where sgn y = 1 or —1 according as y > or < 0, and R, is the rank of the ab-
solute value |?;| among |¥,|, ---,|?,|. Foreachj=1,...,p, set

(1.11) si(Bo) = 8; = x;/U(By)/ 4

where

(1.12) A = § P (u)du .

Also write the vector of statistics in (1.11) as

(1.13) S(B) =8 = (5 -+, 5,) = XW(,)/A

and let ' = (8, §,') be its partition such that

(1.14) 81 = Guvw -+ 5 = XUE)/A,

the signed-rank statistic to be considere‘d, is

(1.15) M(B,) = M = S(X'X)'S — §,(X,/X,)~'S
= W(EWY(E)/ 4,

where W is a symmetric idempotent matrix of order n X n defined by

(1.16) W= X(X'X)" X' — X,(X,X,)"X, .

Observe that W is orthogonal with X, in the sense that
(1.17) WX, =0.
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Furthermore

(1.18) WX, = {I, — X,(X,X;)"' X)X, .

This property of orthogonality of W and X, which is crucial in the distribution
theory of the least squares criterion, will also be very useful (see proof of Lemma
3.1 below) in the distribution theory of our rank statistics. It is primarily
to achieve this orthogonality (and avoid imposing the unnecessary condition
X/'X, = 0) that motivates our use of W as the weighting function. It will be
shown in Section 3 that M provides an asymptotically distribution-free statistic
for testing the hypothesis (1.4). The test rejects the hypothesis if M is large.
In order to consider the asymptotic power performance of M, it will be neces-
sary to find its limiting distribution not only under (1.4) but also under a sequence
of Pitman alternatives:

(1.19) H,: B, =nt,, |b||<C.
We now state the main theorem, the proof of which is given in Section 3.
THEOREM 1.1. Under Assumptions A—D

(1.20) lim P(M < y) = P(1* < )

(1.21) lim P(M < y) = p(}(B4) = )

where y,}(A;;) denotes the chi-square random variable with k degrees of freedom and
noncentrality parameter.

(1.22) Ay = lim n=b'X'WX, b}K,*(¢)
and
(1.23) Ke(9) = § P(u)g(u, f) dujA

while Py and P, denote probabilities under (1.4) and (1.19) respectively.

2. Rank test statistics. Rank statistics, as different from signed-rank statistics
of Section 1, may also be used to construct the test statistic in the case where
the design matrix X satisfies a set of assumptions specified in B, below. Such
rank tests are briefly discussed in this section.

Consider now the model

(2.1) Y = X0 + ¢

where Y is an n X 1 vector of independent observations, X is an n X p, design
matrix, 6 is a p; X 1 vector of unknown regression parameters and ¢ satisfies
(1.2). Rewrite (2.1) as

(2.2) Y = X,0, + X,0, + ¢

where X, and X, are of order n x k and n x (p, — k) respectively, while §, and
6, are subvectors of #. The problem is to test

(2.3) H,;:0, =0, 6, unspecified
against the alternative that 4, -~ 0.
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The common distribution function F(y/s) of the components of e shall be in
this section assumed to satisfy:

AssuMPTION A,. The distribution F has a density f which is absolutely con-
tinuous such that the Fisher information /(F) is finite. As for the design matrix
X, let

Z=X—X=((x;— %)) = (%) »

where %, = n* 3}, x,;, and let Z = (Z,, Z,) correspond to X = (X, X,). We
shall also write Z = (z;, - - -, Zpl)’ and assume that X is such that Z satisfies the
Kraft and van Eeden (1972) conditions, namely:

ASSUMPTION B,.

(i) max,{z};/>,2};} — 0, foreachj =1, ..., p;
(ii) rank of Z, r(Z) = p;;
(iii) n=}(Z'Z) tends to a positive definite matrix X* = ((¢}/));
(iv) for each pairj, k (j # k, j, k =1, ..., p)), there exists a number 7, # 0
such that for n > n,, z; and z; + r,,z, are similarly ordered.

REMARKS.

1. Because #(X) < 1(Z) + r(X) and r(X) < p,, B, (ii) will be satisfied only for
some X in (2.1) for which r(X) < p, + 1, i.e., for some X with full rank p, or
less. A particular class of X for which B,(ii) holds is any orthogonal design
matrix with X, = ... = %, . Observe on the other hand that B(ii) of Section 1
holds for all X of full rank.

2. Because of B (ii), (iii), and (iv), the rank score method described in this
section cannot be used in all linear models of full rank where the least squares
method usually succeeds.

3. Thetesting procedure considered in this section isalso valid under JureCkova
(1971) conditions on X.

We shall require that the scores

(2.4) o(if(n + 1)) = ¢,(i), i=1,...,n
are generated by a function ¢(«) on (0, 1) that satisfies

AssumpTION C,. ¢(u) is nonconstant-and is expressible as a difterence between
two montone square integrable functions on (0, 1). Put

(2.5) A(p) = § ($) — PP du; G = § f(u)du.

As in (1.7) define for later use the function

(2.6) B, f) = —(LINIFW), o<u<t,
and set

2.7) KA(9) = § p)p(u, f) du]A(9) .

The estimate 6, of the unspecified 6, is required to satisfy two conditions:
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ASSUMPTION D,.

(i) The term n||f, — 6, is O,(1) as n — co; where p refers to probability
under (2.3);

(ii) For all 6,, 52()/ — Z,0,) = 92(Y) — 6,, where 52(Y) denotes the estimate
computed from Y.

For each i set
Yi(02) = Yz - (Y - Z202)i

and define an n-component vector by

(2'8) (D(é2) = {¢n(Ri)’ i = l, R ) n}’

where R, is the rank of Y, in the ranking of n variables ¥, ..., ¥,. Observe
that the vector {R;,i = 1, .., n} remains unchanged if instead of ¥; we rank
(Y — Xﬁz)l, i=1,...,n Now write

(2.9) S@) = 8= (5 -, 3,) = Z’0(0,)|A(p)

where

(2.10) 5,0 = 5, = 2/ OB:)A($), j=1 e p,

Form the partition S = (S,S,), and the proposed rank statistics can then be
written as

(2.11) M(éz) =M = S(z'z)'§ — §)(z) )7S,
= O(0,)WD(G,)/ 4%(9) »
where W is the symmetric idempotent matrix of order n X n obtained from
(1.16) by writing Z instead of X. In using M(f) for the testing problem, the
hypothesis (2.3) is rejected for large values of M.
If we consider a sequence of alternatives
(2.12) H,: 0y =n70,, |0 <c,

we can state the main result of this section, which is analogous to the result of
Section 1, as follows:

THEOREM 2.1. Under the Assumptions A,—D,,
(2.13) lim P(M < y) = P(x* < )
(2.14) lim P,(M <) = P(1(Ay*) < )
where y,2(A,*) is the chi-square random variable with k degrees of freedom and
noncentrality parameter
(2.15) Ay* = lim n=Y6, Z'WZ,0,}K ()
while P, and P, denote probabilities under (2.3) and (2.12) respectively.

3. Proofs of theorems. It is to be noticed that the §,’s defined in (1.11) are
not the ordinary linear rank statistics because the residuals ¥, in (1.9) are not

?
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independent random variables. Now let M(f,), see (1.15), be the signed-rank
statistic formed from ranks of absolute values of the unobservable random
variables Y;(8,) = (Y — x284);» i = 1, -+, n. We now prove

LEMMA 3.1. If the assumptions of Theorem 1.1 hold then M(f,) and M(B,) have
the same limiting distribution under H, and H, of (1.4) and (1.19) respectively.

Proor. Under H,, Y(B,) is a vector of independent identically distributed
random variables while Y(8,) = Y(8,) — X,(5, — B,). By Assumption D (ii), we
may take 8, = 0. By D(i), there exists a number K such that P{||B)| < n—*K} is
arbitrarily close to one for all n > n,. It follows that for eachj =1, ..., p,
the quantity

”_%lsj(‘@) — 5;(0) + x,/ mézKF(‘r/’)l
will be with arbitrarily high probability bounded by

SUDPjp,isn—tx [n=¥s;(bs) — 5,(0) + x;"1:0.Kp(¢)}] -
But by Theorem 7.2 of Kraft and van Eeden (1972), as n — oo,

(3.0) SUPjsyiza-ix [17HS(62) — S(0) + X' X, Ke()}| = 0,(1) »
so that under D (i) as n — oo,
(3.1) In=4{S(B)) — S(0) + X" X, B, Ke(§)}| = 0,(1) -

Observing that $(X’X)~'§ may be written as (n=tS)'{n(X'X)~"}(n~%S), and that
n(X'X)"* - Z, it follows from (1.15) and (3.1) that the difference between
M(B,) and
S'(0)(X"X)2S(0) — B'(X,/ X)(X"X)7'S(0)Kx(¢)

(3.2) — S'O)(X' X)X X;)B, Ke(9)

+ B (X X)X X)X X, b, K () — /(X' X,)7'S,(0)

+ BIS(O)KH($) + SJ(0)B.Kr(9) — By X, X, B K (9)
converges to zero in probability.

Now from the identity {/ — X(X’X)™'X'}X = 0 we have

(3.3) X, — X(X'X)'X'X,=0.
On writing
(3.4) S(0) = X"¥(0)/4, I S,(0) = X,¥(0)/4

as in (1.13) and (1.14), and making repeated use of (3.3) and (3.4), the quantity
in (3.2) reduces to

S'0)(X'X)1S(0) — By X,/ W(0)Ko(¢)]A4 — W(0)X, B, K(¢)/ 4
+ B X)X, B K () — S)(0)(X,)'X,)718,(0)
+ Aélez'w(O)KF(‘r/’)/A + W'(O)X2‘§2KF(¢)/A - Bz'le zﬁzKFZ(‘r/’) )
which is easily seen to be equal to

S'(O)(X"X)7S(0) — S(0)(Xy'Xy)7Sy(0) = M(0) .
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That M(B,) and M(f,) have the same limiting distribution under H, follows
from the fact that the sequence of distributions under H, is contiguous to that
under H,. The proof of the lemma is thus complete.

For the asymptotic distribution of M(f,) it is convenient using well-known
transformations to rewrite the matrix W, and hence M(8,); so put

(3.5) X=1LB; X,=LB,

where B is a p X p upper triangular matrix with positive diagonal elements, L
is an n X p semi-orthogonal matrix and B, is a p X (p — k) matrix with

(3.6) (X'X) = (B'B); X)X, =B/B,: L'L=1,.
On applying this transformation, W reduces to
(3.7) W =L{I, — DD'}L' = LVL',

where we have written D for By(B,'B,)~*. Because V is symmetric and idempotent,
if we write the matrix

(3.8) L= ()= (h s 1y)s

and define

(3'9) tj(ﬁz) = lj’IF(‘Bz)/A ] =1, .. P
the statistic M(8,) can be written as

(3.10) M(B) = T'(B)VT(B) »

where

T'(By) = (t(Ba), -+ +» tp(ﬁz))l .
We prove

LemMA 3.2. Let L be as defined in (3.5). If X satisfies Assumption B(i) and
B(iii), then

(3.11) lim {max, },/>1, 5;,} =0, j=1,--,p.
Proor. First note that

(3.12) =1, j=1,--,p.
Furthermore, Assumptions B (i) and 'B(ii) together imply

(3.13) lim {max; };, x};,/n} =0,

and

(3.14) lim 33, (x};/n) = 0;?, 0<o2<o0,j=1,--4,p.

It is also known (see, e.g., Albert (1966), page 1606), that B(iii) implies
(3.15) {Amax (X' X)) Amin (X' X)} < K,

where 2., (Ani,) denotes maximum (minimum) characteristic root. Now from
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(3.5) and (3.6), we have, using Schwarz’s inequality,
I%j = (kaikbkj)2 < X Dby
where B-! = ((b;;)) and the summation over k is from 1 to p. Now

Yibl; £ D X by = tr (X'X) 7 = T {1/ A(X X))
< Pl (X'X) < KpY, A(X'X), using (3.15)
= Kp*3, X, X%, sothat I} < Kp* 3, xi/ 20 205 X0 -
The maximum over i of the right-hand side tends to zero because of (3.13) and
(3.14). This fact together with (3.12) proves (3.11).

ProoF oF THEOREM 1.1. In view of Lemma 3.1, we restrict attention to
M(B,) as defined in (3.10). Due to Assumption C and (3.11), it follows in the
same way as in Hajek and Sidak (1967), page 166, that under H,, 7,(8,) defined
in (3.9) is asymptotically N(0, 1), for each j. From the way 7,(8,) is defined,
any linear combination }}; 4;,(8,) is again a linear rank statistic whose weights
> 4;1;; satisfy (3.11). Hence under H,, T(B,) is asymptotically normally dis-
tributed with mean zero and covariance matrix /,. As for the statistic M(8,)
of (3.10), we may from (3.7) write ’

(3.16) T'(B)T(B) = T'(B.)DD'T(B;) + T'(B)VT(B) »

where both DD’ and V are idempotent matrices with rank p — k and &
respectively. Furthermore, it is clear from Assumption B(iii) that DD’ =
(n=1B,)n(ByB,)~'(n*B)) tends to a p X p matrix, while V' by definition also
tends to a limiting p X p matrix. Because T"(8,) is asymptotically normal, and
the matrices DD’ and V are idempotent, it follows from a well-known theorem
on distribution of quadratic forms (see, e.g., Theorem 4.16 of Graybill (1961)),
that under H, the quadratic form T'(8,)V'T(8,) has asymptotically a chi-square
distribution with k degrees of freedom. This together with (3.10) and Lemma
3.1 proves (1.20).

To prove (1.21), note that Lemma 3.1 is valid under H, of (1.19). It follows
in the same way as in Theorem VI, 2.5 page 220 of [7] that under (1.19), T(8,)
still has a limiting normal distribution with the same covariance matrix /,, but
with different mean vector ¢ given by

= lim n=4(L' X, b,)K (¢) .

From Theorem 4.16 of [6], it follows that under (1.19) M(8,) has asymptotically
anoncentral chi-square distribution with k degrees of freedom, and noncentrality
parameter z'Vy, which in view of (3.7) reduces to A given in (1.22). The proof
is thus complete.

Proor oF THEOREM 2.1. The proof, which depends on Theorem 7.1 of [11],
is omitted because it is similar to the proof of Theorem 1.1.

4. Asymptotic relative efficiency. If the model given in (1.1) and (1.2) is of
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full rank and if the distribution of ¢ is normal, the usual statistic for testing (1.4)
is based on the maximum likelihood ratio

(4.1 Q = (n — p)D,/kD,,
where

(4.2) D, + Dy = (Y — X,5)(Y — X,B,),

and

(4.3) Dy = (Y — XB)(Y — XB) = Y'{I, — X(X'X)"'X"}Y

with 3, and 3 being the least squares estimates of 8 under (1.4) and (1.1) re-
spectively. In this setup, Q has the variance ratio distribution with (k, n — p)
degrees of freedom, and the test that rejects H, for large values of Q is the most
powerful invariant test. When the basic assumption of normality of ¢ is dropped,
QO loses its optimality and its exact distribution is not even known. However,
for any marginal distribution F of the components of ¢, for which the variance
o? = ¢*(F) is finite, it can be shown that |n7'Dy — ¢°| = 0,(1), as n— oo (see,
for example, Theorem 3.4 of Gleser (1966), where a stronger result is proved).
Furthermore, on setting Y(8,) = ¥ — X,3,, D, may be written as

D, = Y'WY = Y'(8)WY(5,) + 5/ X/ WX, 5,
= Y'(B,)WY(B,), dueto(1.17),
=Y'(B)LVL'Y(8,) by (3.7),
where Y'(B,)L = (2. ; Yi(B,),j =1, .-+, p). It follows from (3.11) (see, for
example, Theorem 3 of Gnedenko and Kolmogorov (1954), page 103) that under
H,, L'Y($,)/o is asymptotically normal with mean zero and covariance matrix

I,, and under H,, of (1.19), has asymptotic mean n~tL'X,b,/c. We have there-
fore proved the following

THEOREM 4.1. If the components of ¢ in model (1.1) and (1.2) have common
distribution function F(y/o) with 0 < ¢ < oo, then
lim P(kQ = y) = P(1’ = ».)
lim P(kQ < y) = P(1'(8¢) = )
where Py, P,, and y,*(A) are as defined in Theorem 2.1 and
(4.4) A, = lim n=Y{b, X, WX, b }Ja* .

Thus Q provides an asymptotically distribution-free test for the class of F
for which ¢*(F) < oo.

By the conventional method of measuring the relative asymptotic efficiency
of two test statistics that have chi-square distributions with the same degree of
freedom, it follows from (1.22) and (4.4) that the asymptotic efficiency of M
relative to the least squares criterion is

(4.5) e o =085/, = a’K;}(¢),
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which is the standard asymptotic efficiency of rank score tests relative to the
t-test in the two-sample problem.

The results of this section hold for the rank statistic M of (2.11), if As-
sumption A, through D, hold. More precisely, the asymptotic efficiency of M
relative to the least squares criterion Q computed with Z instead of X, and ¢
instead of ¢ is

(4.6) e o = 0K () .
5. Asymptotic optimality. If the functional form of F is known, the asymp-
totic performance of the M-tests can be improved upon. To be specific, suppose

that in addition to Assumption A of Section 1, F satisfies Assumptions I—V of
Wald (1943) viz:

ASSUMPTION A*.

(i) The maximum likelihood estimates § = (f,, 5,)’ exist and are uniformly
consistent.
(ii) f(y, B) is twice differentiable with respect to 8 and f"'(y, B) is continuous
in 8, where f(y, b) denotes f((y — 33, b, x;)/0).
(iii) Let A(y, §) denote ((f"'/f) — (f'[f))(¥: B)-
(a) For any sequences {8,,}, {8,.}, and 4, such that lim 8,, = lim §8,, = 8,
and g, — 0, wehave lim E, {sup i(Y, f)} = limE, {infh(Y, )} = I(F) < oo
where the sup (inf) is over 8 in |f — B8, < 0,.
(b) There exists ¢ > 0, such that E, {sup h(Y, )} and E, {inf 4(Y, )} are
bounded for ||8, — B,| < ¢ and || < ¢ where the sup (inf) is over 8 in
18 — Bdl <.
(iv) f(p, B) is twice differentiable with respect to 5 under the integral sign.
(v) There exists n > 0, such that E,|(f’/f)(Y, B)|*" is bounded.

For testing (1.4) on the basis of n observations Y of model (1.1), Wald’s test
statistic ((115) of Wald (1943), page 457) becomes
(5.1 W = BlI[X1,X1 - X/’ Z(XZlXZ)_1X2le]BII(F)

= B/X/WX,B,I(F), in view of (1.18).
The test rejects (1.4) for large values of W,*. To study the optimality of W, *,
define a surface S,(b) by
(5.2) S.(b) = {b: b/[ X)X, — X/ X(X)X;)' X, X|]b, I(F) = c,
by = By — 12T b}

where 7, 7, are parts of a partitioned p X p nonsingular matrix

(5.3) y = (Tu 0)
Tar 7o

satisfying y(X' X))y’ = I

p*
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Also consider the transformation b* = yb where 7 is as defined in (5.3). This
transformation transforms the surface S,(b) into a sphere S,(b) given by

b*'b* = C, b* = 1uby + 1b,-

Finally, for any point 4, and any J > 0 consider the set w(b,, 9) consisting of
all points b which lie on the same S,(b) as b, and for which |» — b < 6. Let

(5.4 7(b) = lim,_, {A('(b, 9))/A((b, 9))} ,
where '(b, d) is the image of w(b, d) by the transformation b* = yb, and A(w)
denotes the area of the set w.

Collecting together Theorems IV, V, and VI (pages 459, 461, and 462) of Wald
(1943), we have

THEOREM 5.1 (Wald). Let S,(b) be the surface defined in (5.2), and 7(b) the
weight function in (5.4). If Assumptions A*, B(i), and B(ii) hold, then for testing
(1.4), the W *-test given in (5.1)

(a) has asymptotically best average power with respect to S,(b) and y(b),
(b) has asymptotically best constant power on S,(b),
(c) is an asymptotically most stringent test.

For the definitions of the asymptotic optimality in (a), (b), and (c) of the above
theorem, see Definitions VIII, X, and XII at pages 453, 454, and 455 respectively
of Wald (1943).

Now let L, = —2log 4,, where 1, is the likelihood ratio statistic for testing
(1.4). It is shown in Wald ((1943), page 478, (199)), that under the conditions
of Theorem 5.1, and on the assumption that the L,-test is uniformly consistent
(Assumption VII, page 472 of [13]),

(5.5) W,* + 2log4,— 0 in P,-probability, uniformly in §,

where P, denotes probability under the assumption that 8 is the true parameter
point.

It follows from (5.5) and Theorem 5.1 that the L -test has the same asymptotic
optimality properties as W, *. Furthermore it is proved in Theorem IX, page
480 of Wald (1943), that if Assumptions A*, B(i), and B(ii) hold, and the L,-test
is uniformly consistent, then under (1.4), L, (or W, *) has asymptotically a chi-
square distribution with k degrees of freedom and under (1.19) has asymptotically
a noncentral chi-square distribution with k degrees of freedom and noncentrality
parameter

(5.6) A, = 1im n7'b[ X)X, — X/ X(X)'X,)" X, X,]b, I(F)

= lim n='0/ X, WX, b, I(F) .
Now on comparing our signed-rank test statistic M with L,, it follows from
(1.22) and (5.6) that the asymptotic efficiency of M relative to L, is

(5.7) eine = BifAr = KeH($)I(F)
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which is unity if K,*(¢) = I(F), and from (1.8), (1.12), and (1.23), this equation
holds if ¢(u) = ¢(u, f). Thus given F that satisfies Assumptions A and A* and
for which L, is uniformly consistent, if we choose ¢(x) = ¢(u, f), the method
described in Section I will yield an asymptotically optimal test in the sense that
the asymptotic efficiency of M,,, , the resulting signed-rank test statistic relative
to (Theorem 5.1) asymptotically optimal test L,, is

(5.8) € =1.

A similar result holds for the rank test M of (2.11) if Assumptions A*, A,—D,,
and uniform consistency of L, hold, and we take ¢(u) of Assumption C, to be
¢(u, f) defined in (2.6) and compute the L, statistic with Z instead of X.

6. Application and example. First let us apply the method of rank statistic
of Section 2 to the testing problem considered by Koul (1970), i.e., testing
6, = 0 in the model defined in (2.1) and (1.2) with p, =2 and k = 1. We
then have
(6.1) 5, = D2y 0u(R)JA(P) 2, = (x; — X)) j=12,
where the estimate , used in obtaining the ranks R, of Y;(8,), i =1, -, n,
could be either the least squares estimate or the estimate considered by Puri

and Sen (1973), since each of them satisfies Assumption D,. The statistic given
in (2.11) may now be written as

(6-2) M = |Z’Z|_l{51222,22 - 2513221’22 + 32221’21} - 322/22’22 .

Observe that Koul’s statistic is n7! 7, x;, ¢,(R;), which is equivalent to 5, given
in (6.1). However, if z,'z, = 0, our test can be based on 3/(z,'2,)7'5, = 5/z/'z,,
and Koul’s test is a special case of this. Note also that z’z, = 0 is one of the
sufficient conditions for Koul’s test to be asymptotically distribution-free (see

Lemma 2.4 of Koul (1970)).
Now, on using the transformation (3.7) as it applies to W of (2.11), we have

B* — (bll b12> S
0 b,
where
(6'3) b%l = 21’21 5 b%z = (21’22)2/21’21 > bgz = 22’22 - b?z .
With this, M reduces to T'V*'T, with 7" = (i, i,) where V* = {I, — D*D*'},
f, = 5/by, T, = (3,/byy) — (byy/by, b,)5, and D* is just the second column of B*.
Under the conditions of Section 2, M has asymptotically a chi-square distribu-

tion with one degree of freedom, whether or not z/z, = 0. The noncentrality
parameter A, * defined in (2.15) reduces in this case to

(6.4) lim n='0 265, — (2,2,)*/2,' 2.} K (@) -
The test is of course consistent, since Assumption C, does not require symmetric
o (u) (see Theorem 2 of [12]).
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Secondly, the method described in Section 1 could be used to test sub-
hypotheses in polynomial regression models provided the powers of x’s satisfy
Assumption B. More precisely, consider the model

(65) Yi:a+ﬁxi+rxi2+e’ i:19"'9n

which is the same as the one in (1.3) which p = 3, k = 1. Here interest is on
testing H,: y = 0. The matrices (X’X)~' and (X, X,) in the definition of M
(1.15) are inverses of

/ n Z X Z XZ.
(X'X)y=|Xx Yx N
DIESEDIE DI S

and (X, X,) which is the first principal minor of (X’X).

To see what Assumption B means in this example consider a replicated design
in which for each n, x,, - - -, x, take a fixed set of values x,°, ..., x,° with fre-
quencies n,°, ---, n'. Let 7}, = (n°/n); then it is easy to see that Assumptions
B(i), B(ii), and B(iii) are satisfied if (a) max,, |x,°| < K; (b) for each n,
ro.<1l,i=1,...,¢; (c) n and n tend of infinity such that y), — 7, < 1.

To use M, we need estimates of @ and § that satisfy Assumption D. These
could be either the least squares estimates or the rank estimates defined in [2]
computed under H,. It is not difficult to check that the least squares estimates
of « and 8 in the model (6.5) with y = O satisfy D. That the “rank” estimates
also satisfy D (ii) is a consequence of Lemma 4.1 of [2].

The three basic signed rank statistics needed for the definition of M are:

si(@, B) =8, = X, x, 7', (R,)sgn ¥,/4, j=1,2,3.
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