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ASYMPTOTIC NORMALITY OF MULTIVARIATE LINEAR
RANK STATISTICS IN THE NON-LILD. CASE

By F. H. RUYMGAART AND M. C. A. VAN ZUIJLEN
Catholic University, Nijmegen

Asymptotic normality is established for multivariate linear rank sta-
tistics of general type in the non-i.i.d. case covering null hypotheses as well
as almost arbitrary alternatives. The functions generating the regression
constants and the scores are allowed to have a finite number of discon-
tinuities of the first kind, and to tend to infinity near 0 and 1. The proof
is based on properties of empirical df’s in the non-i.i.d. case and is
patterned on the 1958 Chernoff-Savage method. As special cases e.g. rank

. statistics used for testing against regression and rank statistics for testing
independence are included.

1. Introduction. There exists a variety of theorems on asymptotic normality
of both univariate and multivariate rank statistics. Although these results are
obviously related, separate proofs are given and in general different techniques
are used. It is our purpose to give a unifying approach to these various results.
We shall present two theorems establishing asymptotic normality for a general
class of multivariate rank statistics and, apart from regularity conditions, almost
arbitrary underlying continuous distribution functions (df’s) which may corre-
spond to the null hypothesis or to local or fixed alternatives. As such these theo-
rems are more general than existing results. As special cases they contain or extend
many of the results found in the literature and include, e.g., asymptotic normality
for simple linear rank statistics as well as rank statistics for independence, under
the null hypothesis and under alternatives. Specializing our theorems to par-
ticular cases it turns out that the present conditions are rather close to the best
conditions that appear in the literature, although they are occasionally slightly
stronger.

The technique is almost entirely based on the properties of empirical distri-
bution functions in the non-i.i.d. case as developed in van Zuijlen (1976a),
(1976b) and (1978) and might be called the Chernoff-Savage approach. It is
generally applicable in problems of this kind (cf. Ruymgaart and van Zuijlen
(1977) where virtually the same technique is applied to linear combinations of
functions of order statistics). Recently, the Pyke-Shorack approach based on
empirical processes has been employed in Riischendorf (1976) to derive the
asymptotic distribution for a general class of multivariate rank statistics under
an assumption concerning the weak convergence of the reduced multivariate
sequential empirical process.
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Let k be a fixed positive integer and for each N=1,2, ... let X,, =
(Xinws Xguws> = > Xiwy)sn = 1,2, - .., N, be N independent k-dimensional random
vectors with joint continuous distribution function F,, and marginal df’s F,,,,
Fyurs + =+ Fruy. For each N, moreover, let ¥, be the joint empirical df based
on the N random vectors X,,, X,,, - -+, Xy and, for i = 1,2, ..., k, denote
the marginal empirical df of the independent random variables X;,,, Xy, - - -5
Xivy by Fyy and the ranks of these rv’s by Ry, Ryyy, -+, Riyy. We have the
relations

(1.1) Ry = NFiy(X,ny) for i=1,2, ... k.

All random vectors are supposed to be defined on a single probability space
(Q, &, P). We define Fy = N-*yV F, and F,, = N1 ¥ F, . fori=
1,2, ..., k.

The rank statistics that we are interested in are called multivariate linear rank
statistics; these are of the type

(1°2) SN =N"! 22;1 CnNaN(RlnN’ Ran’ R Ran) .

Here, forn; = 1,2, ..., N, i = 1,2, ..., k, the ay(n;, n,, - - -, n,) are given real
numbers, called scores, and the ¢, forn = 1,2, ..., N, are given real constants,
called regression constants. For this terminology see Hajek and Sidak (1967).
An important subclass of the statistics of the form (1.2) are those for which
the scores have product structure, viz

(1'3) TN =N"! ﬁ:l Can H'?:l aiN(RinN) ’
where, for n=1,2,...,Nand i=1,2, ..., k, the a;y(n) are the scores.
Statistics of the more general form

(1'4) Z;‘n=1 '21‘ TjN ’

with 4, 4, - -+, 4, real constants and each T, of the type (1.3), occupies an
intermediate position between (1.2) and (1.3).

To motivate the study of the statistics mentioned in (1.3) or (1.4), let us
observe that most of the rank statistics considered in the literature are of this
form. In Puri and Sen (1969) and (1971), functions of statistics of the type
(1.3) are proposed as permutationally (conditionally) distribution-free tests for
some specified problems; in Shirahata (1973) it is shown that in many natural
multivariate models locally most powerful rank tests are based on such rank
statistics. To get an insight into the situations that are covered in the present
set-up, we shall consider some examples.

ExAMPLE 1.1 (simple linear rank statistics). Choosing k = 1, (1.3) reduces to
(1'5) TlN =N 11¥=1 analN(Rl'nN) .

Statistics of this type are of particular importance for testing the null hypothesis
of randomness against regression. These statistics and two-sample rank statistics
which are a special case of (1.5) have been extensively studied in the literature,
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see e.g., Chernoff and Savage (1958); Govindarajulu, Le Cam and Raghavachari
(1967); Hajek and Sidak (1967); Hajek (1968); Pyke and Shorack (1968); and
Dupa¢ and Hajek (1969).

ExAMPLE 1.2 (rank statistics for independence). Choosingk = 2andc,, = 1,
forn=1,2, ..., N, (1.3) reduces to

(1'6) TzN =N~ 11¥=1 alN(RlnN)azN(Ran) .

Statistics of this type are particularly well suited for testing the null hypothesis
of independence against alternatives with an underlying bivariate df exhibiting
a positive (negative) stochastic dependence. The asymptotic distribution under
fixed alternatives can be found in e.g., Bhuchongkul (1964); Ruymgaart, Shorack
and van Zwet (1972); and Ruymgaart (1973) and (1974).

ExaMPLE 1.3 (generalization of a model of Hajek and §idék) Let k = 2.
We consider a generalization to the k-dimensional ‘regression” case of the
bivariate dependence model proposed in Hijek and Sidak (1967), page 75 (see
also Bhuchongkul (1964)). This generalization is due to Shirahata (1973). Let
Xy = KXinws Xouws *+ > Xemy)» 1 = 1,2, -+, N, be random vectors defined by

Xy = X5y + cnAZ,y i=1,2,...,k,

where { X} }_,, fori=1,2, , k, and {Z,,}Y_, are mutually independent and
each sequence is an i.i.d. sequence of random variables, the c,, are known
constants and A is an unknown parameter. Fori=1,2, ..., k, let f;, denote
the density function of X}, and f{ its derivative. According to Shirahata
(1973) under certain regularity conditions the locally most powerful rank test
for testing A = 0 (independence) against A > 0 is based on the rank statistic

X,
(1.7) Toy = E(Zu) Thoseon Tt &3 L2, .
If either &(Z,y) =0orc,y=1forn=1,2,..., N, then (1.7) reduces to a

constant. In this case the locally most powerful rank test is based on the rank

statistic
T3N = Zﬁ: CnN(Z? j=1;i#5 g [f‘_ZN"(‘_X‘z_”N)‘ in } [fﬂv( %N) n ]) *
‘ i Voo s ) Rl R oo o LIt

Both T,y and T, are of the type (1.4).

ExAMPLE 1.4 (generalization of models of Farlie and Witting and Nolle). Let
k = 2. In a similar manner as in Example 1.3 the bivariate dependence models
proposed in Farlie (1960) and in Witting and Nolle (1970), page 130, can be
generalized to the k-dimensional “regression” case. Focussing on the latter

model the sample elements X,y = (X,,y, Xpuys -+ +» Xpuy) have df F,,, n = 1,
2, .-+, N, where

Foma(X X535 -5 %) = (1 — ¢, 8) TTE, Fiy(x;) + A TTE, Fiy(x) s
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for 0 < A < 1. Choosing the regression constants all equal to 1 we find (see
Shirahata (1973)) that the locally most powerful rank test for testing A = 0
against A > 0 is based on the rank statistic

(1'8) Ty = Zfl’=1 Hf=1 R,y -

This statistic is of the type (1.3) and obviously is a generalization to the multi-
variate case of Spearman’s rank statistic.

Let us now return to the statistic 7. It is well known that locally optimal
scores can be determined if one has in mind particular parametric alternatives.
In many such cases (see also the examples given) these optimal scores are so-
called exact scores derived from suitable functions J; on (0, 1) according to

(1.9) aj(n) = €IEny) >, for i=1,2, . k,n=1,2,...,N,

where &,., is the nth order statistic of a sample of size N from the uniform
distribution on (0, 1). These exact scores, however, are not only hard to com-
pute, but also hard to manipulate in the asymptotic theory. For this reason
one frequently uses the scores

(1.10) () = J(E (&) = Ui (N:_ I ) ’

i=1,2,.--,kyn=12,...,N

b

called the approximate scores derived from J;. Under a suitable condition
((1.17) below) approximate scores are as good as exact scores in the sense of
Pitman-efficiency. The regression constants c,, can always be generated by
some function J,y according to

(1.11) an:JON(N;’_I), n=1,2,...,N.

Note that in contrast to the scores, the regression constants are generated by
a function which is allowed to depend on N. This has the advantage that we
also contain in our theory rank statistics used for the regression problem and
the k-sample problem. In fact this dependence is already needed to cover the
two-sample situation.

For methodological reasons it will be convenient to introduce the regression
constants with the aid of the additional set of mutually independent rv’s X,
Xysws « - +» Xoyy, independent of all random vectors considered so far and also
defined on the same probability space. Let 7, , denote the uniform df on the
interval (a, b) and let us assume that the df F,,, of X,,, satisfies

(1'12) Foun = 2 inevyywomiw » for n=1,2,...,N.
For the ranks of these rv’s this entails that
(113) ROnNzn’ for n=1,2,"'yN’

with probability 1. Forn =1, 2, ..., Nthe joint df of the (k + 1)-dimensional
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random vector (X,,y, Xi,x> - - +» Xiny) Will be written as G, the corresponding
(k + 1)-dimensional empirical df by G and its first marginal empirical df (based
on Xy, Xy - +» Xoww) by Foy. It should be observed that

(1'14) GnN = FOnN X FnN = (n—1)/N,n/N X F,,N, for n = 1, 2, cry N,

and that N=* Y30 Z 1,5 v = %o,1» the uniform df on (0, 1). Analogous to
previous notation we shall write Gy = N~' 33_, G, .

In order to give an alternative expression for T in the case of approximate
scores we have to introduce the modified marginal empirical df’s

(1.15) % = [N/(N + )]F.y for i=0,1,---,k.

Combining (1.3) with (1.1), (1.10), (1.11), (1.13) and (1.15), it follows that T
equals

(1.16) Ty = § Jow(Fdy) Tk, Ji(Fly) dGy »

with probability 1. Here the integration is extended over the (k + 1)-dimensional
number space. The extension of each of the original k-dimensional random
vectors with a 1-dimensional dummy random coordinate, each having one of
the uniform df’s in (1.12), has the effect that the statistic T, can be entirely
expressed in terms of empirical df’s.

Our main result—Theorem 2.1 in Section 2—is the asymptotic normality of
a suitably standardized version of T, for approximate scores, where the next
three points should be kept in mind. In the first place we remark that the
generating functions are allowed to tend to infinity near 0 and 1, and to have
a finite number of discontinuities of the first kind. The price for allowing these
discontinuities is a local differentiability condition on the underlying df’s. In
the second place there appears to be a natural balance between the respective
orders of magnitude of the generating functions near 0 and 1. In the particular
case (1.5) e.g., this leads to quite a spectrum of possible orders of magnitude
of J,y and J; near 0 and 1, whereas in Hajek (1968) and Dupac and Hajek (1969)
only two possibilities are considered. In the third place the asymptotic normality
is established for almost arbitrary triangular arrays of underlying df’s. Hence
asymptotic normality for a triangular array corresponding to a set of local
alternatives is included as a special case. From the latter result we can immedi-
ately derive the asymptotic power of the corresponding tests, which is used for
the computation of asymptotic relative efficiencies. It is worthwhile noting that
in contrast to e.g., the theorems in Chernoff and Savage (1958) and Ruymgaart
(1973), we do not need uniformity of the convergence on a subclass of arrays
of underlying df’s to achieve the computation of the limiting distribution under
local alternatives.

The proof of the asymptotic normality of the statistic considered will be
given by way of a decomposition in a sum of leading terms, which is asymp-
totically normally distributed, and a remainder term, which is asymptotically
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negligible. In Section 3 this decomposition for the standardized version of T,
for approximate scores is presented and the asymptotic normality of the leading
terms is established.

The proof of the asymptotic negligibility of the corresponding remainder term
will rely almost completely on properties of the empirical df’s as is suggested
by the representation of 7' in (1.16). We shall restrict ourselves to some remarks
displaying the general idea of this proof which is long and uninteresting. For
details we refer to van Zuijlen (1976b). Apart from a component due to the
introduction of the dummy random variables X, Xy, - - -, Xoyy, and apart
from the dimension, the components of this remainder term are very similar to
the higher order terms in Ruymgaart (1973) and (1974), the main difference
being that in the present case we have N possibly different underlying df’s,
whereas in Ruymgaart (1973) and (1974) there is one single fixed underlying
df. The proof of the asymptotic negligibility, however, can be given in essentially
the same way, because it turns out that all the lemmas used in Ruymgaart (1973)
and (1974) remain valid, properly modified if necessary, under the present circum-
stances with not necessarily identical underlying df’s and with the averaged df
in the role of the single fixed underlying df. These lemmas are based on the
properties of the empirical df in the non-i.i.d. case, which are obtained in van
Zuijlen (1976a), (1976b) and (1978).

Under the assumption that

(1.17) Nt 3 ean[ 151 afy(Riny) — T1Eoi @in(Riny)]
= op(1), as N— oo,

one immediately derives an asymptotic result for the statistic 7' in the case of
exact scores from the corresponding Theorem 2.1 on approximate scores.
Condition (1.17) is well known in the literature (see e.g., Bhuchongkul (1964),
Chernoff and Savage (1958) and Ruymgaart (1973)). A verification of the con-
dition isa problem in itself (see e.g. Ruymgaart (1973)). In general an additional
condition on the generating functions isneeded. The detailsare given in Section 4.
It is possible to prove asymptotic normality of a suitably standardized version
of S, (see (1.2)), in the case where the scores a,(n,, n,, - - -, n,) are generated
by some continuous function J on (0, 1)* according to
(1.18) ay(ny, My, -+, 1) =J<N'_1; - N’_’; SPRTES N”:_ 1),
n=1,2,...,N,i=1,2, ..., k.

The continuity condition can even be weakened (cf. van Zuijlen (1976Db)).

2. Statement of the main theorem. Before presenting the theorem let us
introduce some more notation and conventions, to be used throughout the
present and the subsequent sections. We shall use the left-continuous version
of the inverse of a univariate df. The standard normal df will be denoted by

2.1 A(y) = Q)" § ., exp(—2%/2) dz for ye(—o0, ).
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For convenience we shall only use g¢-functions and reproducing u-shaped
functions (for a definition see the appendix in Shorack (1972)) of a special but
common type, based on the function

(2.2) r(f) = {t(1 — 0} for te(0,1).

For an arbitrary positive integer m the m-fold Cartesian product of a set S with
itself will be denoted by S™. For each m, moreover, let us define

(2.3) F » = {F: F isan m-variate df which is continuous on R"}.

In the theorem the df’s F,, will be restricted to .&,.

With respect to the generating functions we shall assume that the J,, (N =
1,2,...)and J; (i = 1,2, - - -, k) have a finite number of discontinuities of the
first kind only. Without loss of generality it can and will be assumed that these
generating functions are right-continuous.

For any finite set S let #£S denote the number of elements in S and for any
function f the ith derivative is written as f(f©® = f).

~ ASSUMPTION 2.1 (generating functions). (a) For N =1, 2, - the function
Jov has discontinuities of the first kind only and a continuous derivative Ji} on
the set (0, 1) — Z,,.

(b) Fori=1,2, ...,k the function J; has discontinuities of the first kind
only and a continuous derivative J, on the set (0, 1) — =Z,.

(c) There exist positive numbers [, [, ---,I, and ¢ such that for N =
1,2,...andi=1,2,...,k,

DwC (1 —1), $Dyw =1, and D, c(,1—1), $Z. =1,

(d) There exist positive numbers a,, a,, - - -, @, and K, satisfyinga = Y %_,a, <
%, such that, with r defined in (2.2) we have fory = 0,1, N=1,2, --- and
i = 1’2, "’,k’

(2.4) |5 < K roote and | < K,rot>,
wherever these functions are defined on (0, I).

The price for discontinuities in the scores generating functions is a kind of
local differentiability condition on the transformations
(2'5) q)nlv = F,,N(Fi},}, F;A}’ B FI:;')

of the F,, to the k-dimensional unit cube [0, 1]* for n = 1,2, ..., N. We shall
say that ®,, possesses a density ¢,, (with respect to Lebesgue measure on
[0, 17¥) on the Borel set B, c [0, 1]* if, for each Borel set B C B,, we have

(26) SB dq)‘nN = SB ¢nN(t1’ tza C tk) dtl dt2 LRCIE dtk . )
~ To formulate the assumption on the underlying df’s, let us define for » > 0,
(27) @ﬂ,izuaeéi(s—rj,s—l—-r;), for i=1,2,..-,k,

where &, is the set of discontinuity points of J;,. Note that D, c 2,
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AssUMPTION 2.2 (underlying df’s). There exist positive numbers 2, b,, b,, - - -,
b.and K,suchthatfor N=1,2, ...,n=1,2,...,Nandi = 1,2, ..., k, @,
(see (2.5)) has a continuous density ¢, on (0, 1)*~* X &, ; X (0, 1)¥~7, satisfying

(2'8) |¢,,N(t1, Ly = o s tk)l = Kz H,;=1;i*i {r(tj)}bj ’
for (¢, t,, - - -, t,) in this set. Moreover, for every (¢, t,, -, t,_;, t;11, =+, ;) €

0, 1)k ever t,.eé; see (2.7)) and everyi = 1,2, ..., k,
y y

(2~9) SuPn,N |¢n1v(t1’ ] ti—v Z ti+1, Tt tk) - ¢nN(t1’ B tk)l
—0 as t—t;.

RemArk 2.1. If J; is continuous, then éj =@ and &, ; = @ so that
Assumption 2.2 is vacuous for i = j.
To standardize the location of the statistics T, we shall use the quantities

(2'10) Uy = ﬂzv(FlN’ Fopy + o FNN) = JON(FON) H’;=1 Jj(FjN) dG_N .

The quantity p, arises in the fundamental decomposition of T, in (3.10). The
quantities used to standardize the scale of the T, will be given in the implicit
form

(2.11) oy’ = 0y (Fiys Foys - -5 Fyy) = Var (Ay + X, Ay + 25, Aiya)

where A4, and the A,,, and A,,, also arise in (3.10). Under the conditions of
the theorem below these quantities are well defined.

THEOREM 2.1. Let an arbitrary triangular array of underlying df’s F,, e &,
n=12,..-,N, N=1,2, ... be given, such that for the resulting triangular
array of transformed df’s ®,, Assumption 2.2 is fulfilled. Let the generating
functions satisfy Assumption 2.1 and let the constants a; (appearing in Assumption
2.1) and the constants b; (appearing in Assumption 2.2) satisfy a; + b, < 1 for
j=1,2, ..., k. Then the quantities . and o,*, defined in (2.10) and (2.11) are
finite. If, moreover, lim inf, . o, > 0 we have

(2.12) SUP_wcs<e |[PINH Ty — pty))oy < 2) — AH7(2)] -0, as N— oo,
for T\, as in (1.16), i.e., the case of approximate scores.

3. Asymptotic normality of the leading terms. Before writing down the
leading terms of the standardized version of the statistic T, for approximate
scores let us make some introductory remarks.

We introduce for N =1, 2, ... a (k 4+ 1)-dimensional random vector

(3.1 (Yors Yigs -+ Yiw) with joint df G,

where G is defined below (1.14). Besides the transformed df’s in-(2.5) it will
. be convenient to have at our disposal the transformation

(2) Uy =GuFeh Fity - Fid) = N7 DV Z ey X Py -
The transformed random vector (Foy(Y,y), Fiy(Y1y), - - 5 Fiy(Y,y)) has joint df
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¥, because of the continuity of the underlying df’s and by definition all the
univariate marginal df’s of T, are Z,,. If Assumption 2.2 holds one can show
that @'N has, fori =1, 2, .. -, k, a density by (with respect to Lebesgue measure
on (0, 1)¥+) on the set (0, 1)' X &, ; X (0, 1)*~%, where &, ; is defined in (2.7).
We have forn =1,2, ..., N, i=1,2, ..., k,
(3.3) Gultos tyy ++ o5 1) = Punlts tyy =+ +5 1)
for

(ty tyy -+ -, ) €((n — 1)/N, n/N) X (0, 1)"' x &, ; X (0, 1)*~*.

Anticipating the finiteness of all expectations and integrals involved let us
consider for N=1,2, -..,ie{l,2, ..., k} and ¢,€(0, 1) the conditional ex-
pectation
(3.4 EVow(Fon(Yon)) Tszriius Ji(Fin(Yim) | Fin(Yin) = 1.) -
Under Assumption 2.2, again, one of the possible determinations of (3.4) equals
hiy(t;), where
(3'5) h’LN(t’L) = 'Inv=1 (S((n—l)/N,'n/N) JON(tO) dto) S(O.l)k"ln?:l;j#i J](tg)

X ¢mv(tv Ly + ooy tk) dtl e dti—-l dti+1 e dtk ’
provided ¢, is restricted to &, ;.

Throughout the sequel the symbol M will be employed as a generic constant,
independent of N.

LEMMA 3.1. Let the function h,, be defined as in (3.5). Under the conditions of
Theorem 2.1 we have for N =1,2, ... and i = 1,2, .-, k that |h,,(t)| < M,,
fort,e &, ;, where M, is a number independent of N. Moreover, for N = 1,2, - ..
andi=1,2, ..., k, h;y is a continuous function of t, for t,c &, ,, and for each i

7,0

the set of functions {h,y, N = 1,2, - ..} is equicontinuous on , (cf. (2.7)).
ProoF. From the assumptions in Theorem 2.1 it is immediate that
Vg ()] < M 22000 (S nmrryinmy T20(10) dty)
X St [T 5arsjme 1297 09(t;) dty - dty_ydtyy,y -+ - dty
= M §Groo(ty) dty [T 5=y 04 So 123t 03(2;) dt; = M.
For the second statement it suffices to show that forn = 1,2, ..., N,
(3'6) S(o,vk—l H’;=1;j$i Jj(tj)¢nN(t1’ Tt tk) dtl e dti-—-l dti+1 e dtk

is a continuous function of ¢,, for tze@’“ Let t;, ¢, + § €&, ;. Because of
Assumption 2.2 in Theorem 2.1 we have that

(3'7) ¢'n,N(tl’ sl £, Lizpy 0o tk) - ¢mv(tv tt tk)
—0 as £—-0,

foreach (t;, - -+, t,_;, t;py, - -+, 1) € (0, 1)k=1. The continuity of 4,, follows from
(2.4), (2.8), (3.7) and the dominated convergence theorem since a; + b, < 1 for
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j=1,2, .-+, k. Analogously, the equicontinuity can be established with the
aid of (2.9). []

In view of Assumption 2.1 and the way in which we shall conduct the proof
of Theorem 2.1 it is no loss of generality to assume that for i = 1, 2, - - ., k the
generating functions J; have only one discontinuity (say at s;), so that

(3.8) Ji(t) = Ji (1) + Aje(t — s5)

where J,, is the continuous part of J;, and where

3.9 c(z) =1 for ze]0, ),
=0 elsewhere.

We are now in a position to give the basic decomposition, which holds with
probability 1,

(3.10) N Ty — py) = Ay + Db Aive + Lfa Aiva + En
where

(3.11) Ay = N} § Joy(Foy) TTs=1 J4(F 1) d(Gy — Gu)

(3.12) Ay = N § (Fiy — Foy)I(F i) on(Fox) Tl=sss0: J(F j) 4Gy
(3-13) Aivg = N By (s)(F o Fi(s:)) — 80) 5

and E, is a remainder term which is of second order. Remark that for A; = 0
the conditional expectation A,,(s;) is well defined; if A, = 0 then 4, is defined
to be zero. This section is devoted to establishing the asymptotic normality of
the A-terms, i.e., under the conditions of Theorem 2.1 we shall show, with ¢,
defined in (2.11), that

(3.14) SUP_wcpcw [P((Ay + Dby Aiye + 2k Aiwa) oy < 2) — A7(2))
—0 as N-—oco.

We begin by noting that with probability 1,

(3.15) Ay + Xt Aiye + Db Aiva = NP 20 Zoy s
where
(316) ZnN == AnN + Z?=1 AinNc + Zf:l AinNd ’
and
(3'17) Ay = ON(FON(XO'MV)) H§=1 ']j(FjN(XjnN)) — HUn>
(3’18) AinNc = S [C(FiN - FiN(XinN)) - FLN]

X Jé%(ﬁm)']ozv(ﬁozv) H?:l;j#i Jj(FjN) dG_N s
(3-19) Ainya = Nihig(s)e(s; — Fin(Xiny)) — si] -

It should be observed that the rv Z,, depends on the random vector X,, only.
Consequently these rv’s Z,,, Z,y, - -+, Zy, are mutually independent.
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Next we show that there exists a § > 0 such that

(3.20) lim supy ... N7* 30, & Z, 4" < oo .
This will be achieved by proving the stronger assertion that
(3.21) lim supy ., N7 0, &4, < oo,
and that fori =1,2, ..., k,

(3.22) lim supy_ N72 30 &) Ay’ < o0,
(3.23) lm supy_ o N7 5V & A na™° < 0.

We note in passing that this result will ensure the finiteness of the expectations
and integrals considered so far. The proof relies on Holder’s inequality in the
form

(3.24) VITTE=o flFon)l 4Gy < TTkoo [§5 1 fi(so)lfe dsi] e
where f,, f}, - - -, f, are measurable functions on (0, 1) such that the above in-
tegrals exist and where &, &, - - -, §, > 1 satisfy > 3F &' = 1.

Application of (3.24) with &, = a/a, (here a = 3}t a,) yields
(3.25) N7 T E(|Au[*?) S M § root 0 (Foy) [Tho 19 (F 1) dGy

é M H1{§=0 [Sg r(2+6)a(5) ds]ai/a < o ,

provided 6 > 0 is chosen sufficiently small to ensure that (2 4 d)a < 1. Since
a < 4 by Assumption 2.1, this can always be achieved. Apparently the bound
in (3.25) is independent of N so that (3.21) is proved.

To prove (3.22) for arbitrary i € {1, 2, - - -, k} we note that for d ¢ (0, ] and
u, v (0, 1), (see Ruymgaart (1973), page 27)

(3.26) le(u — v) — u| < M[r(v)]F=[r(u)]~t*°.
From (3.26) and Assumption 2.1 we find,
N7 30 E (A ™)
< N7 R E M (Fip(Xin)))?
X § (F(F o)) #2(r(Fin))**! TT5mos5 (r(F j))% dGy T+
= M §3(r(9)472% 2 dS[§ TT5=0sswe (F(F ) %5(r(Foy)) it 442 G+
Since for every 6 > 0, (4 — 0)(2 + 0) < 1 it suffices to consider the last factor
in the last bound, which is bounded above by
(3:27)  Ilbeoswe (B3 [F(s 0o+ 42001 dsJostamesone
x {§3 [r(si)]‘“i’”“"’/“‘i“”ﬂ’ dsi}“‘i*’}”‘” < co.
This follows from an application of (3.24) with ;7' = a, + (§ — a — 20)/k for
jef{0,1, ..., k}but j==1i,and £, = a, + § + 20. Because a < 4 we have for
0<2<4—athat§; > 1forj=0,1,...,k. The bound in (3.27) is inde-
pendent of N, so that (3.22) is proved.
Finally let us note that because of Lemma 3.1 for A; # 0,

(3.28) N7 20 ([ uval ™) = MIAlhin(s:)[° < MIA M,
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so that the contribution due to the purely discrete part of the generating
functions is bounded by a finite constant independent of N. It is obvious that
the minimum over the finite number of d’s considered so far is a ¢ for which
(3.21), (3.22) and (3.23) are simultaneously satisfied and hence we have proved
(3.20). Moreover, from the proof of (3.20) and Fubini’s theorem it follows that
(3.29) Ly, Z,y=0.

Asymptotic normality of the 4A-terms (3.14) follows by a version of the central
limit theorem due to Esseen (see Theorem 1, page 43 in Esseen (1945)), using
(3.20), (3.29) and the fact that the ¢,* are given to be bounded away from zero
for N sufficiently large.

4. Exact scores. Theorem 2.1 is an asymptotic result on rank statistics in
the case where approximate scores (cf. (1.10)) are used. Clearly, a result like
Theorem 2.1 also holds in the case where exact scores (cf. (1.9)) are used,
provided condition (1.17) is satisfied. Assumption 4.1 is a strengthening of
Assumption 2.1 which ensures that condition (1.17) holds.

AssUMPTION 4.1 (generating functions). The generating functions satisfy
Assumption 2.1 with 2.1(b) replaced by the assumption that the function J; is
continuous throughout (0, 1) and has a second derivative J,* on (0, 1)-=; for
i=1,2, ...,k Inaddition to Assumption 2.1(d) the second condition in (2.4)
also holds for v = 2.

Lemma 4.1. Letforn=1,2,.--,NNN=1,2,-..,i=1,2, ..., k, the exact
scores a}y(n) and the approximate scores a,,(n) be defined as in (1.9) and (1.10)
respectively. Suppose that Assumption 4.1 is satisfied. Then, with probability one,
(4.1) N~ e [TTEo af(Riny) — TTEo: @in(Riy)| — 0 as N-— oo,
uniformly in the continuous underlying df’s Fyy, Fyy, -+, Fyy, N=1,2, ...,

ProoF. First we remark that
(4‘2) 1. 1 azN(Ran) H?:l aiN(RinN)

= 2 {I152 4w Rum)[ @ (Riny) — @in(Riuw)] Tlh=iv1 @fv(R;un)} -
With the aid of Assumption 4.1, (1.9), (1.10), (1.11) and the remarks in
Ruymgaart (1973), page 87, we find for every i e {1, 2, - - -, k} that with prob-
ability one

N_b Z'ﬁ:’:l anlH.l'l—:—-ll ajN(RjnN)[a?(N(RinN) - aiN(Ri'nN)] H,.’;=i+1 a;(N(RjnN)l
Ry, e. [ Rj,
o (57| v (5752)
(4.3) X |a¥(Riny) — @in(Riny)|
(R,
< MN- 3 Z H] =i I <N]—_'_N1‘> |a (RmN) iN(RinN)l

= MN-} 3L,

< MNH B2 Tl aies 5 (322505 ) ata(m) = aan(m)]
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where, for j=0,1, ---, k, j# i, (Q;1x> Qjans - +» Q,xy) is @ random permu-
tation of (1,2, ---, N). From the derivation of (7.14) and from (7.25) in
Chernoff and Savage (1958) it is clear that
(4.4) laf(1) — aiy(1)] = MN*,
and, for 1 < n < NJ2, that
—nt 1 1
4.5 an—@;1<MWVM<n> LI
(4.5) Jazy(n) — au(m) S

_|_

Where the functlon j‘ls deﬁned mn (2'1)' Hence’

M=+ S Loy (2222 laiv(n) = aun(r)

MN i:[—‘[,1 =0;5#1 aj(

)
N+ 1

+ MN- z;ﬂzlngo;#ir%( N )

—nt
N-1 —1-
Nt M)+ T

(%) =45

LG e .

N/ N+1

It is obvious that the first two terms in this expression converge to zero as N

tends to infinity. Application of the mean value theorem shows that the last
term is bounded above by

MN-# YLV ]k lra~( anN)rai+l< n >,
R N+ 1 N+ 1

which, in view of Lemma 2.4.3 in van Zuijlen (1976b), is bounded above by

(

NS B T (2

NgZN r“+1<_N—i—l—)——>0 as N-— .

By a symmetric argument we can cover the range N/2 < n < N, so that (4.3)
converges to zero as N tends to infinity. Combination of this with (4.2) com-
pletes the proof of (4.1). []

THEOREM 4.1. Let an arbitrary triangular array of underlying df’s F,ye .7,
n=12..-,N, N=1,2, ... be given and let the generating functions satisfy
Assumption 4.1. Then the quantities 1, and o, defined in (2.10) and (2.11) are
finite. If, moreover, lim inf,_, ayt > 0, we have

(4.6) SUP_wocscoo |[P(NH Ty — py)oy < 2) — A (2)] -0 as N-— oo,

for Ty as in (1.3) with a;, replaced by a}y defined in (1.9), i.e., the case of exact
scores.
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ProoF. This is immediate from Theorem 2.1, Lemma 4.1 and the equality

Nigy (N 3N ey T1E, aty(Riny) — )
= Nio,{(N7' 3 e,y T, a;y(Riny) — )
+ Nig, =t Y0 e[ 115, afy(Riny) — TIi aiy(Riny)] s

for N sufficiently large. []
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