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EXACT SLOPES OF CERTAIN MULTIVARIATE
TESTS OF HYPOTHESES!

By JaMEs A. KozioL

University of Chicago
Bahadur and Raghavachari have formulated the likelihood ratio meth-
od of finding the exact slope of a sequence of test statistics which does not
require explicit estimation of large deviation probabilities. The method is
described herein, and readily verifiable conditions under which it may be

invoked are given. The method is then used to find the exact slopes of
certain sequences of test statistics arising in multivariate analysis.

1. Introduction. Let (S, 4) be a sample space of infinitely many independent
and identically distributed observations s = (x,, x,, - - -) on a random variable x,
the distribution of which is determined by a parameter 6 taking values in a set
0. For 0, a given subset of ®, we wish to test the null hypothesis that some ¢
in ©, obtains. For each n, let T,(s) be a real valued 4-measurable function
depending on s through x,, x,, - - -, x, only, such that in testing the null hy-
pothesis, large values of T, are significant. For any 6 and ¢, let

Fn(t’ 0) = Pﬁ(Tn(s) < t)
and

G, () = inf{F,(t,0): 0By} .
Then the level attained by T, is defined as
L,(s) = 1 — G(Ty(s))-
The rate at which L, tends to zero when a given nonnull § obtains is considered

by Bahadur (1960, 1967, 1971) as a measure of the asymptotic efficiency of the

sequence of test statistics {7’} against that 6. If there exists a function ¢(¢) defined
for # € ® — O, such that

lim, ., n-'log L, = —4c(6) [P,],
the sequence of test statistics {7} is said to have exact slope ¢(¢) when 6 obtains.

It is in general a nontrivial matter to determine the exact slope of a given
sequence {T,}. One useful method (from Bahadur (1967)) is as follows:

THEOREM 1.1. Suppose that
(1.1) lim,_,, T,(s) = b(0) [P,]
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for each 8 ¢ ® — 0, where —oco < b(0) < oo, and that
(1.2) lim,_,, n='log L,(f) = —g(f)

Jfor each t in an open interval which includes each value of b(6), and g is a positive
continuous function on that interval. Then the exact slope of {T,} exists for each
nonnull 6 and equals 2g(b(0)).

Under certain regularity conditions, the likelihood ratio statistic is an optimal
statistic in the sense of exact slopes. Suppose that for each 6 the distribution
of the single observation x has a density f(x, ) with respect to a o-finite measure
p. For any 6 and 6, in ©, define the Kullback-Liebler information number
K(9, 6,) by

(1.3) K(0, 0)) = E, 1og [ f(x, O)/f(x, 0,)]
and let
(1.4) J(0) = inf, . K(0, 0,) .

Denote by 2, the likelihood ratio statistic for testing H,: § ¢ ©, based on
(% - -+, x,), and let T,(x) = —n-'log 4,(s). Then, Bahadur (1965) proved:

(i) if c is the exact slope of a sequence of test statistics {T,}, then ¢(0) < 2J(6)
for each nonnull 6;

(ii) the exact slope of {T'} exists and equals 2J(¢) for each nonnull 6.

The sequence {7} is said to be asymptotically optimal if its exact slope exists
and equals 2J(6) for each nonnull §. It is noteworthy that the exact slopes of
certain statistics generally believed to be equivalent to likelihood ratio statistics
are in reality less than 2J() for most nonnull values of 6 (cf. Abrahamson (1965),
Gupta (1972)).

The results of Bahadur (1965) have been generalized and refined in certain
directions by Bahadur and Raghavachari (1971). This latter paper formulates
a new method, here called the likelihood ratio (LR) method, of finding the exact
slope of a given sequence. The likelihood ratio method, which does not require
explicit estimation of large deviation probabilities, is described in Section 2. In
addition, a set of readily verifiable conditions under which the method may be
invoked are given in that section. These conditions serve to unify the theoretical
considerations concerning the likelihdod ratio method found in Bahadur and
Raghavachari (1971). The application of these conditions is demonstrated in
Section 3 with certain examples from multivariate analysis. Examples 3.1 and
3.2 have appeared previously, but with different methodology; the results of
Examples 3.3, 3.4, and 3.5 are believed new.

2. The likelihood ratio method. Consider the S = {s}, s = (x,, x,, - - -, ad inf),
A, and {P,: 6 € ©} of Section 1. For each nlet B, be the sub-o-field of 4 induced
by the mapping s — (x,, - - -, x,,). Then a B,-measurable statistic 7 ,(s) is a statistic
which depends on s only through (x,, - - -, x,) and is A-measurable. For each n
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let there be given a o-field C, such that
(2.1) C,C B, n=1,2,....

We have B, C B,,, for each n, but monotonicity (or any property other than
(2.1)) is not assumed for the sequence {C,}.

Let 6, and 6 be points in ©, and ® — O, respectively, and consider testing the
simple null hypothesis 6, against the simple alternative §. Assume that P, and
P, are mutually absolutely continuous on C,, and let p,(s) = p.(s, 0, 6,) be a
C,-measurable function such that 0 < p, < oo and dP, = p,dP, on C, (n =
1,2, ...). Note that p, is the LR statistic for testing 6, against 6 when the
sample space is (S, C,). Note also that if C, = B,, then, in the notation of
Section 1, p, = I} f(x:» 0)/11i0 f(Xi 00)-

For each n, let L,(s) be the level attained by p, in testing 6,, i.e., L,(s) =

{Pﬂo(p'» ; t)}t:pn(a)'

LEMMA 2.1. Let ¢ be a positive constant. A necessary and sufficient condition
that {p,} have exact slope c when 0 obtains, i.e.,

2.2) lim, ... log L,(s) = —3¢ [P,]
n
is that
2.3) lim, .. log p.(s) = 3¢ [P,].
n

In this case, if T, is any C,-measurable statistic and L, is the level attained by
T,(n=1,2, -..) we have

(2:4) lim inf,_, % log L,(s) = —%c [P] .

Special interest attaches to the case when, despite (2.1), (2.2) holds with ¢ =
K(0, 6,) defined by (1.3). The following lemma states that for this special value
of c it suffices to verify a part of (2.3).

LemMA 2.2. Ifc = K(0, 6,), (2.3) is equivalent to
2.5) lim inf, .. *log pu(s) = 3¢ [P,]-
n

Lemmas 2.1 and 2.2 are immediate consequences of certain results of Bahadur
and Raghavachari (1971).

We now show how Lemmas 2.1 and 2.2 can sometimes be used to find the
exact slope of a given sequence {T,} such that 7', is B,-measurable forn=1,2, . . ..
Suppose the following conditions are satisfied.

Cl. For each n and 6, the distribution of T, has a density function, g.(t, )
say, with respect to Lebesgue measure, with 0 < g, < oo.
C2. For each 6 ¢ ® — 0, there exists a 6, ¢ O, such that

(2.6) K(0,6,) = J(6) -
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C3. For each n, T, has an exact null distribution, i.e., g,(¢, 6,)) = g,(¢, °)
for all ¢° in ©,.

C4. For each nand 6 in ® — O, the distributions of T, under ¢ and 6, are
mutually absolutely continuous.

This condition implies that

2.7 h(t, 0) = 9nt:0).
(2.7) (¢, 0) FROT)
is well defined and 0 < £, < co for all relevant values of ¢.

C5. For each 6 in ® — 0, and each n, A,(t, ) defined by (2.7) is strictly in-
creasing in .

C6. Foreachf#in ® — Q,,
(2.8) lim inf, .. % log hy(T.(s), 6) = J(6) [P,].

LemMA 2.3. If conditions C1—C6 are satisfied, then {T,} has exact slope 2J(6)
when 0 obtains and so is optimal.

To establish this, let C, be the g-field induced by the mapping s — T,(s). Then
(2.1) is satisfied. Choose and fix # € ® — 0,, and then choose and fix 6, in 6,
such that (2.6) holds. It follows from Cl, C4, and (2.7) that 4,(T,(s), 0) is a
version of p,(s, 4, 6,); hence, by (2.6), (2.8) is (2.5) with ¢ = K(4, 6,). It follows
from Lemmas 2.1 and 2.2 that {p,(s, 0, 6,)} has exact slope 2J(6) in testing 6,
against 6. But then from C3 and C5 it follows that, for every n and every s,
the level attained by p,(s, 0, 6,) in testing 6, equals the level attained by T, in
testing ©,. Hence {T,} has exact slope 2J(f) against 6.

The verification of (2.8) can sometimes be accomplished as follows.

LeEMMA 2.4. Suppose we can find a constant b(6) such that
(2.9) liminf, ., T,(s) = b(6) [P,]

and we can also find a function §(t, 0) such that
(2.10) lim inf, _1_ log h,(t, 6) = &(t, 6)
n

for all t (at least in a neighborhood of t '= b(0)),

(2.11) £(b(0), ) = J(0) ,

and such that (., 0) is continuous in t at t = b(f). Then condition C6 is satisfied.
Clearly, Lemma 2.4 can apply to a given case only if both 5 and the function

§ are as large as possible consistent with (2.9) and (2.10). In practice we scale

each T, if necessary so that T,(s) — b(f) [P,] for each §, where b5 = 0 on ©,and

> 0on© — O, and then try to find lim n? log #,(¢, 6), or at least a continuous
function ¢ such that (2.10) and (2.11) are satisfied.
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3. Examples from multivariate analysis.

EXAMPLE 3.1: testing for a given mean vector, covariance known. Let X be the
p-dimensional Euclidean space of points x, and let ® = {6 = (¢,, ---, 0,),
—o0 < 0; < 00,1 < i< p}. Suppose that when 6 obtains x has a multivariate
normal distribution with mean # and known covariance matrix X. We wish to
test the null hypothesis

against the alternative
H,: Ex + 6,
where 6, is specified. We may easily show in this case that for ¢ = 4,,
J(0) = K0, 0,) = (0 — 6,))Z-(6 — 6,) .
For each n, let
T(s) = (%n = O) 2% — 60) ,

where %, = n~' 317, x,. T, is distributed under the null hypothesis as n-* times
a central y* variate with p degrees freedom and under the alternative as n-! times
a noncentral y* variate with p degrees freedom and noncentrality parameter n4,
where 2 = 2(0) = (0 — 6,)’2-(0 — 6,). Abrahamson (1965) proved that {T,}
has exact slope 2J(6) against every 6 and so is asymptotically optimal by noting
that

To(s) = (6 — 6oyZ70 — b)) [Py]
and then showing that, with F,(7) the null distribution function of T,
n~tlog[l — F,(f)] » —4¢

for each ¢t > 0. Since this limit is continuous in ¢, it follows from Theorem 1.1
that {T,} has exact slope 2J(6). This result will now be obtained by the likelihood
ratio method of Section 2.

Choose and fix a nonnull 6; since the null hypothesis is simple, J(0) = K(0, 6,).
Let g,(t, 6,) and g,(t, 6) be the probability densities of T,(s) under 6, and 6
respectively (Lehmann (1959), page 312) and let &,(t, 6) = g,(1, 6)/9,(¢, 6,) for
t > 0. Then

3.1 b1, 0) = Y=, e (MA2) (ﬁi)" L(p/2)

e 0= BT 3 G+ 2

is a strictly increasing function of . Conditions C1 through C5 of Lemma 2.3
thus hold; we shall demonstrate C6 by means of Lemma 2.4. Note that

(3.2) T,(5)— 2 [Py],

s0 (2.9) is satisfied with b(f) = (0 — 6,)’Z-'(6 — 6,). For (2.10), let j, for each
n be the positive integer such that {ni < j, < ind + 1. Since each term in the
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series expansion (3.1) of &,(., #) is positive,

—ni/2 (nl/Z)j'n nt\n F(P/z)
(3.3) ha(1,0) Z e ”7“(7) T2+ ju)

By an application of Stirling’s formula in (3.3),

lim inf, .., n* log k(1 6) = % [1 + log (ziﬂ :
But in view of (3.2), (2.10) holds; consequently by Lemma 2.3, {T,} does indeed
have exact slope 2J(#) against 6.

EXAMPLE 3.2: testing for a given mean vector, covariance unknown. Let X be
the p-dimensional Euclidean space of points x, and © be the set of all points
{(#, Z): p e Re, Z#*? positive definite}. Suppose that when § = (¢, X) obtains,
x is multivariate normally distributed with mean x and covariance Z. We wish
to test the null hypothesis

Hy:po= p
against the alternative

Hy:p# p

where , is specified but X is arbitrary positive definite. Denote by @, the point
(#0» ¥) in the parameter subspace 6,. Then

K(0,0,) = —}log |Z| + }log [¥] — p
+ 3t [U2 + (¢ — m)(e — )] -
It follows that, for any § = (#, X),

J(0) = infy e, K(0, 00) = —310g|Z| + Flog|Z + (# — p)(er — )|
= 3log | + 7 — )k — 1|
= glog[1 + (¢ — m) 27 (e — po)]
=%log(l +2),
where 2 = 1(0) = (¢ — o)’ ZHz — ).

Given n independent observations x,, - - -, x,, let U, = 31%_, (x; — %,)(x; — %,)
and V, = n¥(%, — p,). Then U, ~ W(Z, p,n — 1), V,, ~ N(n¥(pr — 1,), Z), and U,
and V, are independent. The likelihood ratio test of the null hypothesis is equiv-
alent to the test that rejects H, for small values of W, (s) = |U,|/|U, + V,V,/|
(Eaton (1972), Proposition 9.121), or, equivalently, to the test that rejects H, for
large values of T,(s) = 1 — W,(5s). We shall now establish the asymptotic op-
timality of {T,} by utilizing the likelihood ratio method of Section 2.

Choose and fix a nonnull § = (g, Z). Let 0, = (¢, Z + (¢ — o) — t0)')s
then J(0) = K(0, 0,). Let g,(t, 0) and g,(¢, 6,) be the probability densities of T,
under 6 and 4, respectively; since T, is invariant under nonsingular linear trans-
formations of the individual observations x;, - - -, x,, it has an exact null distribu-
tion depending only on y,. Let 4,(¢, 0) = g,(¢, 0)/g.(¢, 6,) for 0 < t < 1. Since
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W, ~1/(1 + (p/(n = p))F, .-,) under H, and ~ 1/(1 + (p/(n — p))F;,.-5(n4))
under H, (Eaton (1972), Proposition 9.129), we find that

o €™ na/2)yT(n/2 + HT(p/2)

3.4 B, 8) = Y=, £ v, 0<i<l,
G4 0= i = NG + ))

and hence that &,(z, 6) is strictly increasing in 7. Accordingly, we see that condi-
tions C1 — C5 of Lemma 2.3 hold. We may use the same approach as in the
previous example to conclude by Lemma 2.4 that

(3.5) liminf, . n='log A,(T,(s), ) = 4 log (1 + 4).

Cé6 is satisfied; {T,} therefore has exact slope 2J(f) against §. But @ being arbitrary,
{T,} is asymptotically optimal.

ReEMARK. The optimality of the likelihood ratio criterion can be proved in
an alternative, yet similar, manner. It is well known that the likelihood ratio
statistic is equivalent to the statistic T’ = (n — 1)(X, — #,)’U," (%, — ), which
is n~* times the usual Hotelling’s 7* statistic. Since the distribution of T2 is
(proportional to) F, the ratio of the alternative to the null distribution of T,’ is
the ratio of a noncentral to a central F distribution. The verification of the
asymptotic optimality of {T,’} can be demonstrated by straightforward modifica-
tion of the arguments presented in Example 7.3 of Bahadur and Raghavachari
(1971). An interesting consequence of this is a large deviation probability
estimate for the Hotelling’s T* statistic. Since {7’} has exact slope log (1 +
(1t — 10) 271t — pto)) against 6 = (u, L), and since T, — (1 — ) T}t — pto) [P,),
we see immediately that
(3.6) lim,_, n~'log P(T,’ = ) = —%log(l + 1),

a result found by Killeen, Hettmansperger, and Sievers (1972) by an entirely
different argument.

ExXAMPLE 3.3: testing independence of one variate from a set of variates. Let C
be the p-dimensional Euclidean space of points x = (x,, -- -, x,)’, and let © be
the set of all points § = (¢, £), where z € R? and X»*x» = (g;} gg;) is positive
definite, o,, denoting a scalar. Suppose that when # obtains x is multivariate
normally distributed with mean x and covariance Z. We wish to test the null
hypothesis that x, is independent of x,, - - -, x,.

Let 0 = (¢, Z)€ O, and let 6, = (v, (7 y,)) € 6,. Then

K, 6,) = —}log[Z] + }log [¥y| + } log | ¥y
— 1P+ B UTLE 4 (g — ) — )]
It follows that
J(0) = inf, .o K(, )
= —}log|Z| 4+ logay, + §log|Zy|
= —%log(1 — 0,Z5'9,/0,,)
= —3log (1 — ¢)
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where p = p(f) is the multiple correlation between x, and x,, ---, x, when 6
obtains.

For each n = 2, let T,(s) = R,?, the square of the sample multiple correlation
based on the first n observations of x. The likelihood ratio test of

Hi:p=0
against the alternative
H:p>0

when ¢ and X are unspecified is equivalent to the test that rejects H, for large
values of T,(s) (Anderson (1958), Theorem 4.4.2). We shall establish the as-
ymptotic optimality of {T,} using the likelihood ratio method.

Choose and fix a nonnull § = (g, (51 1)), and let 6, = (g, (§n §,))). Then
J(0) = K(0,6,). Letg,(t,0)andg,(t,6,)be the probability densities of T,(s) under
6 and 6, respectively, and let &,(t, 0) = g,(t, 0)/g,(t, 6,). We have (Anderson
(1958), page 95)

_ "2 S _ PT((p—1)2) IY(n—-1)2+)).

ho(t, 0) = (1 — p)*" T3y (0% — : ;
TEIRT((p = D24+ ) T - 1)2)

clearly, &, is a strictly increasing function of ¢. Conditions C1—CS5 of Lemma

2.3 hold; C6 may be established as in the previous examples, using the technique
provided by Lemma 2.4. We may show that

lim inf, ., n~'log k,(t, 6) = }log (1 — p*) — log (1 — ptt).

But since
Tn(s) - p2 [Po] ’

(2.8) follows from Lemma 2.4; thus {T,} has exact slope 2J(f) against every 0,
and so is asymptotically optimal.

ReEMARK. In the special case p = 2, an alternative proof of the asymptotic
optimality of {T,} is available. Let T,/(s) = (n — 2)}r,|/(1 — r,)}, where r, is
the bivariate sample correlation coefficient. Clearly, T, and T,’ are equivalent
statistics. 7,’is distributed under the null hypothesis as the absolute value of a
t-statistic with n — 2 degrees freedom. If p 0, then n=iT," — |p|/(1 — p*)} [P,].
Further, upon noting that the square of Student’s ¢ is distributed as Hotelling’s
T?, we have from (3.6) that

n~tlog P, (|T,| = ntx) — —}log (1 + x*).

1t follows from Theorem 1.1 that the exact slope of {T,’}, and hence of {7}, is

10g<1 + P’{ﬁ) = —log(l — o).

EXAMPLE 3.4: testing independence of two sets of variates. Let C be the p-
dimensional Euclidean space of points x and © be the set of all points § = (g, 2),
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where x# € R? and »*? is positive definite. Suppose that when ¢ obtains, x has
a multivariate normal distribution with mean ¢ and covariance Z. Suppose in
addition that we partition £ = (3u §g;), where X, is of rank g, Z,, is of rank #,
and g + 2 = p. We wish to test the null hypothesis

Hoi 221 =0
against the alternative

H:Z,+0,
when ¢ and X are unspecified.

Let ¢, denote the point (v, (1 §,,)) of ©,. Then.
K0, 6,) = —}log |Z| + }log | Wy + } log [Vl
—3p+ VI 4 (=) —v)]-
Hence
J(0) = inf K(0, 0,) = —311log |Zy,|/|Zs) -
Suppose in addition that X, is of rank 1—that is, X, can be written as uv’, where
ue R*and ve R*. Then
Izzz-ll/lzzzl = II - Z2_2122121—11212|

= |I — ZZwv'E5 |

= (1 — v Z5'vuw'Z5 )

=122,
where 2 = 2%(0) = v'Z;'vuw'Z;'u. Then we may conveniently express J(f) as
—%log (1 — 2.

For each n, let S, = X7, (x; — %,)(X; — %,)'; we write S, as
(8o sy
s S/

where S is g X g, S is h X h. Let U,(s) = |S,|/|S%| - |S%’]. The likelihood
ratio test of H,: Z,, = 0 versus H,: X, + 0 rejects H, for small values of U,(s),
or equivalently, for large values of T,(s) = 1 — U,(s) (Eaton (1972), Proposition
10.123). We shall establish the asymptotic optimality of {7} by the likelihood
ratio method.

Choose and fix a nonnull 6 = (g, Z), and let 6, = (¢, (= 3,,)). Then J(0) =
K(8, 6,). Under the null hypothesis,

Un ~ H?:l Wt ’
where W, - . ., W, are independent, and W, ~ 1/1 +-(g9/(n — 1 —p+i))F; 1515

under the alternative, the same distributional result obtains, with the exception
that

e e By ey
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where 0 is a random variable, 6 ~ 2*/(1 — 2*)y%_, (Eaton (1972), Propositions
10.130, 10.137). After some algebraic simplification, we may write the ratio of
the probability densities of T, under the alternative and the null hypothesis as

e s @2 D= D2+ ) T
B Ay R v (11 M 77y L

and so
" ' —aovp_T(9/2) T =12+ )
h(t, 0) = ~=< < >’1+c(n1>/2 r
0= 25o(75) O g1 ) ™=y
where ¢ = /(1 — 2*). Conditions C1—C5 of Lemma 2.3 are readily verified;
the verification of condition C6 is handled exactly as in the previous examples.
The asymptotic optimality of T,(s) follows immediately.

K

EXAMPLE 3.5: the modified T* problem. Let X be the p-dimensional Euclidean
space of points x = (x,’, x;')’, where x, is of dimension ¢, x, is of dimension &,
and g + h = p. Let © be the set of points § = (y, Z), where p = (0/, p,/), o is
of dimension p, u, is of dimension #, and Z»*® is positive definite. Suppose
that when 6 obtains x is multivariate normally distributed with mean x and
covariance Z. We wish to test the null hypothesis

H,: Ex,=0
against the alternative ’

H : Ex,+0.
That is, knowing that Ex, = 0, we wish to ascertain whether Ex, is 0 also. There
does not exist a uniformly most powerful test of this hypothesis (Giri (1961));
hence it is of interest to compare various possible tests using the criterion of
Bahadur efficiency. Gleser (1966) derived approximate slopes (for a discussion
of the concept of approximate slopes, see Bahadur (1960, 1967) or Gleser (1964))
for certain of the test statistics we shall consider; however, our likelihood ratio
method allows us to calculate the exact slopes, thereby obviating the uncertainties

attendant with an approximate analysis.
Let 6, denote the point (0, ¥) in ©,. Then

K(8, 6) = —}10g [Z] + } log [¥] — $p + 4 tr WXE + ) .
It follows that
J(O) = 3 log (1 + p/'25' pry) -
Given a sample of size n, let X and § denote the sample mean and covariance

respectively. (Our notation contains no explicit mention of n, a pomt that we
trust will not lead to confusion.) Partition

%= <7_‘1) , S — (Sn Sm)
Xy Su Sy

into components of dimension g and 4. Then the likelihood ratio statistic for
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testing H, may be written as (Rao (1946), Giri (1961))
I=[(1 4+ ®S%)/(1 + %/S5%)]".

The likelihood ratio test is equivalent to the test that rejects H, for large values
of the statistic

T," = (n — p)(#S'% — %/S5'%,)/(1 + %,/S5'%,) .
The exact slope of {T,"} follows readily upon observing that
T, Y — 25ty [Py]

and that the null distribution of 7,V is proportional to Hotelling’s T with n — g
degrees freedom (Kshirsagar (1972), page 139). Combining these facts with the
large deviation probability estimate (3.6), we conclude from Theorem 1.1 that
{T, ™} has exact slope log (1 + p,’Z3!, ¢,) against = (u, Z); 6 being arbitrary,
{T,»} is thus asymptotically optimal.
Consider
T,” = nx'S-'%,

the Hotelling's 7” statistic appropriate for testing the null hypothesis H,: Ex = 0
without knowledge that Ex, = 0. Note, however, that when 6 = ((0’, p,’)’, Z)
obtains

n T, ® — p Tk gy [Py]

It follows that {T',»} is another asymptotically optimal sequence of test statistics
for the modified T problem—we achieve asymptotic optimality without utilizing
the prior information that Ex, = 0.

We may not, however, ignore the information furnished by x,. Suppose we
restrict ourselves to procedures based solely on x,. The likelihood ratio test of
H,: Ex, = 0 in this instance is equivalent to the test based on

T, = nx,/S;'%, ;
as T, is a Hotelling’s T? statistic in the restricted setting, {7','®} has exact slope
log (1 + py'Z35'w,) against 6 = (¢, £). The Bahadur efficiency of {T',} compared
to {T, %} or {T,®} is strictly less than one except when x, and x, are independent

under 6. Thus {T,®} is not asymptotically optimal.
Finally, let

«

(4) — ! C—1¢ ¥ ' C—1y%
T, = n(X'S7'% — x,/S3'%)),

the (D%,, — D,?) statistic proposed by Rao (1949) and investigated in greater
detail recently by the Subrahmaniams (1973). The exact slope of {T, “”} follows
from these considerations:

P, (T, ® 2 nt) < P, (D3, = nt),
since D?,, and D}, Hotelling’s T* statistics, are both positive. Hence

lim sup, _,, n=*log P(T,* = nt) < —4log(1 + 1).
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But

T, W — 25N vy [Py]
and

nDl L — 5 e [P
imply

lim sup, .. n7tlog L, < —3%log (1 + w'E354 1) s

where L, is the level of T,¥. On the other hand, it is well known (Bahadur
(1965)) that

liminf, . n-'logL, = —J(0) = —4log (1 + p/Z5h ) -

Therefore {T,*'} has exact slope 2J(6) against 6, and so is asymptotically optimal.

On the basis of Bahadur efficiency, then, T, is an inefficient statistic and
T,%, T,?, and T,* are all fully efficient. Needless to say, these conclusions
concern asymptotic efficiency; the actual relative performances in samples of
given size may present a different picture.
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