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BOUND ON THE CLASSIFICATION ERROR FOR
DISCRIMINATING BETWEEN MULTIVARIATE
POPULATIONS WITH SPECIFIED MEANS
AND COVARIANCE MATRICES

By K. Isit AND Y. TAGA
Osaka University and Chiba University

Let &, &, be two families of p-variate distribution functions with
specified means g; (i = 1, 2) and nonsingular covariance matrices Z;, and
let z; be the prior probability assigned to &7 for i = 1, 2. The objective is
to discriminate whether an observation x is from a distribution F; € &7 or
F;e &, Given a pair F = (F\, Fz) the error probability for classification
rule ¢ is denoted by e(¢, F).

In this paper the values of supy infs e(¢, F) and infs supy e(¢, F) are
found and conditions for the existence of a saddle point of (¢, F) are given.
Also a saddle point is found when it exists. When ¢ is restricted to linear
classification rules the same problems are considered. The mathematical
programming method for finding a saddle point is also outlined.

1. Introduction. Let F = (F,, F,) be a pair of p-variate distribution functions.
An observable variable X comes from one of two populations with distribution
functions F, and F, according to prior probabilities =, and =, (r, + =, = 1), re-
spectively. The objective is to discriminate whether an observation X = x is
from F, or F,. A randomized decision rule is represented by a pair of measur-
able functions ¢,(x) and ¢,(x) = 1 — ¢(x) (0 < ¢,(x) < 1), based on which an
observed value x is ruled to come from F; with probability ¢,(x) (i = 1, 2). The
pair ¢ = (¢,, ¢,) of such functions is called a classification rule, and we denote
by ® the set of all possible classification rules ¢. When ¢ = (¢,, ¢,) is adopted,
the classification error for the discrimination is given by

(1.1) e(@, F) = m, (pp 0(X) dF(X) + 7, (o 1(X) dFy(X) .

Now suppose that F, and F, are not explicitly known but only their mean
vectors g,, ¢, and covariance matrices X,, X, are specified. Denote by . the
set of all pairs F = (F,, F,) with specified g,, g,, £, and Z,. We shall study the
values of sup,. - inf,., (¢, F) and inf, ., sup,. . e(#, F), whether both values
coincide, and a method for finding minimax and maximin solutions if they exist.
When p = 1 and 7, = 7, = }, Chernoff [1] showed that sup,. . inf,., e(¢, F) =
1/2(1 4 S%), where S = |p; — p,)/(0, + 0,). He also showed that the same result
is true when ¢ is restricted to one-sided classification rules, which consist of se-
lecting one of F, and F, according as x > ¢ or not for some ¢.

In the present paper we shall find a saddle point for e(¢, F) by the method of
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abstract linear programming stated in Isii [2], and give concrete answers to our
problems in multivariate cases with general prior distribution. Theorem 1 in
Section 2 gives the values of sup,. . inf,., e(¢, F) and inf, ., sups. . e(¢, F),
and shows that both values coincide (that is, a minimax theorem holds). Further
a saddle point (¢*, F*) is given such that, for all ¢ ¢ ® and all Fe .7,

(1.2) e(¢*, F) < e($*, F*) < e(, F¥).

Theorem 2 deals with the case where the classification rule is restricted to
(nonrandomized) “linear classification rules”, that is, the case where ¢, (i=
1,2) is the indicator function of a half space. It will be shown that the
value of sup,. . inf,., e(¢, F) remains invariant under this restriction, while
inf, o supy. .- e(4, F) may increase.

The formal proofs of Theorems 1 and 2 need not bear any direct reference to
mathematical programming, because the pair (¢*, F*) in Theorem 1, once it
has been found, is verified to be a saddle point by formal and elementary cal-
culations. The essentials of our method may lie rather in how to find such a
saddle point. We shall, therefore, sketch in the final section the mathematical

programming method for finding a saddle point.

2. Main results. Throughout the paper the covariance matrices X, and X, are
assumed to be nonsingular.

We shall first give some lemmas in which some quantities and results requisite
for the theorems are introduced.

LEMMA 1. Suppose 1 < m,/m; < 1 4 (g, — ) Z,7 (e, — p). Then, for every
vector X in R? satisfying

x/(fll — ) Ty b
ey Tz ()

there exists a unique real number t = t(X) which satisfies
(2.2) (X'Zx)H(myt — 1) 4 (X'Ex)¥(m,t — 1) — x'(p, — 1) = 0.
Further, there exists a vector x = b which attains the maximum value t,(> 1/x) of

(X), and b is unique up to a positive multiplier. The pair (b, 1,) of a maximizing
vector and the maximum value is characterized by the relation

(m ty — 1)} (myty — 1)t .
(2.3) Wzlb+wz2b—#l_#2'

Proor. Denote the set of all vectors satisfying (2.1) by M, and the left-hand
side of (2.2) by f(x, #). For every x in M, f{(x, r) is continuous, strictly increas-
ing in ¢, f(x, 1/z,) < O and lim,_, f{x, t) = co. Hence there exists a unique ¢ =
1(x) which satisfies f{x, #(x)) = 0. Since #(kx) = #(x) for k > 0, we may restrict
x on the set C = {x|x e M, [[x|| = 1}. Then f(x) is continuous on the compact
set C, so that #(x) attains its maximum value, say f,.

Now, since f(x, ) is increasing in 1, a pair (b, 7) satisfies ¢ = #, = #(b) if and
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only if f(x, z) = f(b, r) = 0 for every x in M. But #(x) can not attain the maxi-
mum at a boundary point of M, because 7(x) = 1/z, on the boundary, while,
by the assumption, f(x, 1/z,) < 0 for x = X,Y(#, — p,) which yields ¢, > 1/x,.
Thus, noticing that f(x, f) is convex in x, f(x,7) = f(b, ) = 0 if and only if
f(b,7) = 0 and
I - =
(2.4) (b,7) =0, j=1-,p,
0x;
(x; is the jth component of x). But it is easily verified that (2.4) is equivalent
to (2.3) with ¢ replaced by #, and that (2.3) implies f(b, t,) = 0. Hence (2.3) is
necessary and sufficient for the required pair (b, #,).

Finally, for every two vectors £ and 5 in M, f(x, 1) is strictly convex on the
line-segment &7 except in the case where 5 = k& for some k > 0. Hence the
vector x satisfying f(x, t,) = f(b, ,) = 0 is unique up to a positive multiplier.
This completes the proof of the lemma.

REMARK. We can obtain the explicit expression of #(x) by solving (2.2) which
reduces to a quadratic equation in 7. But the explicit formula is unnecessary
for the proof of Theorem 1, so we omit it here.

In the following it should be understood that the real number ¢, and the vector
b represent those introduced in Lemma 1.

Now we shall consider a particular pair of distributions which plays an es-
sential role in Theorem 1.

LEMMA 2. If 1 S myfm, < 1 4 (0 — ) 2,70, — #4,) any pair F* = (F.*, F,*)
of p-variate distributions F,*, F,* given by the following formula belongs to the family
S defined in the introduction.
(2.5) Fpo= 1

UFEN

G+ (1- )6, i=1,2,

Tk

where G, is the single-point distribution concentrated at

2.6 m = g — (Tl — Disp
(2:6) e oS

and G, (i = 1, 2) is any distribution with mean vector

)

—1)Z,b

2.7 m =g — i

(2.7) M = Diy'S )
and covariance matrix

(28) T, = _Filo (ZZ — ___1____ Zzbb’21> .
Tty — 1 b'Z,b

Further, G, is a distribution concentrated on the hyperplane {x |b'(x — m,) = 0}.

Proor. We first show that T, is a nonnegative definite matrix. For any p-
dimensional vector x, we have

(% - o b, ) x = (x — LEVES b) ,(x — DX b)z 0.
bZ,b Wb )=
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Hence the quadratic form x'T";x is nonnegative, and equal to zero if and only
if x is parallel to b. Hence G, exists and is concentrated on the hyperplane
{x|b'(x — m,) = 0}.

We shall now prove that F* belongs to .. By (2.3) and (2.6), we have

o (ml— iy
(2.9) m, = g, + (“’b,°2 by Z,b,
and we obtain from (2.5), (2.6), (2.7) and (2.9)
Seo (X — p2) dF*(x)

1
Tt (mo ‘al) <

i

S AL Y R . C) N
Tty (D'Z,b) (z,1, — 1)}(b'Z,b)

lt > (m; — p;)

%0

’

which shows that the mean of F,* is g,. The covariance matrix of F;* is given by
Soo (X — p)(x — ) dF*(x)
0 1 1
= —|—<1— t>Fi+7;t(m0_‘ai)(m0_‘ai),

UFEN Tyl ilo
1 ,
+ <1 - )(mi — p)(m; — p)
Tt
1 1 70— 1
=(1- > . milh = 1y by,
< Tt + m;t, b'Z.b
1 Z,bb'z,
1 — *>_* =3,
+ ( wity) (i1, — 1)b'Z,b !

Hence F* = (F,*, F,*)e 57, as was to be proved.

LEMMA 3. Suppose myjm, = 1 + (g, — ) Z," (¢, — p2,). Then, for any vector
7 such that y'X,~'n > 1, any pair F* = (F¥,, F,*) given by the following formulas
belongs to &

(2.10) Fr, = (1 — )G, + 2 Gui + 5 G
(2.11) Fr= * G4+ 1 G,
1+ 4 1+ 2

where G, is the single-point distribution concentrated at t g, Gy (i =1, 2) any dis-
tribution with mean (—1)i=' and covariance matrix [, = WEE, — gy, e =
19’21y, G, any distribution with mean m = p, — A(ge, — p,) and covariance
matrix

Fo=(1+ 0 — A — ) — Y),  and
= (/‘1 - ﬂz)/zz—l(fll - f‘2) .

Proor. It is easily verified by Schwarz’s inequality that the quadratic form
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T x = (7Z, 'p)(X’Z,x) — (x'p)*is nonnegative. Hence F}, is actually a distri-
bution. The calculations similar to those in the preceding lemma show that the
mean vector and covariance matrix o’va;*jW is, respectively, g, and X,, that f; is
also nonnegative definite, and that F,* has mean g, and covariance matrix Z,.
Detailed calculations are omitted.

Now we shall state the main theorem. It may be assumed without loss of
generality that =, < =,.

THEOREM 1. (i) When 1 < mlm, < 1 + (g, — p0.)' 2,7 (18, — f2,), we have

(2.12) maxg. . inf, ., (¢, F) = min, ., supp. .- (¢, F) = tL .

0
A saddle point (¢*, F*) of e(p, F) is given by any F* in Lemma 2 and any ¢* such
that

(2.13) 0=<¢xx) = 0(x), 0=¢%x) = 9(x)
and
(2.14) o.*(X) + o,*(x) =1,
where
(2.15) 9:(X) = ¢c(x — m,)’bb’(x — m,) i=1,2
with m, given by (2.7) and c, defined by
(2.16) 1 _ #y(b'Z,;b)t <7r1(b’>31b)é my(b'Z,b)? > 0.
¢, (mity— 1P \(mty — 1) (w1, — 1)}

(ii) When m,jn, = 1 + (e, — p)' 2,7 (18, — p2,), we have
(2.17) SUpg. - inf, o &(¢, F) = min, o sup,. . (4, F) ==, .

In this case supp. .. e(¢, F) is minimized by ¢,*(x) = 0 and ¢,*(x) = 1, but there
does not always exist an F* which maximizes inf, o e(¢, F). Thus a saddle point
does not always exist.

Proor. (i) We first show the existence of ¢* which satisfies (2.13) and (2.14).
It suffices to show that

(2.18) 9(x) + g(x) = 1.
In fact,
X) + 0.(%) = b (x — St Cama )} G efbm = m))
9:(x) + 94(x) (€ + ¢ { (X ¢+ ¢ > + St

But it is easily seen from

1 n 1 :<nl(b'zlb)é’ 7,(b'Z,b)? ) r

o e \(mto— 1)t (myt,— i/ "

and
Tl Tyl

- Z,b
(7.1, — D', byt + (7yt, — 1)}('Z,b)}

m, — m, 2
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that

cl c2 ’ 2
(2.19) s {p’(m, — m,)* =1,
which implies (2.18). Here we note that g,(m,) 4+ g,(m;) = 1. In fact, substitut-
ing (2.6), (2.7) and (2.9) into (2.15) we obtain g,(m,) = c(7*/(7;7, — 1))b'Z;b,
and (2.16) yields tha* ,,(m;) + g,(m,) = 1.

We next prove that e(¢*, F*) = 1/t,. Since g(x) = 0 on the hyperplane
H(m,, b) = {x|b(x — m,) = 0}, ¢f,(x) =0 on H(m,b) for i=1,2. The
support of G, is contained in H(m,, b) by Lemma 2, hence {, ¢3 (X) dG(x) =
0. Thus e(¢*, F¥) = 7, § o $% dZ + 7, Vo 61 dF* = m,(1/7,10) Yo 6% 4Gy +
my(1/myty) S po $1* dGy = 1/t,.

We shall finally show that (¢*, F*) is a saddle point. For any ¢ = (¢,, 4,),
we have e(¢, F*) = 7w, \zp ¢, dF\* + 7, (o 6, dF,* = 7, (o (1/7,80)0, dGy +
7y o (1/7310)¢, dGy = 1/t,. On the other hand, for any F = (F,, F,) in %, we
have e(¢*, F) = 7, (o §* dF, + 7y (pp §1* dFy = 7, $ 3o 91 dF, + 7, (o 9, dF,.
The right-hand side is determined by only the moments of order up to 2, so
it is independent of the choice of F. Hence it is equal to =, {,, g, dF* 4
Ty \ro 92 dF* = m(1/7, 1)) g,(mg) + 7,(1/7,1))g,(m,) = 1/t,. We have thus proved
(1.2) for any ¢ € ® and F e ./, and this implies (2.12).

(ii) Consider F * in Lemma 3. For any ¢ in ® we have, by (2.10) and (2.11),
e(p, F,*) = 7 ()1 — €) + 7.6,(£,)(4/(1 + 2)). Since the assumption in case
(ii) assures that m,(2/(1 + 2)) = 7,/(1 + (& — #£,)'Z,7 (4 — #)) = 7w, We have
e(9, F,*) = n(9o(pe1) + (1)) — ¢ = m; — ¢ Hence inf, o e($, F,*) = 7, — e.
Noticing that F,* belongs to .~ by Lemma 3, we let ||7|| — co or, equivalently,
¢ — 0. Then it follows that sup,. . inf,., (¢, F) = ;. On the other hand, if
we take ¢* = (¢,*, ¢,*) such that ¢ *(x) = 0, ¢,*(x) = 1, we obtain

(2.20) inf, . SUPpc - €($, F) < supp. . e(¢p*, F) = =, .
The above arguments show that
SUPge - inf, .o (@, F) = 7, = inf, o SUpp. - €(, F) .

But the converse inequality sup.. . inf,., e($, F) < inf, ., supy. . e(4, F) is
trivial, and we obtain (2.17).

If there exists a pair F* = (F,*, F,*) maximizing inf,., e(¢, F), then (¢*, F*)
must be a saddle point on account of (2.17) and (2.20), and ¢* minimizes e(¢,
F*). Then, since ¢,*(x) = 0,

(2.21) 7, dF *(x) < 7, dF,*(x)

must hold (F,*-a.e.). But this is not always the case as is illustrated by one-
dimensional case. In fact, when p =1, (2.21) implies =, §{,x*dF*(x) <
m, (g X dF,*(x) so that m(d,* + p,?) < my(0,® + p,°). But this is impossible for
large ¢,>. We have thus seen that there does not always exist F* which maxi-
mizes inf, ., (4, F). This terminates the proof.
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Now we restrict available ¢’s to “linear classification rules”, that is, to the case
where ¢, is the indicator function of a half space (open or closed). Denote the
set of all such ¢ by ®,. Further denote by ®° the subset of @, consisting of all
¢ such that ¢, is the indicator function of a half space of the form {x |b’x = ¢} or
{x|b'x > c} for some constant ¢, where b is the vector introduced in Lemma 1.
We want to know whether the values of sup, inf, (¢, F) and inf, sup, e(¢, F)
are kept invariant when we restrict classification rules to ®, or ®°.

THEOREM 2. (i) When 1| < myfm, < 1 + (g8 — ) 2,7 (8 — #,), we have
(2.22) SUPse - inf, o0 (@, F) = sup,. - inf, .o e(p, F)
in 1
= SUPpe. i ¢e‘,,e(qﬁ, F)<._ *>,

L

while inf, o SUpPs. . e($, F) is in general larger than inf, .o SUPgc - (@, F).
(i) When nyjrm, = 1 + (p8, — )’ 2,7 (pe, — p2,), we have

(2.23) SUpye .- inf , b €(p, F) = inf, o SUPse - €(p, F) = 7, .

Proor. The case (ii) trivially follows from the case (ii) of Theorem 1. In the
case (i), we shall express a ¢* in Theorem 1 as the average (in some sense) of ¢’s
in ®*. We have, by the definition of b, m, and m,,

b'm, < by, < b'p, < b'm,.
Noticing that g,(x) in Theorem 1 is a function of b’x, we define

w(A) = gy(x) if bm,<4i<bmg, A= b'x
=1— gy(x) if bmy<i1<bm,, A =Dbx

Then w(4) is monotone increasing and differentiable in 2 for b'm, < 1 < b'm,,
w(b'm,) = 0 and w(b'm,) = 1. Define ¢* = (¢,%, ¢,%) in ®* by

6(x)=0, bx<2, $i(x) =1 — ¢4(x),
=1, bx>2,
and ¢* by
¢*(x) = a8/ (0)w'(2) 4R, i=12.

It is easily verified that ¢* satisfies (2.13) and (2.14), hence we have e(¢*, F) <
1/, for any Fin 7. It holds, however, that e(¢*, F) = {}n1e(¢*, F)w'(2) dA by
Fubini’s theorem, and {}'%1 w'(2) dA = 1. Hence e(¢*, F) < 1/t, must hold for at
least one 4 (possibly dependmg on F). We have therefore inf, 0 (¢, F) < 1/1,
forany F in .~ so that sup,. . inf, 4 e(¢, F) < 1/t,. On the other hand, it is
trivial that sup,. - inf, o1 €(¢, F) = supg. - inf o e(, F) = supp. - inf ., e(4,
F) (= 1/t,). Thus we obtain (2.22).

Now when p=1, =, =4 and ¢, = g, = ¢, the value of sup,. . e(¢, F)
can be calculated by one-sided Chebyshev inequality, and we see that
nfyco, SUPre.- (P, F) = (1 + (¢, — pa)/40%) ™ = 2/t, > 1/4,.
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3. Special cases.

(1) If 7, = n, = 4, the case (i) in Theorem 1 is applicable. Equation (2.2)
reduces to

(S0 + (KT,2)H(1)2 — D)} — Xty — p) = 0.
Hence, x'(g¢, — #,) = 0 and

) =2 {<(x'2’:;(;: T (f’%m* >2 w1

Therefore, the vector b is characterized by

(3'1) b/(yl - p2) — max X'(Ftl - ”2) .
(b'Z,b)F + (b'Z,b)} “XEX) 4 (X, x)!

If we denote the value of (3.1) by S, we obtain #, = 2(1 + §?). If, in particular,
p =1, then § = |y, — w,|/(0, + 0,), and the value of (2.12) coincides with that
of supy. . inf,., (¢, F) in Chernoff [1].

(2) If %, =a’X and X, = B2 (a >0, B> 0), T being a positive definite
matrix, the assumption in (i) of Theorem 1 is written as 1 < z,/7, < 1 +
(1/8)(p, — #)’Z7Y(pe, — p,). We can substitute b = 7' (g, — p,) into (2.3),
and ¢, is determined as the root of the equation

a(”lto - 1))" + ‘8(”210 - l)i = ((F‘l - ”2)’2_1(”1 - l“z))é .

(3) If, in addition to the above, £, = ¢,’/ and X, = ¢,’I (I is the identity ma-
trix), the assumption in (i) reduces to I < m,/x, < 1 + [|(g, — t2)/0.||*. Equation
o(mity — 1)t + oy(myty — 1)} = ||p, — ;)| determines £,. This case is essentially
equivalent to the one-dimensional case.

@) Ifr, =mn, =4, Z, =07, L, =0,I, and if g; has constant components,
say, ¢V, x is regarded as a sample of size p from a univariate population. Then
S = pi(|p — p'?|/(0, + 9,)).- Hence ¢, is seen to be of linear order in p.

4. Outline of mathematical programming method for finding a saddle point.
As is stated in the introduction, the proof of Theorem 1 has no essential difficulty
once a saddle point (¢*, F*) (in the case (i)) has been given. Therefore the es-
sential part of our approach seems to lie in how to find such a saddle point. So
we shall give an outline of the method for finding a saddle point.

We shall first fix ¢ in @, and seek the value of sup,. . e(¢, F). If we consider
the linear space ¢ of all pairs F = (F,, F,) of bounded signed measures F,, F,
on R?, e(¢, F) = mt, \ po $, dF, + 7, \ pp 9, dF, defines a linear functional on 7.
Then the problem is to maximize the functional e(¢, F) of F subject to linear
constraints

4.1) Spo dF; = L, (X dF, = p,, (e XX' dF; = T+ pp
i=1,2,

and the constraint that F, and F, are nonnegative. This is a particular case of
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abstract linear programming discussed in [2]. By the assumption of nondegen-
eracy we can make use of the duality theorem, and obtain sup,. e(¢, F) =
inf, , {7, E(9)) + 7Ex9:)|9:(X) = ¢5_i(x), i = 1,2}, where g,(x) ranges over
nonnegative quadratic functions (x — 8,)'4,(x — B;) + r;» and E,(g;) represents
the functional tr (4,2;) + (8; — &)’ A(B: — #:) + 1. (i = 1, 2) which is the ex-
pectation of g,(X) with respect to any F; satisfying (4.1).

Now let ¢ range over ®@. Then we have

inf, ¢ supy. - e($, F)
(4.2) = inf, , (T E(9) + mEN(9) |9 €@ g = $5 i = 1,2}
inf, , {7, E\(9)) + mEx9)]94%) 2 0( = 1, 2),
9(%) + 9:(x) = 1} .
Any quadratic functions g,(x), g,(x) satisfying g,(x) = 0 (i = 1, 2) and g¢,(x) +

gx(x) = 1 can be replaced by smaller ones, satisfying the same conditions, of the
form

g:(X) = ¢y(x — By (x — ﬂ) + 7 i=1,2,
where 7 is a vector in R*. Then

E(g) =cn'(Zi+ (Bi — ) Bi — )0 + 71 -

For fixed %, the problem of minimizing =, E,(9,) + =,E,(g,) is essentially regarded
as the one-dimensional case, and it is a constrained minimization problem with
respect to a finite number of real variables ¢;, '8, r; (i = 1, 2). Some elemen-
tary calculations yield that in the case (i) the minimum value is 1/#(), where
() is defined in Lemma 1. The function #(#) takes on the maximum value
t(b) = t,, with the minimizing pair g,, g, given by (2.15), where b and ¢, are
defined in Lemma 1. Thus, in the case (i), we find the minimizing ¢* for
sup, e(¢, F) to satisfy (2.13) and (2.14). Further we can find an F,* whose
support is contained in the subset of R” on which g,(x) = ¢} ,(x) for every such
@*, that is, the set on which g,(x) = 0 or g,(x) + g,(x) = 1. Such F;’s are given
by (2.5). We thus obtain ¢* and F*, and it remains to examine whether (¢*, F*)
is a saddle point, as is performed in the proof of Theorem 1.

On the other hand, in the case (ii), the infimum in (4.2) is attained by g,(x) = 1
and g,(x) = 0 with the minimum value =,. The limiting procedure from the
case (i) suggests the results of Lemma 3 and the case (ii) of Theorem 1.
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