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PROPERTIES OF HERMITE SERIES ESTIMATION OF
PROBABILITY DENSITY

By GILBERT G. WALTER
University of Wisconsin—Milwaukee

An unknown density function f(x), its derivatives, and its characteristic
function are estimated by means of Hermite functions {#;}. The estimates
use the partial sums of series of Hermite functions with coefficients d;» =

-(1/m) X7_, hj(X;) where X - - - X, represent a sequence of i.i.d. random vari-
ables with the unknown density function f. The integrated mean square
rate of convergence of the pth derivative of the estimate is O(n(2/r)+®/6r)-1),
The same is true for the Fourier transform of the estimate to the character-
istic function. Here the assumption is made that (x — D)"fe L2and p < r.
Similar results are obtained for other conditions on f and uniform mean
square convergence.

1. Introduction. The problem of estimating an unknown density f using a
sequence X, X,, ..., X, of i.i.d. random variables has received considerable
attention during the last decades. A number of different methods have been
proposed including the kernel method of Rosenblatt [4] and Parzen [3], the
orthogonal series method of Kronmal-Tarter [2], the histogram method of
Van Ryzin [7], the polynomial interpolation of Wahba [8], [10], the Fourier
transform method of Blum and Susarla [1], and the Hermite series method of
Schwartz [5]. The first four methods have been summarized and their mean
square rates of convergence calculated by Wahba [9] who showed that the “best
possible” rate was approached in certain cases with each of these methods.

The Hermite series method which is the subject of this work was not con-
sidered, however, even though its rate of convergence compares to the others.
We shall adopt the notations of Schwartz in which the unknown density function
is estimated by approximating the partial sums of its Hermite series with a sum
25 Gk (x) where d;, = (1/n) >37_; h;(X;). He obtained bounds for the rates of
convergence which we shall improve slightly by using better bounds on the
Hermite functions. Moreover we calculate the rates of convergence of the
derivatives of the estimator to derivatives of the density. By using the fact that
the Hermite functions are eigenfunctions of the Fourier transform we are able
to get estimates for the characteristic function and their rates of convergence
as well.

This method has much to commed it particularly for densities which do not
have compact support. For many applications, e.g., life testing, it is more
desirable to consider densities which tail off to zero at infinity. Some of these,
the rapidly decreasing functions, are naturally associated with Hermite functions
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since they share this property. They may be characterized as those functions
for which (x — D)’fe L* for each r. While most other estimators require special
hypotheses to be used for such densities, the Hermite series estimator does not
(as will be shown in Theorem 1).

Another advantage is the ease with which estimates may be calculated nu-
merically. The calculations require only simple algorithms based on the recur-
rence relations for the Hermite functions. This is true as well for the estimates
of the derivatives and the characteristic functions. No approximate differenti-
ation or integration is needed.

Finally, as Schwartz observed, the extension to the multivariate case is
immediate, and the error is the same.

In Section 2 we review some of the standard properties of the Hermite
functions. In Section 3 we derive the rates of convergence of the estimate and
its derivatives in the sense of MISE, while in Section 4 we do the same for the
estimate of the characteristic function. In Section 5 the MSE and MISE rates
are derived for densities with compact support. In Section 6 the results are
extended to the multivariate case.

2. Properties of Hermite functions. The Hermite functions {#;} are the
complete orthonormal system in L*(— oo, co) which satisfy the equations

0] (x* — DY)h; = (2j + )k, j=0,1,2,...
They may be expressed in terms of the Hermite polynomials H; as

H (x)e==

hy(x) = (297 7 j=0,1,2, ...
They satisfy the recurrence formulae (see [6], page 106),
2) xh; = (j12)h;- + ((J + 1)[2)th;, j=12 ..
and
(3) Dh; = (j/2)Hh,y — ((j + 1)k, j=12
They satisfy the following inequalities (see [6], page 242):
) hi(x)] = Co(j + 17 xe(—00,00),j=0,1, -
and /
©) ()] = Cu(j + 1) Xe(=M,M),j=0,1, ...

The constant C, satisfies C,, < 1 4+ LM%, (See the Appendix for the method
of calculating this.) An expression for C,, may be found in [6], page 242.

The Hermite functions are eigenfunctions of the Fourier transform operator.
That is, they satisfy the equation

1
(27!

(6) (i)ih,(w) = V. €*hy(x) dx,  we(—o0,00), j=0,1,2, ...
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We shall exploit these properties to obtain the convergence theorems in the
next sections.

3. Rates of convergence of the estimate and its derivatives. We shall use
the same approximating function f“ to the unknown df f as was used in [5],

™) fux) = 1% d, () n=1,2, .

where g(n) is some increasing sequence of integers satisfying g(n)/n — 0 and 4,,
is the estimator for the Hermite coefficient a; of the density (= { f#;). The
variance of the coefficient estimator is

a

®) By —a) = . BTt b)) - &

é%cw(j—l_l)_* j:O,l,"',HZI,Z,'"

for fe L* n L' by inequality (4). If f has compact support as well, then ine-
quality (5) can be used instead to obtain the bound

) E@,, —a) < 2Cj+ 1)t j=0,1,0,n=12, -
n .
By equation (3) the derivatives of #; may be expressed as linear combinations
of other Hermite functions. This expression has the form
(10) Ry = Jlma;®thi,  p,j=0,1,..., m=max(—j, —p)
where the coefficients satisfy

(11) la;>?| < K,(J +p)"* pj=0,1 - |s|=p.

We shall need this inequality in order to calculate the error of the derivatives.
Indeed we see by (8), (10), and (11) that

ES[fu7(x) — f®(x)] dx
= E{ [Lie0 (40 — @b
— 2E§ X1y (4, — a))h; P Yo 0 @y
(12) + § [2F-en ajhj(m]z
= 590 By — @ § [P + § [D5oqn ash, ]

2 . \ .
< -~ Cl i (J+ DK 2p + 1)(j + p)®
+ ([ X a; 2o, a;57h; ]

4 1)t .
<qUAPGEI €3y e+ pr -

The middle term drops out since d,, is an unbiased estimator of a;. The
constants C; and C, are derived from the constants in the previous line and
may be calculated directly. Both depend upon p but not upon n or g.
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The second term need not converge in general. Here we have assumed

implicitly that the pth derivative of f exists but that is not sufficient for con-
vergence of the series.

THEOREM 1. Let (x — D)"fe L}(—co, oo) for some integer r > 0; let p be an
integer satisfying 0 < p < r; let g(n) = O(n'"); then the mean integrated square
error in the pth derivative of the estimate (7) satisfies

E§|f.» — f2 = O(neir+oier-1) |

The asymptotic expression in the conclusion clearly holds for the first term
in brackets in (12). In order to prove it for the second term, we observe that
by hypothesis the series Y] b, converges where the b; are the coefficients of
(x — D)f. These coefficients are related to those of f by the expression

(13) b; = { (x — D)'fh; = § f(x + D)'h;
= (2))2j — 2)t --- (2j — 2r + 2)ta,_,,

by repeated application of integration by parts and the sum of (2) and (3).
Hence we have —

(14) 250018 + P £ X501 052D (G + p)°

1 »

which is more than we need. This proves the theorem.

REMARK. The case p = 0 of this theorem corresponds to the theorem of
Schwartz mentioned in the introduction. The hypotheses are the same, but the
conclusion has been extended to the case r = 1 while the asymptotic expression
has been sharpened to O(n**~*) as compared to O(n*/""Y).

It should be observed that for each p and r satisfying the hypothesis the
exponent p/r 4 5/6r — 1 is negative and hence the error approaches zero.

4. Rates of convergence of characteristic functions of the estimates. Because
of the unique property that the Hermite functions have with respect to the
Fourier transform (6), we are able to get an approximation to the characteristic
function of f with no additional work. Indeed if we define f:, to be the Fourier
transform of f,,

A

(15) fu = 20 (2m)bidd,, b, n=1,2, .-,
then the following holds.

CoRrOLLARY 1. Let r, p, f and q(n) be as in Theorem 1, then the MISE in the
pth derivative of the estimate (15) satisfies

ES Ifn(m - fﬂ’)l? = 0(np/1‘+5/81-_.1)

where f is the characteristic function of f.
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5. Rates of convergence of MISE and MSE for estimates of functions with
compact support. If the function f we are trying to estimate has compact sup-
port the inequality (5) can be used and the hypothesis can be weakened a little.

THEOREM 2. Let f have compact support and suppose D'f e L* for some integer
r > 0; let p be an integer such that 0 < p < r; let q(n) = O(n""); then the MISE
in the pth derivative of the estimate (7) satisfies

ES |f“<p) _ f(p)lz — O(np/r+1/2r—1) .

Since f has compact support and D7fe L?, x?D*fe L* for all integers p = 0
and 0 < s < r. Hence (x — D)"fe L? and the hypothesis of Theorem 1 is met.
The first term in the brackets of (12) is now dominated by 3C,*(q + p)*(¢ +
1)t/n, which leads to the stronger conclusion.

When uniform mean square error is considered, similar results obtain.

THEOREM 3. Let [ have compact support and suppose D'f e L* for some integer
r > 1; let p be an integer such that 0 < p < r — 1; let g(n) = O(n'"); then the
mean square error in the pth derivative of the estimate (7) satisfies

E(f”(p)(x) _f(p)(x))z = O(n?/r+1r=1)
uniformly on compact sets.

The proof is similar to the others except that cross product terms must be
considered in calculating

E[ X% (djn — a)h;P(x)]" .
However, this can be reduced to the previous inequalities by means of Schwarz’s
inequality.

REMARK. The rate of convergence given here might be compared to that
given by Wahba [9] for another orthogonal system, the trigonometric on [0, 1].
She shows that for fe W,™, the MSE is O(n~'+*™), while Theorem 3, in the
case p = 0, gives us O(n~'*¥™). Thus in this case for which the trigonometric
system is natural, the Hermite does almost as well, while for the case considered
in Theorem 1 which is natural for the Hermite, the trigonometric system cannot
even be used.

6. Higher dimensions. One of the surprising things about this method of
estimating is the ease to which it can be extended to higher dimensions. In
fact, the observation made in [5], that the error estimates are exactly the same
in the multivariate case, is equally valid for the types of convergence considered
here. If, in Theorems 1, 2 or 3, the indices p, g and r (but not n) are considered
to be m-tuples of nonnegative integers, the same conclusions are valid if in-
terpreted properly. For example, in Theorem 1, the rates of convergence for
the estimate would be

—14+3M | py/ri+5/6r;
n i=1 .
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This could be obtained by taking g(n) = (g.(n), ga(n) - - -, gm(n)) as-

q,(n) = n*/re i=142,...,m.

APPENDIX
In order to calculate C, in equation (5) we use the formula ([6], page 218)

(a-1) h,(x) = 2, cos <(2n + 1)ix — ”%t)
1 . ]
T Gy S0 @n 4 D — ek dr,

where 2, = |,(0)| if n is even and |4,'(0)|/(2n + 1)t if n is odd. The value of 2,
when n = 2k may be obtained from the recurrence formula (2) (see [11], pages
163 and 165):

(a-2) Iy (O) = 2(23(]2")2% < (Zirk)*, k=1,2,....

Since 4,'(0) = (2n)th,_,(0), the same sort of inequality holds for odd n and hence
A, satisfies

(a-3) A, = (n+ 1)-# n=20,1,2...
Hence by Schwarz’s inequality, we have

(a-4) ()] = (n + DL 4 (n + D7HE 4 drp{§5 b,
= (4 DL+ |x)#2],

from which equation (5) follows.
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