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MINIMAX ESTIMATION OF A NORMAL MEAN VECTOR
FOR ARBITRARY QUADRATIC LOSS AND
UNKNOWN COVARIANCE MATRIX

By J. BERGER,! M. E. Bock,? L. D. BRowN,?
G. CASELLA* AND L. GLESER*

Purdue University and Rutgers University

Let X be an observation from a p-variate normal distribution (p = 3)
with mean vector § and unknown positive definite covariance matrix X.
It is desired to estimate § under the quadratic loss L(3, 6, L) = (6 —
6):Q(5 — §)/tr (QX), where Q is a known positive definite matrix. Esti-
mators of the following form are considered:

‘ (X, W)= — caQ W/ (Xt WX )X,
where W is a p x p random matrix with a Wishart (¥, n) distribution (in-
dependent of X), « is the minimum characteristic root of (QW)/(n — p — 1)
and cis a positive constant. For appropriate values of ¢, §¢ is shown to be
minimax and better than the usual estimator 6% X) = X.

1. Introduction. Assume X = (X, -- -, X,)! is a p-dimensional random vector
(p = 3) which is normally distributed with mean vector § = (¢,, - - -, 4,)" and
positive definite covariance matrix £. Itisdesired to estimate § by an estimator
0 = (dy, - - -, 0,)" under the quadratic loss

L@,6, %) = (0 — 0)Q@0 — 0)/tr (QF) ,

where Q is a positive definite (p X p) matrix.

The usual minimax and best invariant estimator for ¢ is 6°(X) = X. Since
Stein (1955) first showed that §° could be improved upon for Q = ¥ = I (the
identity matrix), a considerable effort by a number of authors (see the references)
has gone into finding significant improvements upon ¢°. For the most part these
efforts have been directed towards the problems where either £ was known (or
known up to a multiplicative constant) or where Q = £-' (a rather special
situation). For unknown I and general Q only a few partial results have been
obtained. Berger and Bock (1976a) and (1976b) found minimax estimators
(better than §°) for problems in which £ was an unknown diagonal matrix or
could be reduced to one. Gleser (1976) found minimax estimators under the
assumption that the characteristic roots of QX have a known lower bound.
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In this paper the fundamental problem of completely unknown ¥ will be
considered. It will be assumed that an estimate W of I is available, where W
has a Wishart distribution with parameter I and n degrees of freedom, and is
independent of X. Let ch,,,, (4) denote the minimum characteristic root of A,
and define

a=[(n—p—1T)chy, (Q7'W)]" = ch,, (QW)/(n—p —1).
The estimators considered in this paper will be of the form

o _ caQ- W
(1.1) (X, W)_(z__m)X,
where ¢ is a positive constant. For known I, estimators of this form (with
(n — p — 1)W~" replaced by I-') were shown to be minimax in Bock (1974)
and Berger (1976b), providing 0 < ¢ < 2(p — 2). In this paper &° is shown to
be minimax for
0c=sc

%P 2

where the c, , are solutions to equation (2.17), and are numerically calculated
in Table 1 for certain values of n and p.

TABLE 1
Values of cn,p

n

8 10 12 14 16 18 20 25 30

3 .14 .41 .72 .88 1.03 1.10 1.23 1.51 1.53
4 .65 1.37 1.88 2.27 2.42  2.60 2.81 3.07 3.12
5 . 2.85 3.37 3.80 4.02 4.26 4.78 4.87
6 1.71 3.32 427 4.81 5.33 5.66 6.36 6.50
7 3.2 499 578  6.42 6.96 7.92 8.14
8 2.50 5.15 6.57 17.64 8.19 9.24 9.84

9 4.50 7.02 8.40 9.22 10.60 11.28
10 2.61 6.79 8.9 10.25 11.98 12.84
11 5.78 9.15 10.84 13.14 14.24
12 2.73 8.42 11.10 14.20 15.65
13 7.11 11.09 15.48 17.15
14 2.43 9.70 15.74 18.44
15 7.93 16.61 19.51
16 2.26 16.67 20.62
17 16.67  21.56
18 16.34  22.38
19 22.83
20 23.47

2. Minimaxity of 4°. The notation E(Z) will be used for the expectation of
Z. Subscripts on E will refer to parameter values, while superscripts on E will
refer to the random variables with respect to which the expectation is to be
taken. When obvious, subscripts and superscripts will be omitted.
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For an estimator, d, define the risk function
R(3, 8, £) = EXPIL((X, W), 6, £)] .
For notational convenience define n* = (n — p — 1) and
A, = 4,0, ) = tr (QL)[R(°, 6, £) — R(8" 0, X)] .

The estimator ¢° is clearly minimax (and as good as or better than §°) providing
A6, %) < 0 for all 6 and X.
Expanding the quadratic loss L for §° verifies that

(2.1) A = _2E[ca(X - 0)tW_1X] + E[czathW—IQ—lw_lX] .
’ XWX (X'W-IX)?

As in Berger (1976 b) an integration by parts with respect to the X; gives

] [ ).

(The usefulness of such an integration by parts was earlier noticed by Stein
(1973).) Thus (2.1) becomes

2.2) A, = —E[i_ {2 tr (Tw-yy = AXWOIWOX
(X*W-1X) Xw-ix
caX'W-1Q\W-X ]

N XWX } '
Note that
aX'W-1Q-tW-X < o _ i
XtW-x = ch,, (QW) n*’

Using this in (2.2) gives

23) A < _E[__“c_{ztr (EW-Y —

4XWIEWX ¢ H
°= (X*W-1X) '

XWX n*
In this expression, perform the change of variables
Y=21°X, V=ZIWWit,

Note that V' is now Wishart with parameter / and n degrees of freedom, and
that @ = ch,,, (£:QX#V)/n*. Clearly (2.3) becomes

2.4) A, < _E[;“C_ {2 -y = AVPY LH
¥VY) YVY | n*

For convenience, define
18 = Chmin (QI’) ’ Z = Y/lYl ) and E* = XQQEQ/‘B .
Note that ch,,,, (£*) = 1. Line (2.4) can then be rewritten

2.5 A< _nfc EY [pilz EY {d(l}’fy(.}i;)/) (2o - % - ni*)ﬂ
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To show that A, < 0, it suffices to show for all Ze U, (the unit p-sphere) and
all £* with ch,,, (£*) = 1, that the following inequality holds:

(2.6) E {M[z tr (v — 3ZVZ i}} >0.
(Z'V12Z) zZvz n*
(Note that the distribution of ¥ does not depend on Z or on £*.)

Let " be a p x p orthogonal matrix such that I'Z = (1,0, - .-, 0)’. Define
V¥ = T'VItand ¥, = TX*T*. Clearly V'* is also Wishart (1) and ch,,,, (£,) = 1.
For convenience, let v, denote the (1, 1) element of (V*)~*, v, denote the (1, 1)
element of (V*)~?, and let

p(V*) = [2tr {(V*)7} — 4v,/v,] .
It is straightforward to verify that under the above change of variables for V,
(2.6) becomes

@.7) E"” {c—m‘ﬂ—?()?&[p(V*) - _c_]} >0.

n*
(Note that for p < 2, p(V*) will be negative with considerable probability.
Hence no solutions, ¢, to (2.7) could be obtained for p < 2. This is as would
be expected in analogy to the known variance case.)
Since ch,,;, (£,) = 1, it is clear that

(2.8) ch,, (£, V%) = chy,,, (V*).
Also if ae U, (i.e., |a| = 1) then

chy, (B, V%) < @' Z4V*E 0.
Choosing a to be @', the characteristic vector of the root 1 of I ¢, it follows that
2.9 chyn (3,V%) < (@) V*a.
For convenience define

Q, = (V*: p(V*) < ¢fn*}

let Q, denote the complement of Q,, and let I,(V*) denote the usual indicator

function on 4. Using (2.8) and (2.9), it then follows that (2.7) will hold (and
6° will be minimax) if
@10) B (B v — g o)
v, n*] ™
hin (V1) (V*)[ V) — c]l— p } 0

+ v p(V*) ¥ a(V*) 2
for all e U,.

To simplify this expression further, let

1 0...0
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where S'is a (p — 1) X (p — 1) orthogonal matrix such that

Ta* = (b, (1 — b4, 0, - - -, O)t —-1<b<1.
In (2.10), performing the change of variables ¥ = TV*T* (again Wishart (7))
then gives as the condition for minimaxity

ey e (TN ) - )

1

+ e o) — M) 2 0

1
for all @*eU,. (Note that v, = (V*!), = (T*V-'T), = (V"), and likewise
¥, = (V~*)4.) The inequality (2.11) can be rewritten
212) ¢ < PE 0TS VI V) + chuw (N
EN{0, 7 [(Ta) V(Ta) Lo (V) + chyi (M (V)]}

IA

Note that
(Ta")'V(Ta") = b*(Vy, — Vi) + b(1 — ba)i(Vm +Va) + V-

Hence defining

7(¢) = E"{o(V)0, " [Vaalo (V) + chpin (N (N)]}

7(¢) = E {p(V)0, (V1 — sz)’nc(V)} >

y(¢) = E"{o(V)v, (Vs + Va)lo, (M)},

t'(c) = EV{”I—I[VazIn,(V) + chyiy (V)Iﬁ.,(V)]} s

t/(¢) = E"{v,7' (Vi — Va)lg (V)} and

/() = E"{v, 7' (Vi + V) o (W)}
it is clear that (2.12), the condition for minimaxity, can be rewritten
(2.13) c< n*[z(c) + f"l(c)b2 + 7a(e)b(1 — %]

7)'(€) + 7,/(€)b* + 7,/ (c)b(1 — bt

for all —1 < b < 1. Note, however, that r,(c) = z,/(c) = 0. This follows from
consideration of

V¥ = AVA,

where A is diagonal with all ones except the (2, 2) element which is —1. It
is easy to check that o(V*) = p(V), [(V*) ]y = [V"'lw, (V*)a = —V4,, and
(V*)u = —Vau. Noting that f(V) = f(V*) (where f is the Wishart density), it is
thus clear that r, = r/ = 0. Finally, defining b = (b, (1 — 5%},

Ale) = (TO(C) (_)*- nl ro(()c)) , and  B(c) = (70'@ ;)" 7,'(¢) To,(zc)) .

line (2.13) becomes

n*b*A(c)b

—_— forall —1<b<1.
~ b'B(c)b -

(2.14)
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Now for fixed b, the nonnegative solutions to (2.14) lie in an interval 0 < ¢ <
¢;. This can most easily be seen by looking at (2.11) (an expression equivalent
to (2.14)) and noting that the left-hand side is decreasing in c. Thus defining

¢, =inf_ oo, ¢,
it follows that if
(2.15) 0<cse,

then (2.14) will be satisfied for all —1 < b < 1, and hence §° will be minimax.
To get a more explicit equation for ¢, ,, note that B(c) is positive definite.
Hence from (2.14) it follows that

(2.16) ¢ < n* chy,, [B(c)A(c)] -

Thus (2.15) = (2.14) for all —1 < b < 1 = (2.16). It is also clear that the
reverse implications hold, so that

’ {c:0<c<Ze,,} ={c:c < n*chy, [B(c)'A(0)]} -
It is also easy to check that

Cnp = 1* chy g [B(Cn, ) AlCa,0)] 5
(2.17) ¢ < n*ch,,, [B(c)™A(c)] if 0=c<e,,,
¢ > n* chy,, [B(c)*A(c)] if ¢>¢c,,.

Hence ¢, , is the unique solution to

1 _ p% -1 — min [ 7€) + () , ro(c)} .
(2.18) ¢ = n*ch,,, [B(c)"A(c)] = min { T

As there appeared to be little hope of analytically obtaining solutions to
(2.18), the computer was used to numerically compute the solutions. For a
given n and p, the values of the r,(c) and z,/(c) (and hence A(c) and B(c)) were
calculated by Monte Carlo methods using 4000 generations of ¥ (for n = 8) to
1000 generations of ¥ (for n = 30). (Unfortunately, a larger number of gener-
ations could not be used due to the considerable expense of generating V' and
performing the calculations involving ¥-'.) The resulting estimated solution
C,.p» t0 (2.18) was found by using the relationshps in (2.17) to obtain a sequence
of ¢* converging to the solution. The standard deviations of these simulated
solutions ranged from about .02 (for p = 3) to about .1 (for n — p = 4).

3. Comments.

1. The values ¢, , are not the largest values of ¢ for which ¢° is minimax.
Approximations were made in the proof in lines (2.8) and (2.9) (and to a lesser
degree in the passage from (2.2) to (2.3)) which resulted in a smaller than
necessary upper bound. If one could somehow determine the “least favorable”
matrix L, in (2.7), the approximations could be improved.
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2. The estimators ¢° have a singularity as X — 0. There are numerous ways

of eliminating the singularity, one of the si'rnplest being used in the following
estimator:

(X, W) = <I __ min (W*X'WX, c)aQ“W‘1> X,
XWX

Through analogy with the known ¥ situation, it seems quite likely that 6* is
itself minimax (for 0 < ¢ < ¢, ,) and considerably better than ¢°.

3. If the linear restriction R§ = r® is thought to hold, where R is an (m X p)
matrix of rank m and r° is an (m x 1) vector, then the estimators ¢° and 6*° can
be modified so that their regions of significant risk improvement coincide with
the linear restriction. Indeed, defining ¥ = RX — r°, W* = RWR® and a* =

chy;, [(RQ™'RY)™'W*]/(n — m — 1), Theorem 2 of Berger and Bock (1976 b) can
be used to show that

0p° = X — ca*Q I RY(W*)'Y[[Y!(W*)1Y]

is minimax if 0 < ¢ <¢,,. The appropriate modification of §*° is the above
estimator with ¢ replaced by min {(n — m — 1)Y{(W*)-'Y, c}.

1200

400~
2200

0.000 ! 1 1 1 1 ] 1 1 1 1
0,00 100 2,00 3.00 4.00 5.00 6.00 7.00° 8.00 9.00 10.00

Fic. 1

4. If (QX) has a characteristic root considerably smaller than the other char-
acteristic roots, then ch,,,(QX) will be small compared to tr (QX). From the
definition of A,(f, X) and line (2.2), it is apparent that the improvement obtained
in using 0° will be quite small. The estimator, §°, will therefore perform best
when (QX) has no exceptionally small roots. (If it is suspected that a coordinate
X; might give rise to an exceptionally small root of (QX), it would probably pay
to eliminate that coordinate in the construction of ¢, providing of course that
there are at least three coordinates left.)
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5. Asan example of the type of improvement that can be obtained using the
suggested estimator, the risk function of *° was numerically calculated for the
situation p = 4, n = 16, Q = I, ¥ diagonal with elements (2,3,4,4), and ¢ =
Ca,p = 2.42. The risk function is given in Figure 1 along the coordinate axes.
(The constant line y = 1.000 is, of course, the risk of the usual estimator §°.)
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