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DISCUSSION

PETER J. BICKEL
University of California at Berkeley

As Professor Stone has pointed out, over the years a large variety of methods
have been proposed for the estimation of various features of the conditional dis-
tributions of Y given X on the basis of a sample (X}, Y}), - - -, (X,, Y,). The
asymptotic consistency of these methods has always been subject to a load of
regularity conditions. In this elegant paper, Professor Stone has given a unified
treatment of consistency under what seem to be natural necessary as well as
sufficient conditions.

His work really reveals the essentials of the problem. He has been able to
do this by defining the notion of consistency properly from a mathematical point
of view in terms of L, convergence. However, the notions of convergence that
would seem most interesting practically are pointwise notions. An example is
uniform convergence on (x, y) compacts of the conditional density of Y given
X = x. The study of this convergence necessarily involves more regularity
conditions. At the very least there must be a natural, unique choice of the
conditional density. However, such a study and its successors, studies of speed
of asymptotic convergence, asymptotic normality of the estimates of the density
at a point, asymptotic behavior of the maximum deviation of the estimated
density from its limit (see [1] for the marginal case), etc., would seem necessary
to me and to Professor Stone too! (He informed me, when I raised this question
at a lecture he recently gave in Berkeley, that a student of his had started work
on such questions.)

One important question that could be approached by such a study is, how
much is lost by using a nonparametric method over an efficient parametric one?
If density estimation is a guide, the efficiency would be 0 at the parametric
model for any of the nonparametric methods surveyed by Professor Stone.
However, even if this is the case, it seems clear that one can construct methods
which are asymptotically efficient under any given parametric model and are
generallywconsistent in Stone’s sense. This could be done by forming a convex
combination of the best parametric and a nonparametric estimate, with weights
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depending upon some measure of distance of the empirical distribution of the
sample from the postulated parametric model. How do such estimates perform
short of n = c0? Both analytic and Monte Carlo studies might be worthwhile.

Clean results for uniform convergence of estimates would presumably also be
applicable to the large class of situations where the X, are not random but se-
lected by the experimenter, i.e., the classical regression problem.

I’ll imitate the format of an R.S.S. meeting and thank the writer for a most
stimulating paper.

LEO BREIMAN
University of California at Berkeley

Charles Stone’s work is a significant addition to the few small bits and pieces
of known theory regarding nonparametric regression. In part, its existence and
publication reflects the influence of computers on statistical theory. Twenty
years ago it would have been interesting but academic. Currently, the reason
for this and other stirring of interest in nonparametric regression is that the
research is “relevant.” That is, it can be implemented in a computer program
and used.

From the point of view of intelligent use, what we need badly now are studies
of what happens for large but not infinite sample size. This will almost certainly
be difficult. The behavior of £,(Y | X) depends on an intricate interplay between
sample size, the curvature of the regression surface, and the variability of Y
about its regression.

What adds to this difficulty is that in actual use the number of nearest neigh-
bors used in the estimate is calibrated by the “leave-one-out” method. Thus,
the sequence of probability weights used is not predetermined, but is a function
of the sample sequence.

I have two suggestions for investigating this complicated large sample behavior.
The first is to look at some examples where the joint distribution of ¥ and X is
very simple. For instance, assume that Y is a linear function of X plus an addi-
tive normal error. The second is to carry out a series of Monte Carlo experi-
ments trying to separate out the effects of sample size, curvature and variability.

Nonparametric regression methods can be very useful tools when Y and X are
related in some unknown but nonlinear fashion. Perhaps the most important
application is variable selection. Here, nonparametric regression is used to
compute the residual sum of squares taking for X any candidate subset of inde-
pendent variables. These RSS values are then used to rank and evaluate various
subsets.

Other interesting problems can be tackled. For instance, suppose we suspect
that there is a good deal of nonlinear dependency between the independent vari-
ables. Then use a nonparametric regression program to estimate the proportion
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of variance of X;, the ith component of X, explained by the other components.
These generalized multiple R* can be used to get a picture of the dependency
structure.

Or suppose we want to get an estimate of the extent of the nonadditive inter-
action between two groups of variables, say X, and X,. This problem is sticky in
multiple linear regression. A possible resolution, using nonparametric methods,
goes as follows: first, estimate the percent of variance explained using the “best”
predictor of the general form c(X;) + g(X,). Second, compare this to the value
gotten by using the “best” predictor of the form A(X;, X,).

All considered, it is conceivable that in a minor way, nonparametric regression
might, like linear regression, become an object treasured both for its artistic
merit as well as usefulness.

Davip R. BRILLINGER
University of California at Berkeley and University of Auckland

The Bayes rule introduced by Professor Stone in Section 8 would appear to
be useful for the construction of conditional M-estimates. Suppose that one is
interested in estimating 6(X) of the model Y = d(X) + ¢ with ¢ a variate sta-
tistically independent of X and with density function f(¢). Then

(1) —§ log f(y — d(X))f(y — o(X)) dy

is minimized by d(X) = (X). This suggests the estimation of §(X) by 4,(X),
the d(X) that minimizes

2) —Zilog (Y, — d(X)W,(X) = —E,(log (Y — d(X))| X)
as, following Theorem 1, expression (2) tends to (1). Such a procedure corre-
sponds to the Bayes rule with (Y, a) = —log f(Y — a). Robust estimates may
be produced by requiring that 1Y, a) not give too much weight to extreme
values of Y. Just as Huber did, one could equally take as estimate the solution
of the equation
2:9(Ys g'n(X))W‘M'(X) =0
for some function ¢ with E(¢(Y, 6(X))|X) = 0. Can Professor Stone suggest
some conditions, analogous to those set down for the consistency of maximum
likelihood or M-estimates, under which 6,(X) converges to d(X) in probability?
It is important that some measure of sampling variability be attached to the
estimates of the paper. On many occasions there are strong arguments for con-
sidering variability conditional on the observed X, values. Is there a simple
analog of Theorem 1 for the case of fixed X values? Important information con-
cerning variability is clearly contained in the residuals g(Y;) — E (9(Y)| X)),
i=1,...,n Can Professor Stone suggest a reasonable estimated based on these
values? Tukey’s jackknife procedure could clearly be used in many situations.
Finally, because the proposed estimate smooths across X-space, the more



CONSISTENT NONPARAMETRIC REGRESSION 623

nearly constant E(g(Y)|X) the better. Transformations should be employed to
make the relationship more nearly constant whenever possible, in the manner
of the prewhitening operation of power spectral analysis.

H. D. BRUNK AND DONALD A. PIERCE
Oregon State University

Charles Stone has skillfully attacked an important problem and predictably
has obtained interesting and useful results. He characterizes weight functions
having desirable consistency properties and describes a family of uniformly con-
sistent weight functions. Of course it is conceivable that in a particular situation
an estimator not obtained from a consistent weight function could be better in
some appropriate sense for moderate sample sizes. Still the classes Stone de-
scribes would seem to offer promise of being able to furnish estimators that are
good in practice.

In the related problem of density estimation, a great many kernel estimators
are available that have interesting asymptotic properties. Whittle’s approach
(1958) points the way to a method for selecting some that can be expected to
work well in practice. And his basic idea is applicable in the present context
as well.

For simplicity of exposition, let x and Y both be real valued. For fixed real
x let Y denote an observation on a univariate distribution associated with x.
Denote the regression function by R(.):

R(x) = EY .

This regression function is assumed unknown and is to be estimated. We assume
that the variance of the distribution is known:

v(x)=VarY.
Let Y, - -, Y, be independent observations on the associated distributions:
EY; = R(x)), j=12,...,n.
The integer n and the reals x,, - - -, x, are fixed throughout. Let W be a weight

function; the estimator R under consideration is
Rix) = 25 Y;Wix).
For greater clarity in the ensuing discussion we use a tilde underline to indicate

a quantity conceived (modeled) as random. Since Y;, ---, Y, are random vari-
ables, so is R(x) for each x, and we may consider, for fixed x,

EJR(x) — R(x)I*,
where S stands for “sample” and Ej is expectation according to the joint distri-

bution of Y, ---, Y,. Following Whittle we impose also a prior probability
structure on {R(¢): t ¢ R} and now may consider, for fixed x,

1) Ep(EfR(x) — R()T)
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where E, denotes expectation according to the (prior) joint distribution of
{R(?): te R}. One then hopes to choose a weight function W so as to minimize
this expected squared discrepancy.

The weights {W,(x), j = 1,2, - - -, n} that minimize (1) may be identified also
as coefficients of the linear expectation of R(x) (recall x is fixed and R(x) a
random variable) given Y = (Y,, Y,, -+, Y,)":

2 L1 Wi(0Y; = ER(x) 1Y)

The term “linear expectation” is used in the sense given it by Hartigan (1969):
the linear expectation of a random variable T given a random vector U =
(Uys « -+, U,) is defined to be the linear function L(U) = a, + a,U; + --- + a,U,
that minimizes E[L(U) — T)*. That is, in the Hilbert space of random variables
with finite variances, £(T | U) is the projection of T on the spanof {1, U,,- - -, U,}.
If T is a random vector, T = (T,, - -+, T,), then T = E(T|U) is the random
vector whose rth component is £(T,|U), r = 1,2, - -+, k.

We shall attempt to select prior distributions for {R(): t ¢ R} which express
an opinion that the regression function is “smooth.” To this end, let {¢,(x):
r=12,...,k,xeR} be a system of functions R — R, orthonormal with
respect to a prescribed measure »:

§ ¢.(x)¢,(x)v(dx) = 9,,, rns=1,2,..-,k.

We assume that R(.) has an expansion in terms of these functions. That is,
there are 8,, - - -, B, such that

R(x) = 271 B, $u(x) = [$(0)]'B xeR,
where = (B, - -+, B1)'s [$(X)] = ($u(x), - - -» Bul(x))'-

The prior distribution of {R(r): t ¢ R} will be specified by describing a joint
prior distribution for 8, - .., 8,. After subtraction of a likely candidate for the
prior mean, Ry(x) = E, R(x), we may assume we should like to specify the prior
distribution so that E, R(x) = 0. This can be achieved by setting E§ = 0.

For the further specification of the distribution of g, it is useful to consider
its “best fit” interpretation. Not only is the integrated squared error § [R(x) —

*_1¢,9,(x)v(dx) minimized by setting ¢, = 8,, r = 1,2, -- -, k, but also for
fixed r, ¢, = B, minimizes § [R(x) — ¢, $,(x)]"»(dx). Thus each coefficient 8, has
an interpretation that is independent of 8, for s = r. This makes it seem reason-
able to give § a prior distribution according to which 3,, - - -, §, are independent.
Since only first and second moments of §3,, - - -, 8, are involved in the determi-
nation of the posterior linear expectation of R(x) given Y, the problem of speci-
fying, for present purposes, the prior distribution of 8 is now reduced to that
of specifying the precisions

" r, = (Var 8,)7*, r=1,2,..-,k.

For appropriate choices of systems {¢,(+): r = 1,2, ..., k}, one may express a
prior opinion that R(+) is smooth by letting , increase rapidly as r increases.
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When the prior distribution of 8 has been specified, the weights Wi(x), j =
1,2, ..., n, that are optimal in Whittle’s sense are given by (2). Hartigan (1969)
provides formulas for calculation of a linear expectation as follows.

We have

EB) =0, V@=2=,
EY|B) =48, VX|B=2%
where ,7' = diag (z,), ¥ = diag (v(x,)), and 4 = {a,;} with a;; = ¢,(x,). Then,
using Hartigan’s formula, the linear expectation of 3 given Y is

EB|Y) = (474 + 5,7 ALY,

EQR(x)|Y) = [$()TE@B| Y)
= W)Y,

and so

where

(W) = [p(x)](AE74 4 E, )AL,

These optirhal weights and the corresponding estimator R(x) take particularly
simple forms when v is that probability measure on the finite set {x,, - - -, x,} that
assigns probability

pi = n(x;)/K

to{x;}, i=1,2, ..., n, where n(+) is the precision:
n(x) = 1/v(x),
K=25an(x).
A'Z4 = KI

where I is the k X k identity matrix. We have then

and where

In this case

Wix) = p; D5y —— K ¢ (x:)9(x)
and
R(X): rl ,,¢¢(X),
where )
¢’r = Z?:lpi¢r(xi)yi
and

2,=K/(K+T,), r=1,2,~~~,k.

Note that 3, W,(x) = 1 if ¢(+) = 1 and if 7, = 0.

One of us has been studying the use of these estimators in certain applications
with the support of the National Science Foundation through Grant MCS76-
02166.
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HERMAN CHERNOFF
Massachusetts Institute of Technology

This paper is remarkable in achieving rather deep generality of results with
great efficiency of presentation at very little cost expressed in terms of strength
of conditions. One exception is condition (2) of Theorem 1 which appears un-
necessarily strong if one were to confine attention to problems where the re-
gression function were subject to adequate regularity conditions. On the other
hand the trimming techniques discussed in Section 4 could be applied to modify
weights for which (2) is not satisfied to those where they are and to establish
desired results.

Consistent nonparametric regression has considerable potential value in appli-
cations involving complex relations and several independent variables. Then
the use of least squares regression applied to polynomials or other simple finite
expansions has potential disadvantages. If the polynomial or functional form
used is not theoretically meaningful, the parameters estimated are not easily
interpreted. Neighborhoods in the X-region where the regression fluctuates
rapidly have a very large influence on the estimates of the parameters of the
regression being fitted. Consequently, it is possible, and indeed likely, that over
large regions of the X-region where the regression is stable, the estimated re-
gression will be consistently biased. This bias is a consequence of the parametric
approximation and not of limits on the information available and the nonpara-
metric methods will not be subject to this difficulty.

In the section on trend removal Stone indicates how a linear trend can be re-
moved in a way which makes more use of global behavior than does the method
of local linear regression. The same idea can be applied to testing the adequacy
of parametric models of regression.

Suppose that theory calls for a regression with a specified functional form f,
i.e.,

Yi=f(X,.,0)+ui i=1,2,...,n
where least squares can be used to estimate ¢ by §. Then we have the calculated
residuals .

4, =Y, — f(X,, 0)
which should behave like random residuals under appropriate conditions. If X
were one dimensional, or if the X, were preselected with sufficient regularity,
visual inspection or the application of the Durbin-Watson statistic could detect
signs of systematic behavior of the #, which would indicate inadequacy of the
model.

Without such regularity, one could apply simple local linear regression to the
residuals to fit

w E(8;] X)) = v; = d,(X) + (X)) - X, .

Let w, =4, —v,, i =1,2, ..., n be the residuals from the locally linear re-
gression of the 4; on X. Then the relative magnitudes of the #, and w; indicate
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how well the theory fits. If the original model fits well, the regression of the
residuals should do very little at reducing the residuals and the w, should be
close to the u;. If the original model did not fit, the regional bias would easily
be eliminated and the w;, would tend to be small compared to the ;.

In its simplest form the local linear regression could regress %, on 1, giving v,
as the locally weighted average of the #,. One could go to the other extreme and
use high order polynomial expansions although it is expected that simple linear
expansions would ordinarily be effective with the use of local linear weights.

THOMAS M. COVER
Stanford University

Stone’s paper has theoretical and practical importance in regression and clas-
sification when the underlying joint distribution of the observed and unknown
random variables is unknown. The nearest neighbor principle on which these
estimators rely might be stated as, “Objects that look alike are likely to be alike.”
I shall discuss this idea and attempt to describe why the weighted nearest neigh-
bor methods are consistent.

The essence of Stone’s investigation can be perceived as the use of one random
variable to estimate the value of an independent copy. Consider, for example,
independent identically distributed random variables Y,, Y,. Suppose we observe
Y, and wish to say something about Y,. Ishall examine three cases to show that
Y, contains much of the usually required information about the as yet unobserved
random variable Y,.

(1) Estimation. Assume Y, takes values in R* and assume a squared error loss
criterion. The optimal estimate of Y, is simply the mean 4 = EY,, assuming,
of course, that the underlying distribution of Y, is known. The incurred risk is
R* = E(Y, — p)*. However, if the distribution is unknown, so g cannot be
computed, Y, is a reasonable estimate of Y, in the following sense:

E(Y, — Y\ = E(Y, — ¢) + (Y, — #))* = 2R*.

(2) Estimation. Suppose that the risk criterion is given by a metric p on
Z/ x Z/. Suppose also that x* minimizes Ep(y, Y,). We observe that

Ep(Y,, Yo) < Eo(Yy, p*) + Eo(p*, Yo) = 2R*.
Again, the risk is within a factor of two of the minimal risk.

(3) Classification. Now suppose that Y is atomic, taking on m values with

probabilities p,, p,, - - -, p,. Assume a probability of error loss criterion. Thus,
the minimal risk for a known p,, p,, ---,p, is R* =1 — p_... On the other
hand [2], .

P(Y, % Y} = X pi(1 — p) < R*2 — (m/m — 1)R¥) < 2R*, Vp.

Yet again the risk is less than twice the minimal risk.
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Thus if we can get our hands on a similarly drawn random variable, we can
achieve a risk less than twice the Bayes risk.

If n independent copies Y,, Y,, - - -, Y, are available, the obvious good esti-
mators for Y, are the values of p, minimizing (1/n) 37, L(y, Y;) for (1) L(x,
y) = (1 =y (2) L(g, y) = o5 y); and (3) L, ) = liyzy)» respectively. Then
EL(p,, Y,) — R*.

In [1, 2, 3, 4] and the current paper, one is not given an independent copy of
Y,, nor is one given an observation X, and a joint distribution on (X,, ¥;). In-
stead, one is provided with a collection of pairs of random variables (X, Y;),
(Xp Ya)s -+, (X, Y,), independently distributed as (X,, Y,), where the underly-
ing joint distribution is unknown. Given X,, what is a good estimate of Y,? It
is natural, given (X,, ), to estimate the unknown variable Y, by referring to the
random sample {(X;, Y;)}7. This is where the problem comes in, because usually
none of the X,’s will be precisely equal to X,. Thus the distribution of ¥, and
the distribution of the Y coordinate of a selected X € {Xj, - - -, X,} will generally
not be the same. One assumes that nearby X,’s will have nearby conditional
distributions. Treating the nearest neighbor X, as if it were equal to X, and
following the previous procedure, one would expect to get a good estimate for
Y,. This is precisely what is done in rules of the nearest neighbor type. Stone
weights the neighbors according to their rank in distance.

It would seem at first that some continuity of the joint distribution on (X, Y)
is required, and indeed the consideration of the previous publications on the
subject were limited to joint distributions which had no singular part. Stone
has extended the discussion to joint distributions without restriction, while at
the same time adding much to the knowledge of the asymptotic behavior of such
procedures. Moreover, Stone finds necessary and sufficient conditions on the
weighting functions that yield consistency. The extension of Stone’s theorem
to separable metric spaces X is a natural open question.

We see that continuity of the joint distribution is not the essential assumption
necessary for believing that nearest neighbors have nearby distributions. Perhaps
the heuristic reason for this is that the event that X is a point for which the con-
tinuity properties fail has probability measure zero.
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D. R. Cox
Imperial College, London

Dr. Stone has given some very interesting results. The following brief com-
ment concerns not the results themselves so much as one circumstance under
which methods of this type are likely to be useful. This is in the preliminary
analysis of sets of data, leading towards some simple parametric formulation of
the systematic part of the regression relation. Such parametric formulations are
highly desirable for concise summarization; of course, if the objective is pre-
diction in the narrow sense, parametric formulations are by no means essential.
Now one may hope for a preliminary analysis to suggest a parametric form, and
consistency of the smoothed data with that form will need checking. This is
most easily done if the “smoothed” estimators are calculated at an isolated set
of points using nonoverlapping data sets, so that independent errors result. The
analogy is with simple Daniell smoothing in spectral estimation. It would be
very useful to have Dr. Stone’s comments on the effect of introducing this ad-
mittedly vaguely formulated constraint into the problem.

WiLLiam F. EpDY
Carnegie-Mellon University

Professor Stone has given a general set of conditions (Theorem 1), and a set
which are independent of the distribution of (X, Y) (Theorem 2), under which an
unknown conditional regression function E(Y | X) can be consistently estimated.
It is impressive indeed that he was able to derive such general results but practi-
cal considerations suggest the generality has some drawbacks.

Nearest neighbor methods usually assign weights 0 or 1 depending only on the
rank of p,(X, X,) and are thus discontinuous in X. Kernel methods, on the
other hand, assign weights depending only on the value of p,(X, X;) and are thus
independent of E(Y | X) near X = x,. Professor Stone has made a sensible com-
promise between these two methods in defining nearest neighbor weights. His
definition (8) requires that the weights be monotonic nonincreasing in the ranks
of the p,(X, X;). Thisis apparently needed in the proof of Proposition 11 but is
not obviously necessary otherwise. It makes sense to consider weight functions
that are not monotone; in fact it may even be sensible to allow negative weights.
By analogy with spectral analysis of time series, weight functions with negative
side lobes may reduce the error of the estimate, particularly if E(Y | X') changes
a great deal in the vicinity of X = x,.

Implementation of Professor Stone’s k-NN procedure for large numbers of
observations in high dimensions will require formidable amounts of computation.
The expensive portion of the computation is identification and ranking of those
X, which are nearest X. The usual nearest-neighbor problem is merely to iden-
tify those k (out of n) of the X; which are nearest X; here, the k points must be
ordered by p,(X, X;). The usual version of the problem has been attacked by
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computer scientists with some success by allowing preprocessing. In R?, Shamos
and Hoey (1975) find the k closest points to a new point X in O(max (k, log n))
time. For R?, Friedman, Baskett, and Shustek (1975) gave an algorithm with
expected time (when the X, are uniformly distributed) O(n(k/n)"?) for each new
point. Neither of these algorithms solves the problem of ordering the k nearest
points.

As mentioned above, kernel weights do not depend on E(Y | X) near X = x,
and thus, to achieve consistency, some restrictions must be made on the dis-
tribution of (X, Y) when using them. Nadaraya (1970) has shown that if X
has a positive continuous marginal density and the regression function m(x) =
E(Y|X = x) is continuous then £,(Y|X = x) converges to m(x). The compu-
tational advantage of kernel weights occurs when the weights are chosen to be
zero whenever p,(X;, X) > a, for some positive decseasing sequence {a,}. The
advantage can be further increased by an alternative definition of kernel weights.
Let X, = (,X;,- -+, sX;) and X = (,X, - - -, ;X) and then let the weights be given by

Wou(X) = 141 Ki(pns(;Xis ;X))
2t 14 Ki(oa;(; X5 ;X))

where K; is a one-dimensional kernel and p,; is a metric on R'. This definition
simplifies the distance calculations by separating the dimensions; it is especially
useful when ,X and ,X measure variables which are not commensurate so that
nearest-neighbor methods may be inappropriate.

The asymptotic mean-square error of £,(Y|X) depends on the joint distri-
bution of (X, Y) so it is unreasonable to hope that a fixed sequence of weights
{W,.} could minimize this error for all distributions of (X, Y). A complex adap-
tive scheme to generate the weights could probably be concocted so as to mini-
mize this asymptotic mean-square error but it would require considerable effort
and the moderate sample-size behavior might not be good. A computationally
simpler scheme would be to generate weights whose degree of smoothing depends
on a single parameter related to the sample size.
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FrANK HAMPEL
Swiss Federal Institute of Technology, Ziirich

The approach is nonparametric in the strong sense that not only the distri-
bution of errors is arbitrary, but also the shape of the regression function or
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fitted model. Thus, e.g., no assumption of linearity, or of maximum degree of
a polynomial serving as the regression function of ¥ on X has to be made. A
closer look, however, reveals that there is still some assumption lurking in the
background, an assumption weaker than any parametric model for the fit, yet
implying some redundance: namely an assumption about some sort of smoothness
or local linearity of the regression function. Perhaps even sufficient continuity
of the conditional distributions seems desirable. It is true that, formally, the def-
inition of consistency allows for a (variable) exceptional set of “discontinuity”;
however, on such a set, one would not expect meaningful practical results.
Moreover, the fact that locally and globally linear trends are taken out, with
resulting “improved performance,” seems to show that the author does not really
believe in the usefulness or frequent occurrence of completely arbitrary non-
parametric models. Finally, the basic idea itself assumes at least continuity of
the expectations considered.

This basic idea says that since we usually do not have enough information
about the conditional distribution of Y at a fixed value of X, let us ‘“borrow
strength” from neighboring values of X, by smoothing the model locally. There
is, as usual, an interplay between variance and bias at each x as n — oo; and
for random X; there is also an interplay between variance and bias for fixed n
and varying x. The k,-nearest neighbor weight functions considered in the paper
fix essentially the variance reduction while allowing variable window width for
fixed n; for n — oo, any sequence such that variance and bias both tend to zero
is permitted. There are the usual problems of the meaning of an asymptotic
sequence which for every n does something else, and of imbedding a procedure
for a fixed n into an asymptotic sequence. It should be kept in mind, though,
that for each fixed n not the true regression function is estimated, but rather the
regression function smoothed by some random window.

The resulting estimated regression function will still be rather wiggly locally,
even if the true regression function happens to be very smooth. This is well
known for moving averages and running medians, for example. One may, how-
ever, use these estimators as a starting point for fitting a “smoother” model.

To talk about robustness is meaningless or, rather, hopeless in the case of a
completely arbitrary model; for a model with wild spikes and a nice model with
some distant gross errors superimposed are indistinguishable. If we believe in a
“smooth” model without spikes, however, then some robustification is possible.
In this situation, a clear outlier will not be attributed to some sudden change in
the true model, but to a gross error, and hence it may be deleted or otherwise
made harmless. Obviously, many estimators discussed in the paper, notably the
estimators of first and second order quantities including the trimmed local linear
weight fu\nctions, are not robust in this sense: a single outlying Y can arbitrarily
change the estimate. On the other hand, such nonlinear methods as the esti-
mators of quantiles are more or less robust, depending on the particular quantile
and the weight function considered.
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RICHARD A. OLSHEN
University of California at San Diego

With the paper under discussion Professor Stone has made a fundamental con-
tribution to the theory of nonparametric regression. Whereas previous work on
weighted nearest neighbor procedures has invariably been laced with superfluous
regularity conditions on the joint distribution of Stone’s (X, Y), Theorem 1 gets
to the very heart of what is needed for consistency and for the famous results of
Cover [2] and of Cover and Hart [3]. Moreover, once Stone has pointed the
way, it is clear that the function §(-, .) figures in the condition (1) of Theorem
1, and thus the importance of Propositions 11 and 12 is manifest.

The independence of (X, Y), (X;, Y;), - - - is crucial to Theorem 1. Yet that
independence is used only sparingly in the proof, which is basically an L* argu-
ment. Indeed, an implicit application of Fubini’s theorem in the paragraph fol-
lowing (13) seems to be the only real use of independence. There is at least one
situation of practical importance to which the results of this paper do not apply
precisely because of the stated assumption of independence. It occurs in prob-
lems of Stone’s Model 3 (classification), which is of special interest to me, and
which is the subject matter of virtually all of my subsequent remarks. For con-
venience, suppose in what follows that the range of Y has only two values.

It often happens that an experimenter has available to him large sets of de-
scriptive data on members of the two populations—call them I and II. He fixes
two numbers, say n, and n,, in advance, and records data on n, members of
population I and n, members of population II. It seems intuitively clear that if,
for example, k = k(n, + n,) nearest neighbor weights are used in determining &
then with appropriate choices of k, n,, and n, the Bayes classification rule should
be arbitrarily well approximated, and yet this is a scenario to which the theorems
of the present paper do not apply. (If instead the composition of the data by
population is determined by i.i.d. tosses of a coin, then consistency obtains as
the size of the data set increases without bound.)

Weighted nearest neighbor rules for classification have one interesting and
possibly important shortcoming in the Model 3 scenario of the present discussion.
For the classification problem is invariant under all strictly monotone transfor-
mations of the coordinate axes; the maximal invariants are the coordinatewise
ordered population labels of the training sets (see [1]). And the rules of Professor
Stone’s paper are not, as they stand, invariant rules. I think it is important that
two scientists engaged in classification based on otherwise identical data should
not utilize different rules only because one is given the weights of the patients,
and the other is given the logarithms of the weights. (When the range of Y is
the real line instead of a finite set, it may be more important that § be a smooth
function of the data than that it be invariant in the sense described.)

It is easy to mimic rules of the paper with invariant rules. Simply coordina-
tize the data by the indices of their marginal order statistics, and apply any of
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the given rules to the “transformed” data. The question of consistency of the
“transformed” rules remains to be investigated. I cite a simple, very preliminary
example of what can be proved: if the [ metric is employed on the transformed
data, and if uniform, consistent k-nearest neighbor weights are used, then when
the true marginal distributions of the training samples contain no atoms, con-
sistency obtains. Notice that when the [, metric is used, neighbors no more
than a given distance from an observation lie in a rectangular parallelopiped
with sides parallel to the coordinate axes, and center at the observation.

In work which Stone has cited, Louis Gordon and I study universally con-
sistent (in Bayes risk) rules for classification, rules which also depend on certain
rectangular parallelopipeds, or boxes. The rules we discuss, which are derived
largely from those of Anderson [1], of Morgan and Sonquist (see [6]), and es-
pecially of Friedman [4], all involve successive partitioning of boxes by hy-
perplanes parallel to the coordinate axes. The rules of Friedman, for example,
partition a box on that axis and at a point so as to effect the greatest reduction
in the Kolmogorov-Smirnov distance between the two within-box marginal dis-
tributions. All three classes of rules must be supplemented so as to guarantee
that ultimately, arbitrarily often each box is partitioned on each axis near the
center of the box. All the rules Gordon and I discuss are invariant rules, and
our proofs cover the case where the sizes of the two training samples are chosen
by the experimenter.

Friedman shows [4] that for a variety of problems, his rules are computation-
ally preferable to simple nearest neighbor classification in terms of average de-
cision time, error rate and amount of memory used to store information needed
to implement the rule.
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EMANUEL PARZEN
. State University of New York at Buffalo

In my discussion of Charles Stone’s significant paper on consistent estimators
of conditional expectations and conditional quantiles, I would like to introduce
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an approach which emerges out of my recent work on “time series theoretic
nonparametric statistical methods.”

Let (X, Y) be a pair of continuous random variables of which one has observed
arandom sample (X;, Y}), - - -, (X,, Y,). One desires to estimate the conditional
expectation E(Y|X = x), the conditional distribution Fy ,(y|x) = P(Y <
y|X = x), and the conditional quantile function Q, ,(p|x) = Fzly(p|x) =
inf{y: Fyx(y|x) = p}.

The intuitive approach to the estimation of these parameters is what could be
called the ‘“‘histogram” approach; to the X,’s in a neighborhood of x (satisfying,
say, |X; — x| < & for a suitably determined “bandwidth” A) there is a corre-
sponding set of Y,’s obtained as the second component of the observations
(X;, Y;). The mean and distribution function of this set of Y, values is a
“histogram” estimator of the conditional mean and distribution function of Y
given X = x. This approach has two basic drawbacks: how to chosen 4, and
the estimated functions may not be as smooth functions of x as we may have
reason to believe the true functions are. To help overcome these problems,
Stone considers estimators of the form £(Y | X = x) = Y1, W,,(x)Y,. However,
it is not clear to me whether Stone’s suggestions for the construction of the
weights W,,(x) are useful in practice.

More importantly, I do not believe that “universally consistent weights” are
what is wanted in practice. I believe that what is desired are weights that are
chosen adaptively by the sample to provide “asymptotically efficient” estimators.
Many theorems remain to be proved before this goal can be rigorously attained
but I believe I can propose a formula for estimators which will have such
properties.

Let Yy, < Y < --+ < Y, be the order statistics of the Y values, and F(x)
denote the empirical distribution function of the X-values. Ipropose the estimator

E(Y|X = x) = T3 Vi, 9,(F (%) 5

the weight w; (), 0 < u < 1, is a (“time series theoretic”) estimator, based on
the entire sample, of

= (0 1) = (o 25,

where H,(u;, u;) is a distribution function defined in the next paragraph. In the
case that X = (X,, - - -, X,) is a d-vector, there are functions w,(u,, - - -, u,) esti-
mated from the entire sample such that the proposed estimator is of the form

E(Y| Xi=xp, - Xy =x) = 1, Y(.i)wj(FXl(xl)’ Tty de(xd)) .

Let F(x, y), Fx(x), Fy(y), Qx(u), Qy(u) denote respectively the joint distribu-
tion function of X and Y, the individual distribution functions of X and Y, and
the quantile functions of X and Y where Q,(x) = F, '(u). Define new random
variables U, and U, satisfying

Uy = Fy(X), Uy = Fy(Y), X = 04(Uy)» Y = Qy(Uy) .
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U, and U, are individually uniformly distributed over the unit interval 0 <
u < 1; denote their joint distribution and density functions by H(u,, u,) and
h(u,, u,) respectively. Explicitly

H(uy, uy) = F(Qx(11), Qy(u5))

h(ul, uz) — f(QX(ul)’ Qy(uz)) .
fX(QX(ul))fY(Qy(uz))

The conditional probability density of U, given U, satisfies

nylUx(uZ | ul) = h(uv uz) 5

therefore
E[Y|X = x,] = E[Qy(Uy) | Uy = uy = Fy(x))]
= (5 Qp(ua)h(F y(x), u,) du,
Fyix(y | x1) = §§¥Y W(Fx(x,), uy) duyf
Oyix(p|x1) = Qy Hi \(Fx(xy), p)
defining

0

H,(uy, uy) = (32 h(uy, uy) du) = ” H(u,, uy) .

1

The distribution function H and its derivative can be ‘“optimally” estimated
using time series theoretic methods, starting with the raw estimators

H(uy, uy) = F(Qx(ul)’ Oy(u5))
vy, v,) = §3 V2 exp{2mi(u,v, + uyv,)} dH(uy, uy)

for0 < u,u,<1,v,v,=0, +1, +2, ---. A naive “k-nearest neighbor” es-
timator of H(u,, u,) is

A (u,, u,) =%({ﬁ<ul +%, u2> — H(ul — -5_, u2>}.

M. ROSENBLATT
University of California at San Diego

The results that Stone has obtained on consistency of regression estimates and
estimates of conditional quantities are certainly very interesting and relate to
many problems that are currently under study. It would seem to be important
to get more detailed insight into the local and global behavior of some of these
estimates, particularly in terms of their asymptotic distribution and bias. Results
of this type have been obtained for a variety of density and regression estimates
(the paper of Bickel and myself [1] contains a few of these results). The nearest
neighbor regression estimates have attractive features in terms of consistency in
view of Stone’s Theorem 2. However, nearest neighbor density estimates appear
to have disadvantages under certain circumstances (see the paper of Fukunaga
and Hostetler [3] and comments on their work in Friedman’s paper [2]). It is
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suggested that possible difficulties are due to the bias of the estimate in the tail
of the distribution. One hopes that there will be further work on the large
sample behavior of the class of estimates that Stone has discussed as well as on
the computational ease of using such estimates and their stability.
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JEROME SACKsS
Northwestern University

The requirement in Theorem 2 that the weights be nonnegative may not be
a drawback when no smoothness is assumed about f(x) = E(Y|X = x) but it is
often restrictive when some smoothness can be assumed. For example, when
d" = d =1, X has compact support and x, is an endpoint of the support then
the use of nonnegative weights results in weighting values of f at x’s which
lie on one side of x, and there is no way of effectively using the smoothness of
f to reduce the resulting bias. Indeed, it is shown in Sacks and Ylvisaker [1]
that, if

@) |f(x) = f(xo) — f/(xa)(x — x0)| = My(x)

where M, is specified and M,(x) = o(|x — x,|) near x, then the set of weights
which minimizes the maximum (over all f’s satisfying (1)) of the mean-square-
error will usually contain some negative ones. Nonnegative weights will often
suffice if x, lies closer to the center of the support of X and will always suffice
if (1) above is replaced by the assumption |f(x) — f(x,)| < M,(x) for some speci-
fied M,.

The rate of convergence of the estimators treated by Professor Stone will de-
pend on the smoothness of f and reasonable rates cannot be expected without
smoothness (e.g., it is roughly true (from [1]) that ntE( fn(x) — f(x))? is bounded
in n and £ if (1) holds for the optimum f,). It is possible that the type of modi-
fication proposed by Professor Stone in Section 4 may be particularly valuable
when the f’s involved have some smoothness. The modification in Section 4
also creates weights which depend on the location x which is an advantage not
possessed by the nearest-neighbor weights of Theorem 2.
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GRACE WAHBA
University of Wisconsin at Madison

I am sure all the discussants join me in thanking Professor Stone for an inter-
esting and thought provoking paper. I will restrict my remarks to the problem
of estimating E(Y | X = x) = f(x), certainly an important problem. It is com-
mendable that Professor Stone was able to obtain convergence properties of
E,(Y|X = x) under very weak assumptions. By making regularity assumptions
on f and the distribution of X, one can go much further—one can obtain (quad-
ratic mean) convergence rates, and furthermore can obtain empirical Bayes es-
timates for the (minimum integrated mean square error) bandwidth parameter
when the estimates £,(Y|X = x) = ] W, ,(x)Y, turn out to be kernel-type. A
modest example of this was kindly referenced by Professor Stone [37], but I
would like to indicate some of the more general results that can be obtained.

We may write, for any X = x,

(Y]X = x) = Y() = f(x) + &(x)

where, for each fixed x, f(x) = E(Y|X = x), Ee(x) = 0 and the ¢(x) are inde-
pendent for distinct x. I will assume that Y is R'-valued, that X has a density
h(x) which is strictly positive on a known, closed, bounded subset T of R? and
0 elsewhere, and that E¢*(x) = E{(Y|X = x) — E(Y|X = x)} = ¢°9(x) where
d0(x) is a known sufficiently nice function. The parameter ¢* may be unknown.
A general regularity condition that allows extension of Professor Stone’s results,
is, that f e 57, where 5%, is a reproducing kernel Hilbert space of real valued
functions on T, with continuous reproducing kernel Q(s, ). With these assump-
tions families of estimates £,(Y|X = x) of Professor Stone’s form

(D E(Y|X=x) = D1 Wl Xy oo, X

n

)Y

can be generated by letting E(Y|X=x) = fn.2(x), where f, , is the solution to
the problem: Find f e 5#, to minimize

1 (¥; — fX))
2 sl R Sl S A ek 7.2 B | 2,
@ + Tt ST i,
where ||« ||, is the norm in 5%, and 1 is the “smoothing” or “bandwidth” pa-
rameter. The solution f, ; is given [4] by

(€) faax) = (Q(x, Xp), - -+, Q(x, X)) (Qu + 1AD,) 7Yy, - -+, ¥,

where Q, is the n X n matrix with jkth entry Q(X;, X;), and D, is the n X n
matrix with diagonal entries 6(X,). The right hand side of (3) clearly is of the
form (1). If ¢ were Gaussian, a Bayesian could construct f, ,(x) = £,(Y|X = x)
of (3)as f, :(x) = E(f(x)|Y(x;)) = Y,;,i=1,2, ---, n) by adopting the Gaussian
prior on f with Ef(x) = 0, Cov f(u)f(v) = bQ(u, v), A = o*/nb.

Returning to a fixed, unknown f, the parameter 1 controls the bias-variance
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tradeoff for the mean square error R(4),

R() = E{ - Tt (fua(X) = SO X = i = 1,2, -+ n]

E{ S (BY[X = x) — E(Y|X = =)y}

and, roughly speaking, 1 plays the same role as k in the k-NN examples cited
by Professor Stone. To have a practical method, one must have a prescription
for choosing k (or 2). (The correct choice of the “bandwidth” parameter is more
important than the choice of the “shape” provided the “shape” is in an appro-
priate class.) It can be deduced from hypothesis (3) of Professor Stone’s Theorem
1 that rather weak requirements on the “bandwidth” parameter suffice to insure
consistency; but with the correct choice, sharper results can be obtained, as I
shall show, and furthermore, 2 in the estimate (3) can be chosen by empirical
Bayes methods from the data.

The problem of choosing 4 in (3) is essentially the same problem as choosing
the ridge parameter 1 in a ridge estimate 8, of 8 in the standard regression model
Yux1 = XuxpBox1 + €uxa» Where B, is the solution to the problem: Find fe E, to
minimize (1/n)||y — XB||.2 + 2||8]|,* (Euclidean n and p norms). See [8] and
just about any recent issue of JASA, Technometrics, Communications in Statis-
tics or JRSS-B for a discussion of this issue! To avoid inessential complications,
I now let 6(x) = 1 and condition on X; = x; where the sample c.d.f. of the x,’s
coincides with the true c.d.f. at x = x,. Then R(4) may be written

R() = B[ ADT — Il = E— [T — A — 4Qell,
= L ja = 4@l + & Trace 4(2) ,
n n

where AZ) = Qu(Qu + nA)™, ¥ = (¥, -+, V), = (f(x), - f(x,)), and
& = (e(x), -+, &(x,)). An unbiased estimate R(1), for R(1) may be obtained
from Mallows [10] or Hudson [3] if ¢? is known, and is

RQ) = (0 — AT = 22 (T (1 — a) + o

If ¢* is known, it is reasonable to take the minimizer of R(1) as a good choice
of 2. If ¢* is not known, my favorite estimate of 2 is the generalized cross-
validation estimate, which is the minimizer of

V() = Y'(1 - AQQ))*'Y '

(Tr (I — A())?
See [8] for the source of this estimate. It can be shown [2, 7] that for any
f € &%,, the minimizer of EV(2), call it 4, satisfies 1 = 2*(1 + o(1)), where 1*
is the minimizer of R(4), and o(1) — 0 as n — co. The convergence result that
is available concerns the convergence rate of the mean square error R(2) at its
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minimizer 2 = 2*. Suppose f € 57.,, the reproducing kernel Hilbert space with
reproducing kernel (Q*Q)(s, t) = {, Q(s, u)Q(¢, u) du, and A is a constant; then
it can be shown (see [7]) that

2 2
0] RA) = Fllf e + 2 T2 (12
where {,} are the eigenvalues of the Hilbert-Schmidt operator with Hilbert-
Schmidt kernel Q. For example, if T = [0, 1] and ¥, is a space of functions
{9:9,9, -, 9™ P abs. const., g™ e &[0, 1]} then, roughly, fe 575, entails
that f%™ ¢ &[0, 1], and 2, = O(v~*") and the second term on the right of (4)
is O(1/na”*™). The right-hand side of (4) is then minimized for 2** =
const ((6?/||f][&+e)(1/n))*™“4™+1(1 4 o(1)) and it follows that R(A*) < R(2**) =
O(n—*m/tm+D)y (It can be shown that R(A*) = R(A**)[1 + o(1)].) See [7] for
details. This kind of argument also appears in [1]. It appears that R(1*) =
O(n—*™/tm+D) can be obtained if 4 is any “nice” strictly positive density, see [2].
For T =[0,1] x [0,1] X --- X [0, 1], d times, one can let 57, be the d-fold
tensor product of d one dimensional spaces (see [6]); more interesting spaces
can be found in the approximation theory literature. The eigenvalues associated
with tensor product spaces are the tensor products of the one dimensional eigen-
values (4, = 4,4,).

The estimates of the form (3) generally do not give us k-NN type estimates,
since, loosely speaking, the weight given to Y; in £,(Y|X = x) in (3) depends
on the distance x is from X;, rather than how many neighbors are “between” x
and X;. Loosely speaking, it can be shown (see [6, 8]) that

foi) = B (55) 6.

where {¢,} are the eigenfunctions associated with the eigenvalues {4,} and f, is
an estimate of f, = {, f(x)¢,(x) dx. Then, roughly,

7= i St Vi (x)hi(x,)

where £ is the density (or an empirical density) of the {x;}. Then

f‘n,l(x) = Z?:l YiKZ(x’ xi) s
) .98.0) () -

where

1
K, (x, = — . v
(X)) = 2 2 <zy )
If &7, is the Hilbert space of periodic functions on [0, 1] with, for example,
[1fll* = [§8f(u) dul* + §3[f™(u)]* du, and h(u) = 1, then the eigenvalues are

Ah=1,2, = (27w)-”"', and for large n, it can be shown that

1
K.(x > . 2riv(z—y)
1( y) (1 + l) + Zv——oo,vaéo (1 + (ZﬂV)zml)e

~ 11 n 1 k(x — y)
n (142  nivm Arem
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where
| S 1
k(7) - ¥; T 7 costydy,
illustrating the ‘““bandwidth” role of 2. (See [1].)

Moore and Yackel [5] have made a detailed comparison of window vs. k-NN
type density estimates and conclude (not surprisingly) that one does better with
k-NN estimates near x where A(x) is small (and presumably vice-versa). A direct
comparison of practical k-NN type estimates vs. window type estimates for
E(Y| X = x) must of course include the prescription for choosing k or 2 as well
as for choosing the shape, e.g., uniform, triangular or quadratic examples as
given by Professor Stone, or as determined by Q here. Any Q within the same
equivalence class (in the sense of [9]) will give the same (asymptotic) results, so
within a class, computational ease can be the criteria. To choose from among
a finite number of representatives of equivalence classes compute min, V(1) or
min, R(2) for each representative and take the minimizer over the representatives
tried.
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REPLY TO DISCUSSION
First I wish to thank an Associate Editor handling the paper for suggesting
that it be used for discussion. I also wish to express my gratitude to him and
the other discussants for the wide variety of interesting, thought provoking and
uniformly constructive comments and to the Editor, Richard Savage, for his
help in improving the accuracy, style and readability of the paper.
Cover wonders why continuity requirements are not needed for consistency.



