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ASSOCIATION AND PROBABILITY INEQUALITIES

By KuMaR JoGDEO

University of Illinois
A “‘moving set inequality,’’ a variant of the one considered by Anderson
(1955) and Sherman (1955), is shown to yield a class of random variables
whose absolute values are “‘associated.” In particular, a model generated
by ““contaminated independence’” forms the principal example. Further,
it is proved that ‘‘concordant’ functions of associated random variables
are associated and then this result is applied to obtain a variety of probability

inequalities related to multivariate normal and other distributions. These
results generalize the ones obtained by Sidak (1967, 1968, 1971, 1973).

1. Introduction. A simple and intuitively obvious covariance inequality due
to Tchebyshev (see Hardy, Littlewood, Polya [9], pages 43-44) is somewhat
neglected in the statistical literature, in spite of being a useful tool and as a
result has a habit of being rediscovered (see for example [2], [3], [11] and [21]).
The inequality, simply stated, asserts that if X is a random variable, (f;, 9,) a
pair of nondecreasing real functions, then

(1.1) Cov [/i(X), 9:(X)] =2 0.

We will be concerned with the bivariate and multivariate generalizations of
(1.1). Lehmann (1966) considered a bivariate generalization and showed that
positive quadrant dependence between (X, Y) say, is equivalent to having

(1.2) Cov [£(X), (¥)] = 0,

where f,, g, are nondecreasing. Further, he showed that the same covariance
inequality holds between two concordant functions defined on independent pairs
(X, Yy), i =1, ..., n where each pair satisfies positive quadrant dependence
condition. (See Section 4 for details.)

A stronger dependence condition called association was studied by Esary,
Proschan and Walkup (1967). A k-variate random variable X is (or equivalently,
X, -+, X, are) said to be associated if for every pair of nondecreasing functions

f 9,
(1.3) - Cov[f(X), 9(X)] = 0.

(Throughout the paper, a function defined on a subset of R* — R will be said to
be nondecreasing (nonincreasing) if it is so in each of its k arguments separately.
Also [x| will mean (|x,|, - - -, |x,]), x = y will mean x;, > y,, i = 1, - - -, k etc.)
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The following are some of the properties which make the concept of associ-
ation useful. (i) If X;,i =1, ..., k are independent then they are associated.
(ii) The union of independent sets of associated random variables is associated.
(iii) Nondecreasing functions of associated random variables are associated.
(iv) If X is associated, so is —X.

An important consequence of association of X, relevant to the present paper,
is that for every c,

(1.4) PIX=Zc]l = [I1w P[X; S ¢, iely],
(1'5) P[ch]gH7=1P[ngcnl'€17],

where I; are subsets of I = {I, - - -, k} whose union is I.

Inequalities of type (1.4) and (1.5) have attracted attention, particularly when
X has a multivariate normal or ¢-distribution and X is replaced by |X| in (1.4)
and (1.5). Dunn (1958) initiated the study in view of its applications to the
so-called conservative confidence interval estimation. Sidak ([18]—([21]) has
obtained a variety of results. (See [10] for a simple proof of a principal result.)
In particular, he showed that for a multivariate normal random vector X with
EX =0,

(1.6) PIIX| < ¢] = It P[1X] < <]
holds for every c¢; however,
(1.7) PlIX| = c] = [Tk, PIIX] = ¢,

may not hold without some further restriction on the covariance structure, such
as Cov (X;, X;) = a;a;. Das Gupta et al. (1972) considered (1.6) for elliptically
contoured distributions.

The main purpose of this paper is the following. First, (1.7) is strengthened
by showing that, even with a slightly more general condition on the covariance
structure, the absolute values are in fact associated. The technique used yields
association for a more general model of which the multivariate normal distri-
bution is a special case. The notion of concordance is generalized to fit the
concept of association and is then applied to obtain inequalities for some distri-
butions commonly used in multivariate analysis.

For the same model, inequalities are obtained where rectangular regions are
replaced by centrally symmetric convex sets. These inequalities were obtained
by Das Gupta et al. (1971) and Sidak (1973) for multivariate normal distribu-
tions by a method more involved than the present.

The basic tool used in the paper is a moving set inequality. This is a variant
of an inequality obtained by Anderson (1955) and Sherman (1955) in which
central symmetry was used. (Earlier, Fary and Redei (1949) had obtained the
same inequality in another context.) Mudholkar (1966) pointed out that other
concepts of symmetry could be employed to obtain more general inequalities.
Recently, Rinott (1973), Eaton and Perlman (1974) and Marshall and Olkin
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(1974) have employed a moving set inequality based on Schur convexity (per-
mutation group).

In the present paper, the symmetry is expressed through sign invariance, and
a vector y is said to majorize x if |y| = |x|.

In Section 2, some basic inequalities are developed. Section 3 contains the
main results on association while Section 4 develops theorems on concordant
functions which yield the association property for several statistics.

2. Moving set inequality. It is well known that a symmetric unimodal dis-
tribution on the real line assigns maximum mass to an interval of fixed length,
when the center of the interval is at the origin. The mass decreases as the inter-
val moves away in either direction. The inequality developed here is obtained
by requiring each linear section of the multivariate density along certain direc-
tions to be unimodal and then splicing the above phenomena together.

DErINITION 2.1. A function f: R* — R is said to be increasing (decreasing) in
absolute value if f is sign invariant and |v| > [u| implies f(v) = f(u) (f(v) < f(u)).
Aset Sin R" is said to be increasing (decreasing) in absolute value if the indicator
function of § is increasing (decreasing) in absolute value.

REMARK 2.1. A probability density f is decreasing in absolute value if and
only if every set {x: f(x) = ¢}, ¢ > 0, is decreasing in absolute value. Thus f
can be considered as a mixture of uniform distributions on sets which are de-
creasing in absolute value.

The following is an important example of a density function decreasing in
absolute value. Let X, ..., X, be independent real random variables each
having symmetric unimodal distribution. Then by a characterization of
Khintchine (1938) each of the distributions is a mixture of uniform distributions
on symmetric intervals. Thus the joint density of X = (X, - .-, X,) can be
viewed as a mixture of uniform distributions on n-dimensional rectangles, cen-
tered at the origin, with edges parallel to the axes. Hence the joint density is
decreasing in absolute value.

THEOREM 2.1. If f, and f, are densities in R*, each decreasing in absolute value,
then the convolution f, « f, is also decreasing in absolute value.

Proor. Sign invariance of f, « f; can be verified rather easily. To check the
decreasing property first assume f; and f, to be indicators of sets C, and C,, both
decreasing in absolute value. It follows that

(2.1) fix 1) = So,0, 1G5 X] dX
where I denotes the indicator. To see that the right side of (2.1) is decreasing
in absolute value, let u = (1,0,0, ..., 0) and v = (v,,0,0, --.,0) where

[va] > |u,]. The right side of (2.1) can be viewed as the volume of the intersec-
tion of C, and the set obtained by translating C, by y. Due to the decreasing
property of the sets C;, C, it is clear that the volume obtained when y is replaced
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by u is more than the corresponding volume when y is replaced by v. The sign
invariance and the decreasing property of C, and translated C,, with respect to
remaining (n — 1) coordinates, are still preserved and the process can be repeated
to yield the desired property.

In view of Remark 2.1 it follows that in general, f, * f, can be considered as
a mixture of convolutions of uniform distributions on sets which are decreasing
in absolute value. Thus the proof extends to this case.

DEerFINITION 2.2. Let X, Y be n-variate random variables. The distribution
of Y is said to be stochastically larger than that of X (or Y is stochastically
larger than X) in absolute value if for every g, nondecreasmg in absolute value
(see Definition (2.1)),

Eg(Y) = Eg(X) .

THEOREM 2.2. Suppose the density f of an n-variate random variable X is decreas-
ing in absolute value and v, u is a pair of vectors such that |v| > |u|. Then X + v
is stochastically larger than X 4 u in absolute value.

Proor. It suffices to prove the assertion for the case where g in Definition
2.2 is assumed to be an indicator function. Simply apply Theorem 2.1 with
h=ffi=1—yg

3. Contaminated independence model and association. Let Z be an n-variate
random variable with independent components, each having a symmetric uni-
moidal distribution. (By Remark 2.1, the density of Z is decreasing in absolute
value.) Suppose that, due to certain experimental conditions, Z is contaminated
and what can be observed is

3.1) X=7+U,

where Z and U are independent. In particular, if U = (o, W, a,W, - .., a, W)
where W is a real random variable then it follows that

(3.2) Cov (X, X;) = 2,2, , i,

where 2, equals a; times the standard deviation of W. Note that if X has a
multivariate normal distribution then the converse holds; that is, if the covari-
ance structure satisfies (3.2) and if Var (X;) = 22 then X has a representation
given by (3.1) where U = aW.

Sidak (1971) considered the normal case with (3.2) and proved the inequality
(1.7). In a subsequent paper [21], he proved similar inequalities for convex
sets. The following theorem generalizes these results in several respects. A
condition weaker than (3.2) is assumed while a stronger conclusion is derived,
namely that [X] is in fact associated. Further, the assumption of normality is
removed. The same technique is then shown to yield the inequalities (3.4) and
(3.5) for centrally symmetric convex sets when U is of the special form aW.

THEOREM 3.1. Let Z = (Z,, -+, Z,) be an n-vector with independent real
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components, each having a symmetric unimodal distribution. Suppose
where U is independent of Z. and |U]| is associated. Then |X| is associated.

Proor. Let fand g be a pair of real nondecreasing functions defined on R".
Observe that

(3.3)  Cov[f(IX]), 9(IXD] = E{Cov [f(X]), 9(IX])]| U}

+ Cov{E[A(X])| U], E[¢(X]) | U]} -
When U is given, the random variables X, - .-, X, are independent. Hence,
conditionally |X;|, - - -, |X,| are associated and the first term on the right side of
(3.3) is nonnegative. )

To show that the same is true for the second term, note that X is the same as
Z 4 U where Z has a density decreasing in absolute value. However, by Theo-
rem 2.2, the conditional expectations in this term are nondecreasing functions
of |U|. Since by our assumption, |U]| is associated, the covariance of these func-
tions is nonnegative and the proof is complete.

Theorem 3.1 has some similarity with a result stated by Marshall and Olkin
(1974) (Section 5.1). However, here we are dealing with absolute values so that
the conditions and techniques are different. The following three corollaries of
Theorem 3.1 are related to some recent results (references will be cited sub-

sequently).

CorOLLARY 3.1. In Theorem 3.1 one may assume that U = (a,V, ---, a,V,
ay W, -+, a,W) where (V, W) has a bivariate normal distribution centered at 0.

Proor. From Theorem 3.1 it follows that [V], |W| are associated. Hence |U|
is associated. (The result does not extend to trivariate normal since it follows
from an example in Sidak (1971) that the absolute values may not be associated.)

REMARK 3.1. The result stated above is more general than the one given by
Sidak (1971), who assumed k = n and derived the probability inequalities (1.7).
In fact, it is not necessary that V" and W have expected values 0. The pair (|V|, |W|)
can be shown to be associated when the product of their expected values is re-
lated to their covariance in a certain way. This slight improvement is omitted
to make the assertion simple. However, the reader may obtain this version in
view of the following corollary, which is an easy consequence of Theorem 3.1.

COROLLARY 3.2. In Theorem 3.1 it may be assumed that U = aW, where a is
an arbitrary but fixed n-vector and W is an arbitrary real random variable.

REMARK 3.2. The random variable W need not have expected value 0. In
Corollary 3.2 note that EX; = a, EW, so the quantities EX; EX; are proportional
to Cov (X;, X;). In the normal case, inequalities under such conditions on the
expected values were proved by Das Gupta et al. (1971). It should be noted
that the present method removes the assumption of normality.
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REMARK 3.3. The following probability inequalities (3.4) and (3.5) for convex
sets were shown by Khatri (1967) for the multivariate normal distribution with
mean 0 and special covariance structure, and with some other conditions on
the means by Das Gupta et al. (1971). However, they can be easily extended
to the contaminated independence model of Theorem 3.1. LetY,,i=1,.--,k
be vectors obtained by regrouping X, - - -, X,, such that Y, has p, components,
where 3] p, = n. Let Cy, - .-, C, be centrally symmetric convex sets in R”1, ...,
Re. If U in Theorem 3.1 is of the form aW then by conditioning on W and
applying the moving set inequality of Anderson (1955) and (1.1), it can be seen

that

(3.4) PlY;eCyi=1, -, k] = [Tt P[Ys e C/]
and
(3.5) PlY,eC,i=1, .-, k] = [t P[Y;e C]].

REMARK 3.4. Since Theorem 2.2 holds for distributions which possess densi-
ties decreasing in absolute value, it is natural to ask whether the independence
assumption in Theorem 3.1 can be replaced by this more general one. If true,
this general version would imply that |X,|,i = 1, - - -, n, are associated whenever
X has density decreasing in absolute value. However, for n = 2 when the dis-
tribution is uniform on a sign invariant convex set, |X;| and |X,| are always
negatively regression dependent. To see this, note that the conditional distribution
of X, given |X,| = z, say, is such that for every a > 0,

P[lel = al lel = z]

is nondecreasing in z for z > 0, and in fact, unless the convex set is a rectangle,
there exists @ > 0 such that for some values of z, the above probability is strictly
increasing.

This example brings out an interesting feature of the uncorrelated bivariate
normal distribution which can be viewed as a mixture of uniform distributions
on sign invariant convex sets, namely, ellipses with axes along the coordinate
axes. Each pair of absolute values corresponding to the uniform distribution
on such an ellipse is strictly negatively dependent. However, the mixture so
generated has independent components.

4. Association for concordant functions and applications. Esary, Proschan
and Walkup (1967) showed several applications of the two key results for the
associated random variables; namely, that the union of independent sets of as-
sociated random variables is associated and that nondecreasing functions of
associated random variables are associated. In several applications however,
one wants to consider functions which are nondecreasing in some arguments
and nonincreasing in others. In order to motivative the result in this direction,
first we state the following theorem due to Lehmann (1966).

Let f, g be a pair of functions R* — R. The pair is said to be concordant if
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fand g are monotone in each argument and the direction of the monotonicity
for ith argument, for i =1, ..., n, is same for both functions (that is, if f is
nonincreasing in ith argument, so is g). Now suppose (X;, Y,),i=1, ---,n
are independent pairs, each pair being positively quadrant dependent, that is,
for every real a, b,

4.1) P[X;>a, Y, > b] = P[X; > a]P[Y, > b].
Then for a concordant pair f, g
(4.2) Cov[f(Xy -5 X,), 9(Ysy -+, Y,)] = 0.

The type of extension considered in the following requires a more general
definition of concordance.

DEerFINITION 4.1. A set of m functions 4,, A,, - - -, &, each defined on R¥* — R,
is said to be k-concordant if all the functions are monotone in each of the kn
arguments and the direction of the monotonicity is the same for each block of
k-arguments, jk + 1, jk + 2, -+, (j + 1)k, where 0 < j < (n — 1).

For example, #,, - .-, &,, simultaneously, may be nondecreasing for the first
k arguments, nonincreasing for the next k arguments and so on. The pair in
(4.2) is 2-concordant since f, g considered as functions of X, Y, X,, ---, X, ¥,
do satisfy the requirement. In the next theorem, a condition of association is
used in place of the (weaker) condition given by (4.1), and a stronger proposi-
tion is derived. The main difference is that Lehmann’s theorem is applicable
only for bivariate distributions while the present version is valid for a multi-
variate distribution. The next theorem paves the way for a more general theo-
rem which will follow.

THEOREM 4.1. Let U,, U, - .-, U, be independent k-vectors such that every U,
is associated. If f and g is a pair of k-concordant functions then

Cov[AU,, -+, U,), 9(Uy, -+, U] 2 0.

Proor. For n = 1, the assertion is equivalent to the definition of association.
We exhibit extension to n = 2, while general extension from »n to n 4 1 is simi-
lar and is omitted. Writing

(4.3) Cov[f(Uy, Uy, 9(U,, U,)] = E{Cov [f, 9| U,]}
+ Cov [E{f|U,}, E{g| U,}],

it follows that the first term is nonnegative since U, is independent of U, which
is associated. Now f'and g are either both nondecreasing in all components of
U, or both nonincreasing, and hence the same is true of expected values. Since
U, is associated, it follows that the second term of (4.3) is nonnegative and the
proof is complete.

The next theorem forms the basic tool for generating associated statistics via
concordant functions defined on independent sets of associated random variables.
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THEOREM 4.2. Suppose hy, - - -, h, are k-concordant functions defined for n k-
tuples, U,, ..., U, are independent, and every U, is associated. Then h(U,, - - -,
U,),i=1, ..., m, are associated.

Proor. To make writing easier let
hi(Ul,Um“',Un):Vi, i=1,...,m.

Let p and ¢ be a pair of two nondecreasing functions on R™ — R. The theorem
will be proved when it is shown that

4.4) Covp(Vy, «+ 3 Vi), q(Vys -+, V)] = 0.
Since each V; is a function of U, - .-, U, one may write
4.5) p(Vy, -+, V) = p*(Uy, -+, U,)

and

(4.6) 9Vir -+ Vo) = ¢*(Uy, -+, U,)

It is readily seen, however, that p*, ¢* is a pair of k-concordant functions, so
(4.4) follows from Theorem 4.1.

5. Applications.

(i) Multivariate t-distribution. Let X, = (Xy, -+, Xy), i =0,1, ..., n, be
(n + 1) independent k-vectors, each satisfying conditions of either of the Co-
rollaries 3.1 or 3.2, so that each |X,]| is associated. Suppose

t-2 —_ X()zj
J
Zz—l J/n

Then it is clear that ;> are k-concordant and Theorem 4.2 implies that the .7,
or equivalently the |¢;|, are associated. By introducing the normality assumption
this implies the association of the absolute values of a t-vector under certain
conditions on correlation coefficients as given in Corollaries 3.1 and 3.2. This
strengthens the result of Sidak (1971) which provided probability inequalities
under more stringent assumptions. In addition, inequalities (1.4) and (1.5) hold
for || since these are associated.

(ii) Suppose the X, satisfy the same conditions as in (i). Let 7 be a k X k
matrix with elements

j=1, k.

= 2l XX, Lj=1,-- k.
Then by Theorem 4.2 again the dlagonal elements T';; are associated. In particu-
lar, if X, are assumed to be identically normally dlstrlbuted with mean 0 and
correlation structure (3.2), then T is a Wishart matrix whose diagonal elements
are associated. This allows one to form conservative simultaneous upper or
lower confidence bounds for variances by utilizing partial knowledge about
correlation coefficients.
(iii) If one is interested in obtaining simultaneous upper or lower confidence
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bounds for the ratio of the variance of the corresponding components of two
multivariate populations satisfying the conditions of Corollaries 3.1 or 3.2, one
can again apply Theorem 4.2 to F ratios to facilitate conservative bounds. In
general a variety of functions which are monotone in absolute values would
produce associated statistics.
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