The Annals of Statistics
1977, Vol. 5, No. 3, 464-472

ASYMPTOTIC RELATIONS OF M-ESTIMATES AND
R-ESTIMATES IN LINEAR REGRESSION MODEL

By JANA JURECKOVA
Charles University

Let Ay be an M-estimator (maximum-likelihood type estimator) and Ap
be an R-estlmator (rank estimator) of the parameter A= (Al, -, Ap)in the
linear regress1on model Xyi= Xio1 e+ e i=1,--+, N. The asymp-
totic distribution of Ay — A is derived for pfixed and N — oo, under some
assumptions on the design matrix, on the error distribution F and on the
functions generating the respective estimators. The result has several con-
sequences which have an interest of their own; among others, it is shown
that to any M-estimator corresponds an R-estimator such that the esti-
mators are asymptotically equivalent, and conversely. A special case when
Ay is the maximum likelihood estimator and A the R-estimator, both
asymptotically efficient for some distribution G, is also considered.

1. Introduction. For N=1,2, ..., let X, - -+, X, be independent obser-
vations such that X,,; has the cdf '

(1.1) F(x—-Z‘f.’:lA."cﬁ), i=1,...,N

where A" = (A, ---, A% is an unknown parameter and C, = [c; ]z Y is a
given design matrlx.

Let us consider the problem of estimating A° on the basis of X, --., X, if
F is not specified. Besides the classical least squares estimator, other types of
estimates were suggested which are less sensitive to the outlying observations
and to incorrect assumptions concerning the form of the basic distribution F
(see Huber [4], Jaeckel [8], JureCkova [10], Koul [13], Kraft and van Eeden [14],
Bickel [1]). In the present paper, we shall study the asymptotic relations of two
robust estimates: M-estimates suggested by Huber and R-estimates suggested by
Jureckova (or equivalently, R-estimates suggested respectively by Jaeckel and
Koul, which are asymptotically equivalent to the estimate of JureCkova).

More precisely, the asymptotic distribution of KM —A » is shown to be normal
for p fixed and N — oo, under some assumptions on C,, on the functions gener-
ating the estimates and for the basic distribution F with finite Fisher’s informa-
tion. The cases in which the asymptotic distribution degenerates are of interest.
We shall show that to any M-estimate (in the frame of the assumptions) corre-
sponds an R-estimate such that the estimates are asymptotically equivalent in
the sense of convergence in probability, and conversely.

An interesting special case happens if A » is the maximum likelihood estimate
corresponding to a distribution G and A, is a rank estimate which is asymptotic-
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ally efficient for G in the role of the basic distribution. If G is normal, then A,
and A, are asymptotically equivalent if and only if F is also normal; a similar
proposition holds for G logistic. Both estimates coincide if G is double exponen-
tial (the estimates then represent a generalized version of median). If G = F,
then A, and A, are asymptotically efficient.

2. Assumptions and notation.
1°, For N=1,2, ..., let X, .-+, X,,, be independent random variables

such that X, has the distribution function

(2.1) Flx — X2, 80%;), i=1,..--,N.
Also suppose that f(x) = dF(x)/dx exists, is absolutely continuous and has finite
Fisher’s information, i.e.,

_ (L)Y -
2.2) 1) = § (L)) fw de<oo. |
Let us denote
(2.3) o(t,f) = —[(EO)AF1) 0<r<1
where
F-Yt) = inf {x: F(x) > 1} .

2°. Letcf;, = (¢jy, - - -, Cjy) and €7}, = (c}}, - - -, clfy) be vectors satisfying

(a) Zi=lcji: i ;;—0 j=19"'aP
and
(2.4) (€l S M3 e ()T < M

]_—_1,...,1);N=1,2,...

(M > 0 is a constant independent of N) where either of the scalar products in
(2.4) is either O for all but a finite number of N or positive for all but a finite
number of Nj if c{;, - (c{,;,)” > 0 for N > N, then assume

(2.5) lim,_., {maXlStSN (Cﬂ)z[Z =1 (cﬂc)z] l} =0
(Noether s condition), and an analogous assumption is to be satisfied for c!’,,
J=1,-p.

b Forall airs j,h=1,...,pandi,k=1,... N(N=2,3,-.-), assume
pairs j P

(¢ — €ia)(Chi — ) = 0
(2.6) (€5 — )it — ¢if) = 0
(¢ — cii)eis — €ii) = 0.
Let Cy = [c;;)izh Y be a given design matrix with the rowsc;),j =1, ---,p
and the columns ¢, j = 1, , N; suppose that, for N = 1,2, ..., the rows
¢; could be decomposed into a sum of vectors ¢/, and ¢}, satisfying (a) and (b),

i.e.,
¢y =ch 4+ ¢l i='1,~--,N,N=1,2,---;j=1,~--,p.
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Moreover, assume that
(c) lim, . X, = X exists and X is a positive definite matrix, where

(2.7) 2, = C,C," .

3°. Let (), 0 < t < 1, be a nonconstant function which is expressible as
a finite sum of monotone functions, square-integrable on (0, 1).

4°. Let ¢(x), x € R' be a nonconstant function which is expressible as a finite
sum of monotone functions; assume that

(2.8) {m P()f(x)dx < oo .
Let us denote
(2.9) r = Yot f)dr,
(2.10) B = L'ty dr — ¢, p = s p(r)dt,
(2.11) 0 = —{m P(x)f"(x) dx
and
(2.12) 0 = S Pf) dx — (Y $)(x) dx)
For any fixed vector A = (4,, - - -, A,), let us denote
(2.13) 0(A) = Xy, — 22, Qe i=1,...,N.

Let KM be the M-estimate of A’ corresponding to the function ¢, i.e., A, is
the solution of the system of equations
(2.14) M(Xy, A) = ¥ ¢, p(6,(A)) = O, j=1,--,p,
with respect to A.

Let A, be the rank estimate of Hodges-Lehmann type corresponding to the
function ¢, suggested by Jureckova in [10]; i.e., A, is any solution of the mini-
mization problem

(2.15) 20 | 2 ¢ay(RY)| = min
where R;* is the rank of §,(A) among d,(A), - - -, 5,(A);
(2.16) R® = T, u(3,(A) — 0,4))

where u(x) = 1if x > 0Oand = 0 if x < 0; a,(+) is the score-function correspond-
ing to ¢ in the following way:

(2.17) aN(i):gp<Nj_1>, i=1,..., N

3. Asymptotic distribution of A, — KR.

THEOREM 3.1. Under the assumptions 1°-4° and under y + 0, o + 0, KM — KR
have for N—oo the asymptotically normal distribution with center 0 and covariance
matrix X inverse multiplied by the scalar

(3.1) Z G W) = ) = ) — )| dr-
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where
¢ =19 dF(x), ¢ =e()d.
The proof of Theorem 3.1 is postponed to Section 5.
We shall say that two sequences {X,} and {Y,} of random vectors are asympto-
tically equivalent in probability (denoted X, ~ Y ) if [| X, — Y,|| > 0as N — co.
The following corollaries of Theorem 3.1 have an interest of their own.

CoROLLARY 3.1. Let the assumptions 1°—4° be satisfied and let y + 0, o =+ 0.
Then A, ~ A, if and only if
3.2) o(t) = ap(F-'(t)) + b a.e. te(0,1)
for some a >0, beR. )

REMARK. Jaeckel [7] first expressed a conjecture of a close relation between
M and R estimates in the location submodel. Corollary 3.1 essentially answers
his conjecture. Moreover, the corollary enables us to carry the asymptotic
properties of one type of estimate to the other type. For instance, it follows
from Huber [4] and from Corollary 3.1 that M and R estimates have an asympto-
tically minimax property over the set of asymptotically unbiased estimates in
the model of symmetric contamination.

Put

’
(3.3) o(x) = —9X) xe R
g(x)
where g is a unimodal density with finite Fisher’s information and such that
§ 21 (9'(x)/9(x))’f(x) dx < oo. Then A, is the maximum likelihood estimate cor-
responding to g. Similarly, put

(3.4) o(t) = ¢(t, 9) , 0<r< 1.

Then KR corresponding to ¢ is the rank estimate, asymptotically efficient for g
in the role of the basic distribution. It follows from Theorem 3.1 that the
asymptotic distribution of A, — A, is then normal with center 0 and the covari-
ance matrix
Gl L (gEH) )] :
(3.5 zl.gl[_< _g>+_¢t,ngt.
: Lo Vgm0 ;9

where

= g'(x)

g=1 dF(x) .

Rl g(x) ( )

Under (3.3) and (3.4), we have the following corollaries:

CoROLLARY 3.2. Let ¢ and ¢ satisfy (3.3) and (3.4) respectively, where g is the
density of the normal distribution N(0, ¢%), ¢* > 0. Then A, ~ A, if and only if the
basic distribution f is normal N(a, 2*) for some 2* > 0, ac R'.

CorOLLARY 3.3. Let ¢ and ¢ satisfy (3.3) and (3.4) respectively with g being
the logistic density. Then A, ~ A, if and only if f = g.
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REMARK. Let ¢ and ¢ satisfy (3.3) and (3.4) respectively with g being the
density of the double-exponential distribution, g(x) = 4e~'*!, x e R". Then A,
and A, coincide for any symmetric basic distribution f.

4. Asymptotic behavior of M,(X,, A). The proof of Theorem 3.1 will utilize
an approximation of M,(X,, A) by a linear function of A. A similar linear ap-
proximation has been studied by Huber [3] (see his Lemma 3 and its corollary)
under a different set of conditions. Although our approach to the asymptotic
linearity is quite different from Huber’s development, it seems sufficient to out-
line here only the main ideas of the proof with references to analogous conside-
rations in Jureckova [9] and [10].

THEOREM 4.1. Under the assumptions 1°, 2° and 4°,

4.1) lim,,_,,, Pyf{max,,_,,<x |M;(Xy, 8)
— My(Xy, A% + o(A — A)0?| = ¢} =0
holds for any K > 0,¢ >0andj= 1, ---, p; 69 is the jth column of .

Proor. We may suppose, without loss of generality, that ¢ is nondecreasing
and that A° = 0. Let us fix e, K > 0. For a fixed #, 1 < h < p, denote 4, =
{A: A, =Ofork £ h, k=1, ..., p}. Weshallfirst prove (4.1) for a fixed A € 4,
and then extend it to any fixed A € R? by contiguity.

From 2° and Theorem 2.1 of Héje‘k—ﬁidék [2], the densities T[X, f(x; + A,¢4:)
are contiguous with respect to JJX, f(x;). Noting this fact and utilizing the
same theorem of [2] and the third Le Cam’s lemma (see Lemma 6.1.4 of [2]) we
get that, for A € 4,, M, (X, A) is asymptotically normal

(4.2) N(—A, w0, 0%;;)
where 0, and ¢;; are the elements of X.
Denote
(4.3) §(1) = $(F-(1) 0<r<1
and
e = ¢ (L) if 0<r<
m m
o1 1
(4.4) = £(1) if —<r=1-—
m m
:5(1_i> if 1-Lcict
m m
and further denote ¢™(x) = §™(F(x)), xe R",m = 1,2, .... Then

(4.5)  E[My(Xy, 0) — M;™(Xy, )] = 2L ¢}, 5 [6() — E™(O)] dt < ¢
holds for m > m, uniformly in N, where
M;™(Xy, A) = ZX, ¢;: ™ (Xyi — Dycyy) -

The contiguity mentioned above in connection with Lemma 3.5 of Jureckova
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[9] then implies that, given an » > 0, there exists an m, such that to any m > m,
corresponds an N,(m) such that
4.6)  PM™(X,, 8) — My(Xy, A =7} s ¢ for N> Nym).
Further,
4.7)  Var [M™(X, &) — M;™(Xy, 0)]

= 25 T [9™(x — Bye) — ¢ ™(x)] dF(x) — 0

as N—oo for fixed m in view of bounded Lebesgue’s theorem and of 2°. Cheby-
shev’s inequality then implies that, given any ¢ > 0 and any fixed m = 2,3, ...,
(4.8)  limy_. P{M™(Xy, &) — M™(X,, 0) — EM,(X,, )| = ¢} = 0.

The asymptotic normality (4.2) and (4.8) imply that, for any A € 4,,

(4.9)  limy_. P{IM™(Xy, &) — M™(Xy, 0) + A, 0™0,] = ¢ = O

where 0™ = —§ ¢'™(x)f’(x) dx. It follows from (4.5), (4.6), (4.8) and (4.9) that
(4.10) L. P{IM,(Xy, A) — M(Xy, 0) + D0y = ¢} = O

holds for Ac 4,,¢ > 0andj =1, ..., p. (4.10) then extends to any fixed A € R”
by the contiguity of the sequences [, f(x;, + A.c.), k =1, - -, p, with respect
to TTX, f(x,).

It remains to prove that the linear approximations are uniform in ||A[| < K.
But the proof is quite analogous to the corresponding proof in [10]. Assump-
tion 2° on regression constants and the monotonicity of ¢ enable us to decom-
pose M; into two statistics monotone in the components of A; the monotonicity
then implies the uniformity of the linear approximation.

5. Proof of Theorem 3.1. First of all, Theorem 4.1 has an easy corollary,
which we write as a lemma.

LeMMA 5.1. If {A,*)%_, is a sequence of random vectors such that Ay * — A°
are bounded in probability and if the assumptions 1°, 2° and 4° are satisfied, then

5.1 lim, ., Pyp{|M;(Xy, Ay*) — M (X, A%) + o(Ay* — A%)a'?| = ¢} =0
forj=1,...,pandany c>0.

The proof of Theorem 3.1 is based on an application of Lemma 5.1to A * =
A,, so that we need to know if (KM — A% are bounded in probability. The
following lemma shows that this is the case under the assumptions 1°, 2° and
4°, The proof follows the ideas of the proof of Lemma 4.3 of [10].

LEMMA 5.2. Under the assumptions 1°, 2° and 4°, to any ¢ > 0 correspond
K > 0, » > 0 and a positive integer N, such that

(5.2) Pyo{min,_yo,2x [IM(Xy, A)]| < 7} < ¢
holds for N > N,, where
(5.3) M(Xy, A) = (My(Xy, B), -+, M (Xy, A)).
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Proor. It follows from Lemma 4.1 that, given any ¢ > 0, there exist N, and
K, > 0 such that

(5.4) Pof[|M(X,, AY|| > K} < 4¢  for N> N,.
Let K and » be any numbers satisfying
(5.5) K > 2K [(2w) 7 < K,/2

where 4, is the minimal eigenvalue of X.
Then, it follows from Theorem 4.1 and from (5.4) that for N > N,

(5.6) Pyo{ming,_y-x 221 (8, — B)M;(Xy, B) < 1} < ¢

where 7, = 7K,.
Actually, the left-hand side of (5.6) is less than or equal to
Pyo{ming,_ oy x 271 (A" — B))M(Xy, B) < 7,
miny,_goy=x 251 (8, — 8,)[M;(Xy, A%)

(5.7) + (A — A)0'9] 229
=+ PAO{minIIA—AOII=K 251 (8 — Ap[M(Xy, A)
+ o(A — A)o"] < 29} .

The first term of (5.7) is less than or equal to

Py{max,_yo-x 2i; (8,° — 8,)[My(Xy, &) + ©(A° — A)g'?
(5.8) — My(Xy, A)] = 7}
< Po{max s -x 2; [M;(Xy, &%) + o(A° — A)a'? — M;(X,, A)|
=7—0 as N— .

The second term of (5.7) is less than or equal to

Pyofming, o ox 11721 (A2 — A)M,(Xy, A% + K20 < 27}
< Po{—K|M(Xy, A%)|| < 27, — K30} -0 as N— oo

so that (5.6) is proved.
Let A be any point such that ||A' — A’|| = K. Put

¢;* = (A" — AY)c®, X* =X, — Ac¢? | i=1,...,N
and
M(r) = 2X e, p(X* + t¢*).

Then M(r) is nondecreasing in r, so that

(5:9) T (AL — AHM(Xy, A + (A — AT)
= M(r) = M(1) = X7_, (A, — AHM,(X,, AY)  for z=1.

If ||A — A% = K and A* = A° + (K/||A — AjJ|)(A — A%) then ||A! — AY|| = K and
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A=A+ (A — A% for r = ||A — A%||/K = 1. (5.6) and (5.9) then imply that

Pyo{min,_ 0,2« [[M(Xy, B)]] < 7}

= Py {minnA—wugK [Z?ﬂ (85" — B))M(X,y, A):ll—lA_fF” < WK}
= Pofmingm-gy=x 25 (8" — A7) M(Xy, AY) < 70} < ¢
for N> N,. 0
Proor oF THEOREM 3.1. It follows from Lemma 5.1 and Lemma 5.2 that
(5.10) lim,_, Puf|M;(Xy, 8% — 08, — A)a| 2 ¢} = 0
holds for j =1, - - -, p.and any ¢ > 0; thus
(5.11) A, ~ A 4 (1/0)M(X,, A% -1,
On the other hand, it follows from Lemma 4.5 of [10] that
(5.12) Ay ~ A+ (1/9)S(X,, A)Z-1
where :
S(Xys ) = ($i(Xy, 4), - -+, §,(Xy, A))
and
S;(Xy, &) = X ciay(RY) j=1,-p.
(5.11) and (5.12) imply
(5-13) A, — By ~ [(1@)M(X,, &) — (1/1)S(X,, AY]Z-.
Further, it follows from Theorem 5.1.5.a of [2] that
(5.14) SXy, A ~ T,
where
(5.15)  Ty=(Ty®, .-, Ty) and T, = T, ¢ o[F(3,(AY)] .
(5.13) and (5.15) imply
(5.16) A, — A, ~ [(1/0)(3(8%) — (1/1)e(F(3(A%))]C,7E-.

The rest of the proof then follows easily from Theorem 5.1.2 of [2]. []
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